Alan Buis 818-354-0474 NEWS RELEASE: 2007-148 Dec. 12, 2007 NASA Satellites Help Lift Cloud of Uncertainty on Climate Change The investigations are giving scientists a greater understanding of factors influencing Earth's present climate and an important foundation for better understanding long-term climate change. Speaking at the fall meeting of the American Geophysical Union in In one study, a team led by Jennifer Kay at the The results highlight the importance of weather pattern variability to a warming Arctic environment. "As Arctic sea ice thins, its extent is more sensitive to year-to-year variability in weather and cloud patterns," said Kay. "Our data show that clearer skies this summer allowed more of the sun's energy to melt the vulnerably thin sea ice and heat the ocean surface." A separate CloudSat study led by John Haynes at "These results suggest there is considerably more water falling from our skies, at least over Earth's oceans, than we previously thought," said Haynes. "The implications of these results are substantial and are still being examined, and suggest it may be necessary to reassess climate model estimates of Earth's water cycle intensity. By improving our understanding of present rainfall patterns, scientists can also improve climate model projections of how rainfall will increase or decrease in the future around the world." CloudSat is providing some of the first, most direct observations of where rainfall occurs on a near-global basis, allowing scientists to see, for the first time, what fraction of Earth's clouds precipitate. It surveys ocean regions where measurements did not previously exist -- regions where the United Nations' Intergovernmental Panel on Climate Change suggests the greatest changes are occurring. It complements NASA's Tropical Rainfall Measuring Mission and offers a test bed for its planned Global Precipitation Measurement mission. In another study, Scientists had previously believed that aerosols indirectly altered sunlight reflected by clouds by altering the sizes of cloud particles. The new observations also show that aerosols might allow clouds to grow deeper, increasing the amount of sunlight reflected from them even more than previously thought. The Afternoon, or “A-Train” satellite constellation presently consists of five satellites flying in formation around the globe. Each satellite within the A-Train has unique measurement capabilities that greatly complement each other. The combined set of measurements is providing new insights into the global distribution and evolution of clouds that will lead to improvements in weather forecasting and climate prediction. Background materials for today’s briefing are online at: http://www.nasa.gov/mission_pages/cloudsat/news/secret_clouds.html . For more on CloudSat and the A-Train, see: http://www.nasa.gov/cloudsat . Additional media contacts for this story: Emily Wilmsen, JPL is managed for NASA by the California Institute of Technology in
-end-
|