Hi Akashi, On 25/04/18 07:26, AKASHI Takahiro wrote: > Enabling crash dump (kdump) includes > * prepare contents of ELF header of a core dump file, /proc/vmcore, > using crash_prepare_elf64_headers(), and > * add two device tree properties, "linux,usable-memory-range" and > "linux,elfcorehdr", which represent repsectively a memory range (Nit: respectively) > to be used by crash dump kernel and the header's location > arch/arm64/include/asm/kexec.h | 4 + > arch/arm64/kernel/kexec_image.c | 9 +- > arch/arm64/kernel/machine_kexec_file.c | 202 +++++++++++++++++++++++++ In this patch, machine_kexec_file.c gains its own private fdt array encoder. > diff --git a/arch/arm64/kernel/machine_kexec_file.c b/arch/arm64/kernel/machine_kexec_file.c > index 37c0a9dc2e47..ec674f4d267c 100644 > --- a/arch/arm64/kernel/machine_kexec_file.c > +++ b/arch/arm64/kernel/machine_kexec_file.c > @@ -76,6 +81,78 @@ int arch_kexec_walk_mem(struct kexec_buf *kbuf, > return ret; > } > > +static int __init arch_kexec_file_init(void) > +{ > + /* Those values are used later on loading the kernel */ > + __dt_root_addr_cells = dt_root_addr_cells; > + __dt_root_size_cells = dt_root_size_cells; > + > + return 0; > +} > +late_initcall(arch_kexec_file_init); If we need these is it worth taking them out of __initdata? I note they've been 'temporary' for quite a long time. > + > +#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1)) > +#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE)) > + > +static int fdt_prop_len(const char *prop_name, int len) > +{ > + return (strlen(prop_name) + 1) + > + sizeof(struct fdt_property) + > + FDT_TAGALIGN(len); > +} This stuff should really be in libfdt.h Those macros come from libfdt_internal.h, so we're probably doing something wrong here. > +static bool cells_size_fitted(unsigned long base, unsigned long size) > +{ > + /* if *_cells >= 2, cells can hold 64-bit values anyway */ > + if ((__dt_root_addr_cells == 1) && (base >= (1ULL << 32))) > + return false; > + > + if ((__dt_root_size_cells == 1) && (size >= (1ULL << 32))) > + return false; Using '> U32_MAX' here may be more readable. > + return true; > +} > + > +static void fill_property(void *buf, u64 val64, int cells) > +{ > + u32 val32; > + > + if (cells == 1) { > + val32 = cpu_to_fdt32((u32)val64); > + memcpy(buf, &val32, sizeof(val32)); > + } else { > + memset(buf, 0, cells * sizeof(u32) - sizeof(u64)); > + buf += cells * sizeof(u32) - sizeof(u64); Is this trying to clear the 'top' cells and shuffle the pointer to point at the 'bottom' 2? I'm pretty sure this isn't endian safe. Do we really expect a system to have #address-cells > 2? > + val64 = cpu_to_fdt64(val64); > + memcpy(buf, &val64, sizeof(val64)); > + } > +} > + > +static int fdt_setprop_range(void *fdt, int nodeoffset, const char *name, > + unsigned long addr, unsigned long size) (the device-tree spec describes a 'ranges' property, which had me confused. This is encoding a prop-encoded-array) > +{ > + void *buf, *prop; > + size_t buf_size; > + int result; > + > + buf_size = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > + prop = buf = vmalloc(buf_size); virtual memory allocation for something less than PAGE_SIZE? > + if (!buf) > + return -ENOMEM; > + > + fill_property(prop, addr, __dt_root_addr_cells); > + prop += __dt_root_addr_cells * sizeof(u32); > + > + fill_property(prop, size, __dt_root_size_cells); > + > + result = fdt_setprop(fdt, nodeoffset, name, buf, buf_size); > + > + vfree(buf); > + > + return result; > +} Doesn't this stuff belong in libfdt? I guess there is no 'add array element' api because this the first time we've wanted to create a node with more than key=fixed-size-value. I don't think this belongs in arch C code. Do we have a plan for getting libfdt to support encoding prop-arrays? Can we put it somewhere anyone else duplicating this will find it, until we can (re)move it? I have no idea how that happens... it looks like the devicetree list is the place to ask. > static int setup_dtb(struct kimage *image, > unsigned long initrd_load_addr, unsigned long initrd_len, > char *cmdline, unsigned long cmdline_len, > @@ -88,10 +165,26 @@ static int setup_dtb(struct kimage *image, > int range_len; > int ret; > > + /* check ranges against root's #address-cells and #size-cells */ > + if (image->type == KEXEC_TYPE_CRASH && > + (!cells_size_fitted(image->arch.elf_load_addr, > + image->arch.elf_headers_sz) || > + !cells_size_fitted(crashk_res.start, > + crashk_res.end - crashk_res.start + 1))) { > + pr_err("Crash memory region doesn't fit into DT's root cell sizes.\n"); > + ret = -EINVAL; > + goto out_err; > + } To check I've understood this properly: This can happen if the firmware provided a DTB with 32bit address/size cells, but at least some of the memory requires 64 bit address/size cells. This could only happen on a UEFI system where the firmware-DTB doesn't describe memory. ACPI-only systems would have the EFIstub DT. > /* duplicate dt blob */ > buf_size = fdt_totalsize(initial_boot_params); > range_len = (__dt_root_addr_cells + __dt_root_size_cells) * sizeof(u32); > > + if (image->type == KEXEC_TYPE_CRASH) > + buf_size += fdt_prop_len("linux,elfcorehdr", range_len) > + + fdt_prop_len("linux,usable-memory-range", > + range_len); > + > if (initrd_load_addr) > buf_size += fdt_prop_len("linux,initrd-start", sizeof(u64)) > + fdt_prop_len("linux,initrd-end", sizeof(u64)); > @@ -113,6 +206,23 @@ static int setup_dtb(struct kimage *image, > if (nodeoffset < 0) > goto out_err; > > + if (image->type == KEXEC_TYPE_CRASH) { > + /* add linux,elfcorehdr */ > + ret = fdt_setprop_range(buf, nodeoffset, "linux,elfcorehdr", > + image->arch.elf_load_addr, > + image->arch.elf_headers_sz); > + if (ret) > + goto out_err; > + > + /* add linux,usable-memory-range */ > + ret = fdt_setprop_range(buf, nodeoffset, > + "linux,usable-memory-range", > + crashk_res.start, > + crashk_res.end - crashk_res.start + 1); Don't you need to add "linux,usable-memory-range" to the buf_size estimate? > + if (ret) > + goto out_err; > + } > @@ -148,17 +258,109 @@ static int setup_dtb(struct kimage *image, > +static struct crash_mem *get_crash_memory_ranges(void) > +{ > + unsigned int nr_ranges; > + struct crash_mem *cmem; > + > + nr_ranges = 1; /* for exclusion of crashkernel region */ > + walk_system_ram_res(0, -1, &nr_ranges, get_nr_ranges_callback); > + > + cmem = vmalloc(sizeof(struct crash_mem) + > + sizeof(struct crash_mem_range) * nr_ranges); > + if (!cmem) > + return NULL; > + > + cmem->max_nr_ranges = nr_ranges; > + cmem->nr_ranges = 0; > + walk_system_ram_res(0, -1, cmem, add_mem_range_callback); > + > + /* Exclude crashkernel region */ > + if (crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end)) { > + vfree(cmem); > + return NULL; > + } > + > + return cmem; > +} Could this function be included in prepare_elf_headers() so that the alloc() and free() occur together. > +static int prepare_elf_headers(void **addr, unsigned long *sz) > +{ > + struct crash_mem *cmem; > + int ret = 0; > + > + cmem = get_crash_memory_ranges(); > + if (!cmem) > + return -ENOMEM; > + > + ret = crash_prepare_elf64_headers(cmem, true, addr, sz); > + > + vfree(cmem); > + return ret; > +} All this is moving memory-range information from core-code's walk_system_ram_res() into core-code's struct crash_mem, and excluding crashk_res, which again is accessible to the core code. It looks like this is duplicated in arch/x86 and arch/arm64 because arm64 doesn't have a second 'crashk_low_res' region, and always wants elf64, instead of when IS_ENABLED(CONFIG_X86_64). If we can abstract just those two, more of this could be moved to core code where powerpc can make use of it if they want to support kdump with kexec_file_load(). But, its getting late for cross-architecture dependencies, lets put that on the for-later list. (assuming there isn't a powerpc-kdump series out there adding a third copy of this) Thanks, James _______________________________________________ kexec mailing list kexec@xxxxxxxxxxxxxxxxxxx http://lists.infradead.org/mailman/listinfo/kexec