Carolina Martinez 818-354-9382 Jet Propulsion Laboratory, Pasadena, Calif.
Tim Stephens 831-459-2495
Jim Scott 303-492-3114
NEWS RELEASE: 2006-080 May 31, 2006
NASA-Funded Study Says Saturn’s Moon Enceladus Rolled Over
Enceladus recently grabbed scientists’ attention when the Cassini spacecraft observed icy jets and plumes indicating active geysers spewing from the tiny moon’s south polar region.
"The mystery we set out to explain was how the hot spot could end up at the pole if it didn't start there," said Francis Nimmo, assistant professor of Earth sciences,
The researchers propose the reorientation of the moon was driven by warm, low-density material rising to the surface from within Enceladus. A similar process may have happened on Uranus' moon Miranda, they said. Their findings are in this week’s journal Nature.
“It’s astounding that Cassini found a region of current geological activity on an icy moon that we would expect to be frigidly cold, especially down at this moon’s equivalent of Antarctica,” said Robert Pappalardo, co-author and planetary scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “We think the moon rolled over to put a deeply seated warm, active area there.” Pappalardo worked on the study while at the
Rotating bodies, including planets and moons, are stable if more of their mass is close to the equator. “Any redistribution of mass within the object can cause instability with respect to the axis of rotation. A reorientation will tend to position excess mass at the equator and areas of low density at the poles,” Nimmo said. This is precisely what happened to Enceladus.
Nimmo and Pappalardo calculated the effects of a low-density blob beneath the surface of Enceladus and showed it could cause the moon to roll over by up to 30-degrees and put the blob at the pole.
The rising blob (called a "diapir") may be within either the icy shell or the underlying rocky core of Enceladus. In either case, as the material heats up it expands and becomes less dense, then rises toward the surface. This rising of warm, low-density material could also help explain the high heat and striking surface features, including the geysers and “tiger-stripe” region suggesting fault lines caused by tectonic stress. Internal heating of Enceladus probably results from its eccentric orbit around Saturn. "Enceladus gets squeezed and stretched by tidal forces as it orbits Saturn, and that mechanical energy is transformed into heat energy in the moon’s interior," added Nimmo.
For images and information about the Cassini mission, visit: http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov .
-end-
|