[PATCH 2/3] drm/i915: Do not call retire_requests from wait_for_rendering

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



A common issue we have is that retiring requests causes recursion
through GTT manipulation or page table manipulation which we can only
handle at very specific points. However, to maintain internal
consistency (enforced through our sanity checks on write_domain at
various points in the GEM object lifecycle) we do need to retire the
object prior to marking it with a new write_domain, and also clear the
write_domain for the implicit flush following a batch.

Note that this then allows the unbound objects to still be on the active
lists, and so care must be taken when removing objects from unbound lists
(similar to the caveats we face processing the bound lists).

Signed-off-by: Chris Wilson <chris@xxxxxxxxxxxxxxxxxx>
---
 drivers/gpu/drm/i915/i915_gem.c            | 100 ++++++++++++++++++-----------
 drivers/gpu/drm/i915/i915_gem_execbuffer.c |   3 +
 2 files changed, 64 insertions(+), 39 deletions(-)

diff --git a/drivers/gpu/drm/i915/i915_gem.c b/drivers/gpu/drm/i915/i915_gem.c
index 0e8c9bb6c3da..8912aaa7118a 100644
--- a/drivers/gpu/drm/i915/i915_gem.c
+++ b/drivers/gpu/drm/i915/i915_gem.c
@@ -43,12 +43,15 @@ static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *o
 static __must_check int
 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
 			       bool readonly);
+static void
+i915_gem_object_retire(struct drm_i915_gem_object *obj);
 static __must_check int
 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
 			   struct i915_address_space *vm,
 			   unsigned alignment,
 			   bool map_and_fenceable,
 			   bool nonblocking);
+
 static int i915_gem_phys_pwrite(struct drm_device *dev,
 				struct drm_i915_gem_object *obj,
 				struct drm_i915_gem_pwrite *args,
@@ -535,6 +538,8 @@ i915_gem_shmem_pread(struct drm_device *dev,
 		ret = i915_gem_object_wait_rendering(obj, true);
 		if (ret)
 			return ret;
+
+		i915_gem_object_retire(obj);
 	}
 
 	ret = i915_gem_object_get_pages(obj);
@@ -849,6 +854,8 @@ i915_gem_shmem_pwrite(struct drm_device *dev,
 		ret = i915_gem_object_wait_rendering(obj, false);
 		if (ret)
 			return ret;
+
+		i915_gem_object_retire(obj);
 	}
 	/* Same trick applies to invalidate partially written cachelines read
 	 * before writing. */
@@ -1238,7 +1245,8 @@ static int
 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
 				     struct intel_ring_buffer *ring)
 {
-	i915_gem_retire_requests_ring(ring);
+	if (!obj->active)
+		return 0;
 
 	/* Manually manage the write flush as we may have not yet
 	 * retired the buffer.
@@ -1248,7 +1256,6 @@ i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
 	 * we know we have passed the last write.
 	 */
 	obj->last_write_seqno = 0;
-	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
 
 	return 0;
 }
@@ -1856,58 +1863,58 @@ static unsigned long
 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
 		  bool purgeable_only)
 {
-	struct list_head still_bound_list;
-	struct drm_i915_gem_object *obj, *next;
+	struct list_head still_in_list;
+	struct drm_i915_gem_object *obj;
 	unsigned long count = 0;
 
-	list_for_each_entry_safe(obj, next,
-				 &dev_priv->mm.unbound_list,
-				 global_list) {
-		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
-		    i915_gem_object_put_pages(obj) == 0) {
-			count += obj->base.size >> PAGE_SHIFT;
-			if (count >= target)
-				return count;
-		}
-	}
-
 	/*
-	 * As we may completely rewrite the bound list whilst unbinding
+	 * As we may completely rewrite the (un)bound list whilst unbinding
 	 * (due to retiring requests) we have to strictly process only
 	 * one element of the list at the time, and recheck the list
 	 * on every iteration.
+	 *
+	 * In particular, we must hold a reference whilst removing the
+	 * object as we may end up waiting for and/or retiring the objects.
+	 * This might release the final reference (held by the active list)
+	 * and result in the object being freed from under us. This is
+	 * similar to the precautions the eviction code must take whilst
+	 * removing objects.
+	 *
+	 * Also note that although these lists do not hold a reference to
+	 * the object we can safely grab one here: The final object
+	 * unreferencing and the bound_list are both protected by the
+	 * dev->struct_mutex and so we won't ever be able to observe an
+	 * object on the bound_list with a reference count equals 0.
 	 */
-	INIT_LIST_HEAD(&still_bound_list);
+	INIT_LIST_HEAD(&still_in_list);
+	while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
+		obj = list_first_entry(&dev_priv->mm.unbound_list,
+				       typeof(*obj), global_list);
+		list_move_tail(&obj->global_list, &still_in_list);
+
+		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
+			continue;
+
+		drm_gem_object_reference(&obj->base);
+
+		if (i915_gem_object_put_pages(obj) == 0)
+			count += obj->base.size >> PAGE_SHIFT;
+
+		drm_gem_object_unreference(&obj->base);
+	}
+	list_splice(&still_in_list, &dev_priv->mm.unbound_list);
+
+	INIT_LIST_HEAD(&still_in_list);
 	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
 		struct i915_vma *vma, *v;
 
 		obj = list_first_entry(&dev_priv->mm.bound_list,
 				       typeof(*obj), global_list);
-		list_move_tail(&obj->global_list, &still_bound_list);
+		list_move_tail(&obj->global_list, &still_in_list);
 
 		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
 			continue;
 
-		/*
-		 * Hold a reference whilst we unbind this object, as we may
-		 * end up waiting for and retiring requests. This might
-		 * release the final reference (held by the active list)
-		 * and result in the object being freed from under us.
-		 * in this object being freed.
-		 *
-		 * Note 1: Shrinking the bound list is special since only active
-		 * (and hence bound objects) can contain such limbo objects, so
-		 * we don't need special tricks for shrinking the unbound list.
-		 * The only other place where we have to be careful with active
-		 * objects suddenly disappearing due to retiring requests is the
-		 * eviction code.
-		 *
-		 * Note 2: Even though the bound list doesn't hold a reference
-		 * to the object we can safely grab one here: The final object
-		 * unreferencing and the bound_list are both protected by the
-		 * dev->struct_mutex and so we won't ever be able to observe an
-		 * object on the bound_list with a reference count equals 0.
-		 */
 		drm_gem_object_reference(&obj->base);
 
 		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
@@ -1919,7 +1926,7 @@ __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
 
 		drm_gem_object_unreference(&obj->base);
 	}
-	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
+	list_splice(&still_in_list, &dev_priv->mm.bound_list);
 
 	return count;
 }
@@ -2160,6 +2167,19 @@ i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
 	WARN_ON(i915_verify_lists(dev));
 }
 
+static void
+i915_gem_object_retire(struct drm_i915_gem_object *obj)
+{
+	struct intel_ring_buffer *ring = obj->ring;
+
+	if (ring == NULL)
+		return;
+
+	if (i915_seqno_passed(ring->get_seqno(ring, true),
+			      obj->last_read_seqno))
+		i915_gem_object_move_to_inactive(obj);
+}
+
 static int
 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
 {
@@ -3581,6 +3601,7 @@ i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
 	if (ret)
 		return ret;
 
+	i915_gem_object_retire(obj);
 	i915_gem_object_flush_cpu_write_domain(obj, false);
 
 	/* Serialise direct access to this object with the barriers for
@@ -3901,6 +3922,7 @@ i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
 	if (ret)
 		return ret;
 
+	i915_gem_object_retire(obj);
 	i915_gem_object_flush_gtt_write_domain(obj);
 
 	old_write_domain = obj->base.write_domain;
diff --git a/drivers/gpu/drm/i915/i915_gem_execbuffer.c b/drivers/gpu/drm/i915/i915_gem_execbuffer.c
index 0c6bcff740c2..ce0529d48864 100644
--- a/drivers/gpu/drm/i915/i915_gem_execbuffer.c
+++ b/drivers/gpu/drm/i915/i915_gem_execbuffer.c
@@ -953,6 +953,9 @@ i915_gem_execbuffer_move_to_active(struct list_head *vmas,
 			if (i915_gem_obj_ggtt_bound(obj) &&
 			    i915_gem_obj_to_ggtt(obj)->pin_count)
 				intel_mark_fb_busy(obj, ring);
+
+			/* update for the implicit flush after a batch */
+			obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
 		}
 
 		trace_i915_gem_object_change_domain(obj, old_read, old_write);
-- 
1.8.5.3

_______________________________________________
Intel-gfx mailing list
Intel-gfx@xxxxxxxxxxxxxxxxxxxxx
http://lists.freedesktop.org/mailman/listinfo/intel-gfx




[Index of Archives]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]
  Powered by Linux