Re: [PATCH v7 4/9] block: Add core atomic write support

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 6/2/24 16:09, John Garry wrote:
Add atomic write support, as follows:
- add helper functions to get request_queue atomic write limits
- report request_queue atomic write support limits to sysfs and update Doc
- support to safely merge atomic writes
- deal with splitting atomic writes
- misc helper functions
- add a per-request atomic write flag

New request_queue limits are added, as follows:
- atomic_write_hw_max is set by the block driver and is the maximum length
   of an atomic write which the device may support. It is not
   necessarily a power-of-2.
- atomic_write_max_sectors is derived from atomic_write_hw_max_sectors and
   max_hw_sectors. It is always a power-of-2. Atomic writes may be merged,
   and atomic_write_max_sectors would be the limit on a merged atomic write
   request size. This value is not capped at max_sectors, as the value in
   max_sectors can be controlled from userspace, and it would only cause
   trouble if userspace could limit atomic_write_unit_max_bytes and the
   other atomic write limits.
- atomic_write_hw_unit_{min,max} are set by the block driver and are the
   min/max length of an atomic write unit which the device may support. They
   both must be a power-of-2. Typically atomic_write_hw_unit_max will hold
   the same value as atomic_write_hw_max.
- atomic_write_unit_{min,max} are derived from
   atomic_write_hw_unit_{min,max}, max_hw_sectors, and block core limits.
   Both min and max values must be a power-of-2.
- atomic_write_hw_boundary is set by the block driver. If non-zero, it
   indicates an LBA space boundary at which an atomic write straddles no
   longer is atomically executed by the disk. The value must be a
   power-of-2. Note that it would be acceptable to enforce a rule that
   atomic_write_hw_boundary_sectors is a multiple of
   atomic_write_hw_unit_max, but the resultant code would be more
   complicated.

All atomic writes limits are by default set 0 to indicate no atomic write
support. Even though it is assumed by Linux that a logical block can always
be atomically written, we ignore this as it is not of particular interest.
Stacked devices are just not supported either for now.

An atomic write must always be submitted to the block driver as part of a
single request. As such, only a single BIO must be submitted to the block
layer for an atomic write. When a single atomic write BIO is submitted, it
cannot be split. As such, atomic_write_unit_{max, min}_bytes are limited
by the maximum guaranteed BIO size which will not be required to be split.
This max size is calculated by request_queue max segments and the number
of bvecs a BIO can fit, BIO_MAX_VECS. Currently we rely on userspace
issuing a write with iovcnt=1 for pwritev2() - as such, we can rely on each
segment containing PAGE_SIZE of data, apart from the first+last, which each
can fit logical block size of data. The first+last will be LBS
length/aligned as we rely on direct IO alignment rules also.

New sysfs files are added to report the following atomic write limits:
- atomic_write_unit_max_bytes - same as atomic_write_unit_max_sectors in
				bytes
- atomic_write_unit_min_bytes - same as atomic_write_unit_min_sectors in
				bytes
- atomic_write_boundary_bytes - same as atomic_write_hw_boundary_sectors in
				bytes
- atomic_write_max_bytes      - same as atomic_write_max_sectors in bytes

Atomic writes may only be merged with other atomic writes and only under
the following conditions:
- total resultant request length <= atomic_write_max_bytes
- the merged write does not straddle a boundary

Helper function bdev_can_atomic_write() is added to indicate whether
atomic writes may be issued to a bdev. If a bdev is a partition, the
partition start must be aligned with both atomic_write_unit_min_sectors
and atomic_write_hw_boundary_sectors.

FSes will rely on the block layer to validate that an atomic write BIO
submitted will be of valid size, so add blk_validate_atomic_write_op_size()
for this purpose. Userspace expects an atomic write which is of invalid
size to be rejected with -EINVAL, so add BLK_STS_INVAL for this. Also use
BLK_STS_INVAL for when a BIO needs to be split, as this should mean an
invalid size BIO.

Flag REQ_ATOMIC is used for indicating an atomic write.

Co-developed-by: Himanshu Madhani <himanshu.madhani@xxxxxxxxxx>
Signed-off-by: Himanshu Madhani <himanshu.madhani@xxxxxxxxxx>
Signed-off-by: John Garry <john.g.garry@xxxxxxxxxx>
---
  Documentation/ABI/stable/sysfs-block | 53 ++++++++++++++++
  block/blk-core.c                     | 19 ++++++
  block/blk-merge.c                    | 95 +++++++++++++++++++++++++++-
  block/blk-settings.c                 | 52 +++++++++++++++
  block/blk-sysfs.c                    | 33 ++++++++++
  block/blk.h                          |  3 +
  include/linux/blk_types.h            |  8 ++-
  include/linux/blkdev.h               | 54 ++++++++++++++++
  8 files changed, 315 insertions(+), 2 deletions(-)

diff --git a/Documentation/ABI/stable/sysfs-block b/Documentation/ABI/stable/sysfs-block
index 831f19a32e08..cea8856f798d 100644
--- a/Documentation/ABI/stable/sysfs-block
+++ b/Documentation/ABI/stable/sysfs-block
@@ -21,6 +21,59 @@ Description:
  		device is offset from the internal allocation unit's
  		natural alignment.
+What: /sys/block/<disk>/atomic_write_max_bytes
+Date:		February 2024
+Contact:	Himanshu Madhani <himanshu.madhani@xxxxxxxxxx>
+Description:
+		[RO] This parameter specifies the maximum atomic write
+		size reported by the device. This parameter is relevant
+		for merging of writes, where a merged atomic write
+		operation must not exceed this number of bytes.
+		This parameter may be greater than the value in
+		atomic_write_unit_max_bytes as
+		atomic_write_unit_max_bytes will be rounded down to a
+		power-of-two and atomic_write_unit_max_bytes may also be
+		limited by some other queue limits, such as max_segments.
+		This parameter - along with atomic_write_unit_min_bytes
+		and atomic_write_unit_max_bytes - will not be larger than
+		max_hw_sectors_kb, but may be larger than max_sectors_kb.
+
+
+What:		/sys/block/<disk>/atomic_write_unit_min_bytes
+Date:		February 2024
+Contact:	Himanshu Madhani <himanshu.madhani@xxxxxxxxxx>
+Description:
+		[RO] This parameter specifies the smallest block which can
+		be written atomically with an atomic write operation. All
+		atomic write operations must begin at a
+		atomic_write_unit_min boundary and must be multiples of
+		atomic_write_unit_min. This value must be a power-of-two.
+
+
+What:		/sys/block/<disk>/atomic_write_unit_max_bytes
+Date:		February 2024
+Contact:	Himanshu Madhani <himanshu.madhani@xxxxxxxxxx>
+Description:
+		[RO] This parameter defines the largest block which can be
+		written atomically with an atomic write operation. This
+		value must be a multiple of atomic_write_unit_min and must
+		be a power-of-two. This value will not be larger than
+		atomic_write_max_bytes.
+
+
+What:		/sys/block/<disk>/atomic_write_boundary_bytes
+Date:		February 2024
+Contact:	Himanshu Madhani <himanshu.madhani@xxxxxxxxxx>
+Description:
+		[RO] A device may need to internally split an atomic write I/O
+		which straddles a given logical block address boundary. This
+		parameter specifies the size in bytes of the atomic boundary if
+		one is reported by the device. This value must be a
+		power-of-two and at least the size as in
+		atomic_write_unit_max_bytes.
+		Any attempt to merge atomic write I/Os must not result in a
+		merged I/O which crosses this boundary (if any).
+
What: /sys/block/<disk>/diskseq
  Date:		February 2021
diff --git a/block/blk-core.c b/block/blk-core.c
index 82c3ae22d76d..d9f58fe71758 100644
--- a/block/blk-core.c
+++ b/block/blk-core.c
@@ -174,6 +174,8 @@ static const struct {
  	/* Command duration limit device-side timeout */
  	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
+ [BLK_STS_INVAL] = { -EINVAL, "invalid" },
+
  	/* everything else not covered above: */
  	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
  };
@@ -739,6 +741,18 @@ void submit_bio_noacct_nocheck(struct bio *bio)
  		__submit_bio_noacct(bio);
  }
+static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
+						 struct bio *bio)
+{
+	if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
+		return BLK_STS_INVAL;
+
+	if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
+		return BLK_STS_INVAL;
+
+	return BLK_STS_OK;
+}
+
  /**
   * submit_bio_noacct - re-submit a bio to the block device layer for I/O
   * @bio:  The bio describing the location in memory and on the device.
@@ -797,6 +811,11 @@ void submit_bio_noacct(struct bio *bio)
  	switch (bio_op(bio)) {
  	case REQ_OP_READ:
  	case REQ_OP_WRITE:
+		if (bio->bi_opf & REQ_ATOMIC) {
+			status = blk_validate_atomic_write_op_size(q, bio);
+			if (status != BLK_STS_OK)
+				goto end_io;
+		}
  		break;
  	case REQ_OP_FLUSH:
  		/*
diff --git a/block/blk-merge.c b/block/blk-merge.c
index 8957e08e020c..ad07759ca147 100644
--- a/block/blk-merge.c
+++ b/block/blk-merge.c
@@ -18,6 +18,46 @@
  #include "blk-rq-qos.h"
  #include "blk-throttle.h"
+/*
+ * rq_straddles_atomic_write_boundary - check for boundary violation
+ * @rq: request to check
+ * @front: data size to be appended to front
+ * @back: data size to be appended to back
+ *
+ * Determine whether merging a request or bio into another request will result
+ * in a merged request which straddles an atomic write boundary.
+ *
+ * The value @front_adjust is the data which would be appended to the front of
+ * @rq, while the value @back_adjust is the data which would be appended to the
+ * back of @rq. Callers will typically only have either @front_adjust or
+ * @back_adjust as non-zero.
+ *
+ */
+static bool rq_straddles_atomic_write_boundary(struct request *rq,
+					unsigned int front_adjust,
+					unsigned int back_adjust)
+{
+	unsigned int boundary = queue_atomic_write_boundary_bytes(rq->q);
+	u64 mask, start_rq_pos, end_rq_pos;
+
+	if (!boundary)
+		return false;
+
+	start_rq_pos = blk_rq_pos(rq) << SECTOR_SHIFT;
+	end_rq_pos = start_rq_pos + blk_rq_bytes(rq) - 1;
+
+	start_rq_pos -= front_adjust;
+	end_rq_pos += back_adjust;
+
+	mask = ~(boundary - 1);
+
+	/* Top bits are different, so crossed a boundary */
+	if ((start_rq_pos & mask) != (end_rq_pos & mask))
+		return true;
+
+	return false;
+}

But isn't that precisely what 'chunk_sectors' is doing?
IE ensuring that requests never cross that boundary?

Q1: Shouldn't we rather use/modify/adapt chunk_sectors for this thing?
Q2: If we don't, shouldn't we align the atomic write boundary to the chunk_sectors setting to ensure both match up?

Cheers,

Hannes





[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux