Guy Webster 818-354-6278 Jet Propulsion Laboratory,
Erica Hupp/Dwayne Brown 202-358-1237/1726 NASA Headquarters,
News Release: 2006-106
NASA Mars Reconnaissance Orbiter Reaches Planned Flight Path
NASA's newest spacecraft at Mars has completed the challenging half-year task of shaping its orbit to the nearly circular, low-altitude pattern from which it will scrutinize the planet.
"This maneuver puts us into our science orbit," said Dan Johnston, deputy mission manager at NASA's Jet Propulsion Laboratory,
Monday's maneuver was the mission's biggest burn since the 27-minute firing to slow the spacecraft enough for Mars' gravity to snare it into orbit on March 10. The benefit of aerobraking is to avoid hauling unnecessary fuel to Mars for thrusters. Compared with relying solely on thruster firings to shrink and shape the orbit, aerobraking cut the mission's fuel needs by about 600 kilograms (about 1,300 pounds.) At least one small adjustment maneuver is still ahead.
One key remaining preparation for the mission's science payload is deployment of the antenna for the Shallow Subsurface Radar, an instrument provided by the Italian Space Agency. The antenna, developed by Northrop Grumman Space Technology Astro Aerospace,
During aerobraking, a lens cap protected the mission's mineral-mapping Compact Reconnaissance Imaging Spectrometer for Mars. Removal of the cap this month will allow researchers to start checking and calibrating the spectrometer's performance. "Our most important goal is to find where past environments on Mars were wet long enough to leave a mineral signature on the surface," said Dr. Scott Murchie of Johns Hopkins University Applied Physics Laboratory, Laurel, Md., principal investigator for the spectrometer.
A series of trial observations by all the instruments will complete the spacecraft checkouts at the end of the month, including tests of all observing modes. In addition to data acquisition by the radar and spectrometer, images will be taken by the High Resolution Imaging Science Experiment and the Context Imager. The Mars Color Imager and Mars Climate Sounder will also begin monitoring Mars' atmosphere. During the next four years, these instruments on Mars Reconnaissance Orbiter will examine Mars to learn about processes that have affected it and to inspect potential landing sites for future missions. The spacecraft will also serve as a communications relay for Mars surface missions.
Information about the Mars Reconnaissance Orbiter is online at http://www.nasa.gov/mro . The mission is managed by JPL, a division of the California Institute of Technology,
-end-
|