Workgroup: TICTOC Working Group

Internet-Draft: draft-ietf-tictoc-ptp-enterprise-profile-25

Published: 11 March 2024
Intended Status: Standards Track
Expires: 12 September 2024

Authors: D.A. Arnold H.G. Gerstung

Meinberg-USA Meinberg

Enterprise Profile for the Precision Time Protocol With Mixed Multicast and Unicast messages

Abstract

This document describes a PTP Profile for the use of the Precision Time Protocol in an IPv4 or IPv6 Enterprise information system environment. The PTP Profile uses the End-to-End delay measurement mechanism, allows both multicast and unicast Delay Request and Delay Response messages.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction	2
2. Requirements Language	3
3. Technical Terms	4
4. Problem Statement	5
5. Network Technology	6
6. Time Transfer and Delay Measurement	7
7. Default Message Rates	7
8. Requirements for TimeTransmitter Clocks	8
9. Requirements for TimeReceiver Clocks	8
10. Requirements for Transparent Clocks	9
11. Requirements for Boundary Clocks	9
12. Management and Signaling Messages	9
13. Forbidden PTP Options	9
14. Interoperation with IEEE 1588 Default Profile	9
15. Profile Identification	10
16. Acknowledgements	10
17. IANA Considerations	10
18. Security Considerations	10
19. References	11
19.1. Normative References	11
19.2. Informative References	11
Authors' Addresses	12

1. Introduction

The Precision Time Protocol ("PTP"), standardized in IEEE 1588, has been designed in its first version (IEEE 1588-2002) with the goal to minimize configuration on the participating nodes. Network communication was based solely on multicast messages, which unlike NTP did not require that a receiving node in IEEE 1588-2019 [IEEE1588] need to know the identity of the time

sources in the network. This document describes clock roles and PTP Port states using the optional alternative terms timeTransmitter, in stead of master, and timeReceiver, in stead of slave, as defined in the IEEE 1588g [IEEE1588g] amendment to IEEE 1588-2019 [IEEE1588].

The "Best TimeTransmitter Clock Algorithm" (IEEE 1588-2019 [IEEE1588] Subclause 9.3), a mechanism that all participating PTP nodes MUST follow, set up strict rules for all members of a PTP domain to determine which node MUST be the active reference time source (Grandmaster). Although the multicast communication model has advantages in smaller networks, it complicated the application of PTP in larger networks, for example in environments like IP based telecommunication networks or financial data centers. It is considered inefficient that, even if the content of a message applies only to one receiver, it is forwarded by the underlying network (IP) to all nodes, requiring them to spend network bandwidth and other resources, such as CPU cycles, to drop the message.

The third edition of the standard (IEEE 1588-2019) defines PTPv2.1 and includes the possibility to use unicast communication between the PTP nodes in order to overcome the limitation of using multicast messages for the bi-directional information exchange between PTP nodes. The unicast approach avoided that. In PTP domains with a lot of nodes, devices had to throw away more than 99% of the received multicast messages because they carried information for some other node.

PTPv2.1 also includes PTP Profiles (IEEE 1588-2019 [IEEE1588] subclause 20.3). This construct allows organizations to specify selections of attribute values and optional features, simplifying the configuration of PTP nodes for a specific application. Instead of having to go through all possible parameters and configuration options and individually set them up, selecting a PTP Profile on a PTP node will set all the parameters that are specified in the PTP Profile to a defined value. If a PTP Profile definition allows multiple values for a parameter, selection of the PTP Profile will set the profile-specific default value for this parameter. Parameters not allowing multiple values are set to the value defined in the PTP Profile. Many PTP features and functions are optional, and a PTP Profile should also define which optional features of PTP are required, permitted, and prohibited. It is possible to extend the PTP standard with a PTP Profile by using the TLV mechanism of PTP (see IEEE 1588-2019 [IEEE1588] subclause 13.4), defining an optional Best TimeTransmitter Clock Algorithm and a few other ways. PTP has its own management protocol (defined in IEEE 1588-2019 [IEEE1588] subclause 15.2) but allows a PTP Profile to specify an alternative management mechanism, for example NETCONE.

In this document the term PTP Port refers to a logical access point of a PTP instantiation for PTP communincation in a network.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. Technical Terms

- Acceptable TimeTransmitter Table: A PTP timeReceiver Clock may maintain a list of timeTransmitters which it is willing to synchronize to.
- Alternate timeTransmitter: A PTP timeTransmitter Clock, which is not the Best timeTransmitter, may act as a timeTransmitter with the Alternate timeTransmitter flag set on the messages it sends.
- Announce message: Contains the timeTransmitter Clock properties of a timeTransmitter Clock. Used to determine the Best TimeTransmitter.
- Best timeTransmitter: A clock with a PTP Port in the timeTransmitter state, operating consistently with the Best TimeTransmitter Clock Algorithm.
- Best TimeTransmitter Clock Algorithm: A method for determining which state a PTP Port of a PTP clock should be in. The algorithm works by identifying which of several PTP timeTransmitter capable Clocks is the best timeTransmitter. Clocks have priority to become the acting Grandmaster, based on the properties each timeTransmitter Clock sends in its Announce message.
- Boundary Clock: A device with more than one PTP Port. Generally Boundary Clocks will have one PTP Port in timeReceiver state to receive timing and other PTP Ports in timeTransmitter state to re-distribute the timing.
- Clock Identity: In IEEE 1588-2019 this is a 64-bit number assigned to each PTP clock which MUST be globally unique. Often it is derived from the Ethernet MAC address.
- Domain: Every PTP message contains a domain number. Domains are treated as separate PTP systems in the network. Clocks, however, can combine the timing information derived from multiple domains.
- End-to-End delay measurement mechanism: A network delay measurement mechanism in PTP facilitated by an exchange of messages between a timeTransmitter Clock and a timeReceiver Clock. These messages might traverse Transparent Clocks and PTP unaware switches. This mechanism might not work properly if the Sync and Delay Request messages traverse different network paths.
- Grandmaster: the primary timeTransmitter Clock within a domain of a PTP system
- IEEE 1588: The timing and synchronization standard which defines PTP, and describes the node, system, and communication properties necessary to support PTP.
- TimeTransmitter Clock: a clock with at least one PTP Port in the timeTransmitter state.
- NTP: Network Time Protocol, defined by RFC 5905, see RFC 5905 [RFC5905]
- Ordinary Clock: A clock that has a single Precision Time Protocol PTP Port in a domain and maintains the timescale used in the domain. It may serve as a timeTransmitter Clock, or be a timeReceiver Clock.
- Peer-to-Peer delay measurement mechanism: A network delay measurement mechanism in PTP facilitated by an exchange of messages over the link between adjacent devices in a network. This mechanism might not work properly unless all devices in the network support PTP and the Peer-to-peer measurement mechanism.

- Preferred timeTransmitter: A device intended to act primarily as the Grandmaster of a PTP system, or as a back up to a Grandmaster.
- PTP: The Precision Time Protocol: The timing and synchronization protocol defined by IEEE 1588.
- PTP Port: An interface of a PTP clock with the network. Note that there may be multiple PTP Ports running on one physical interface, for example, mulitple unicast timeReceivers which talk to several Grandmaster Clocks in different PTP Domains.
- PTP Profile: A set of constraints on the options and features of PTP, designed to optimize PTP for a specific use case or industry. The profile specifies what is required, allowed and forbidden among options and attribute values of PTP.
- PTPv2.1: Refers specifically to the version of PTP defined by IEEE 1588-2019.
- Rogue timeTransmitter: A clock with a PTP Port in the timeTransmitter state, even though it should not be in the timeTransmitter state according to the Best TimeTransmitter Clock Algorithm, and does not set the Alternate timeTransmitter flag.
- TimeReceiver Clock: a clock with at least one PTP Port in the timeReceiver state, and no PTP Ports in the timeTransmitter state.
- TimeReceiver Only clock: An Ordinary Clock which cannot become a timeTransmitter Clock.
- TLV: Type Length Value, a mechanism for extending messages in networked communications.
- Transparent Clock. A device that measures the time taken for a PTP event message to transit the device and then updates the message with a correction for this transit time.
- Unicast Discovery: A mechanism for PTP timeReceivers to establish a unicast communication with PTP timeTransmitters using a configured table of timeTransmitter IP addresses and Unicast Message Negotiation.
- Unicast Negotiation: A mechanism in PTP for timeReceiver Clocks to negotiate unicast Sync, Announce and Delay Request message transmission rates from timeTransmitters.

4. Problem Statement

This document describes a version of PTP intended to work in large enterprise networks. Such networks are deployed, for example, in financial corporations. It is becoming increasingly common in such networks to perform distributed time tagged measurements, such as one-way packet latencies and cumulative delays on software systems spread across multiple computers. Furthermore, there is often a desire to check the age of information time tagged by a different machine. To perform these measurements, it is necessary to deliver a common precise time to multiple devices on a network. Accuracy currently required in the Financial Industry range from 100 microseconds to 1 nanoseconds to the Grandmaster. This PTP Profile does not specify timing performance requirements, but such requirements explain why the needs cannot always be met by NTP, as commonly implemented. Such accuracy cannot usually be achieved with a traditional time transfer such as NTP, without adding non-standard customizations such as on-path support, similar to what is done in PTP with Transparent Clocks and Boundary Clocks. Such PTP support is commonly available in switches and routers, and many such devices have already been deployed

in networks. Because PTP has a complex range of features and options it is necessary to create a PTP Profile for enterprise networks to achieve interoperability between equipment manufactured by different vendors.

Although enterprise networks can be large, it is becoming increasingly common to deploy multicast protocols, even across multiple subnets. For this reason, it is desired to make use of multicast whenever the information going to many destinations is the same. It is also advantageous to send information which is only relevant to one device as a unicast message. The latter can be essential as the number of PTP timeReceivers becomes hundreds or thousands.

PTP devices operating in these networks need to be robust. This includes the ability to ignore PTP messages which can be identified as improper, and to have redundant sources of time.

Interoperability among independent implementations of this PTP Profile has been demonstrated at the ISPCS Plugfest ISPCS [ISPCS].

5. Network Technology

This PTP Profile MUST operate only in networks characterized by UDP RFC 768 [RFC0768] over either IPv4 RFC 791 [RFC0791] or IPv6 RFC 8200 [RFC8200], as described by Annexes C and D in IEEE 1588 [IEEE1588] respectively. Clocks which communicate using IPv4 can interact with clocks using IPv6 if, and only if, there is an intermediary device which simultaneously communicates with both IP versions. A Boundary Clock might perform this function, for example. The PTP system MAY include switches and routers. These devices MAY be Transparent Clocks, Boundary Clocks, or neither, in any combination. PTP Clocks MAY be Preferred timeTransmitters, Ordinary Clocks, or Boundary Clocks. The Ordinary Clocks may be TimeReceiver Only Clocks, or be timeTransmitter capable.

Note that clocks SHOULD always be identified by their Clock ID and not the IP or Layer 2 address. This is important since Transparent Clocks will treat PTP messages that are altered at the PTP application layer as new IP packets and new Layer 2 frames when the PTP messages are retranmitted. In IPv4 networks some clocks might be hidden behind a NAT, which hides their IP addresses from the rest of the network. Note also that the use of NATs may place limitations on the topology of PTP networks, depending on the port forwarding scheme employed. Details of implementing PTP with NATs are out of scope of this document.

PTP, similar to NTP, assumes that the one-way network delay for Sync messages and Delay Response messages are the same. When this is not true it can cause errors in the transfer of time from the timeTransmitter to the timeReceiver. It is up to the system integrator to design the network so that such effects do not prevent the PTP system from meeting the timing requirements. The details of network asymmetry are outside the scope of this document. See for example, ITU-T G.8271 [G8271].

6. Time Transfer and Delay Measurement

TimeTransmitter Clocks, Transparent Clocks and Boundary Clocks MAY be either one-step clocks or two-step clocks. TimeReceiver Clocks MUST support both behaviors. The End-to-End Delay measurement method MUST be used.

Note that, in IP networks, Sync messages and Delay Request messages exchanged between a timeTransmitter and timeReceiver do not necessarily traverse the same physical path. Thus, wherever possible, the network SHOULD be engineered so that the forward and reverse routes traverse the same physical path. Traffic engineering techniques for path consistency are out of scope of this document.

Sync messages MUST be sent as PTP event multicast messages (UDP port 319) to the PTP primary IP address. Two step clocks MUST send Follow-up messages as PTP general multicast messages (UDP port 320). Announce messages MUST be sent as multicast messages (UDP port 320) to the PTP primary address. The PTP primary IP address is 224.0.1.129 for IPv4 and FF0X:0:0:0:0:0:0:181 for IPv6, where X can be a value between 0x0 and 0xF, see IEEE 1588 [IEEE1588] Annex D, Section D.3. These addresses are aloted by IANA, see the Ipv6 Multicast Address Space Registry [IPv6Registry]

Delay Request messages MAY be sent as either multicast or unicast PTP event messages. TimeTransmitter Clocks MUST respond to multicast Delay Request messages with multicast Delay Response PTP general messages. TimeTransmitter Clocks MUST respond to unicast Delay Request PTP event messages with unicast Delay Response PTP general messages. This allows for the use of Ordinary Clocks which do not support the Enterprise Profile, if they are timeReceiver Only Clocks.

Clocks SHOULD include support for multiple domains. The purpose is to support multiple simultaneous timeTransmitters for redundancy. Leaf devices (non-forwarding devices) can use timing information from multiple timeTransmitters by combining information from multiple instantiations of a PTP stack, each operating in a different PTP Domain. Redundant sources of timing can be ensembled, and/or compared to check for faulty timeTransmitter Clocks. The use of multiple simultaneous timeTransmitters will help mitigate faulty timeTransmitters reporting as healthy, network delay asymmetry, and security problems. Security problems include on-path attacks such as delay attacks, packet interception / manipulation attacks. Assuming the path to each timeTransmitter is different, failures malicious or otherwise would have to happen at more than one path simultaneously. Whenever feasible, the underlying network transport technology SHOULD be configured so that timing messages in different domains traverse different network paths.

7. Default Message Rates

The Sync, Announce, and Delay Request default message rates MUST each be once per second. The Sync and Delay Request message rates MAY be set to other values, but not less than once every 128 seconds, and not more than 128 messages per second. The Announce message rate

MUST NOT be changed from the default value. The Announce Receipt Timeout Interval MUST be three Announce Intervals for Preferred TimeTransmitters, and four Announce Intervals for all other timeTransmitters.

The logMessageInterval carried in the unicast Delay Response message MAY be set to correspond to the timeTransmitter ports preferred message period, rather than 7F, which indicates message periods are to be negotiated. Note that negotiated message periods are not allowed, see forbidden PTP options (Section 13).

8. Requirements for TimeTransmitter Clocks

TimeTransmitter Clocks MUST obey the standard Best TimeTransmitter Clock Algorithm from IEEE 1588 [IEEE1588]. PTP systems using this PTP Profile MAY support multiple simultaneous Grandmasters if each active Grandmaster is operating in a different PTP domain.

A PTP Port of a clock MUST NOT be in the timeTransmitter state unless the clock has a current value for the number of UTC leap seconds.

If a unicast negotiation signaling message is received it MUST be ignored.

In PTP Networks that contain Transparent Clocks, timeTransmitters might receive Delay Request messages that no longer contains the IP Addresses of the timeReceivers. This is because Transparent Clocks might replace the IP address of Delay Requests with their own IP address after updating the Correction Fields. For this deployment scenario timeTransmitters will need to have configured tables of timeReceivers' IP addresses and associated Clock Identities in order to send Delay Responses to the correct PTP Nodes.

9. Requirements for TimeReceiver Clocks

TimeReceiver Clocks MUST be able to operate properly in a network which contains multiple timeTransmitters in multiple domains. TimeReceivers SHOULD make use of information from all the timeTransmitters in their clock control subsystems. TimeReceiver Clocks MUST be able to operate properly in the presence of a rogue timeTransmitter. TimeReceivers SHOULD NOT Synchronize to a timeTransmitter which is not the Best TimeTransmitter in its domain. TimeReceivers will continue to recognize a Best TimeTransmitter for the duration of the Announce Time Out Interval. TimeReceivers MAY use an Acceptable TimeTransmitter Table. If a timeTransmitter is not an Acceptable timeTransmitter, then the timeReceiver MUST NOT synchronize to it. Note that IEEE 1588-2019 requires timeReceiver Clocks to support both two-step or one-step timeTransmitter Clocks. See IEEE 1588 [IEEE1588], subClause 11.2.

Since Announce messages are sent as multicast messages timeReceivers can obtain the IP addresses of a timeTransmitter from the Announce messages. Note that the IP source addresses of Sync and Follow-up messages might have been replaced by the source addresses of a Transparent Clock, so, timeReceivers MUST send Delay Request messages to the IP address in the Announce message. Sync and Follow-up messages can be correlated with the Announce message using the Clock ID, which is never altered by Transparent Clocks in this PTP Profile.

10. Requirements for Transparent Clocks

Transparent Clocks MUST NOT change the transmission mode of an Enterprise Profile PTP message. For example, a Transparent Clock MUST NOT change a unicast message to a multicast message. Transparent Clocks SHOULD support multiple domains. Transparent Clocks which syntonize to the timeTransmitter Clock will need to maintain separate clock rate offsets for each of the supported domains.

11. Requirements for Boundary Clocks

Boundary Clocks SHOULD support multiple simultaneous PTP domains. This will require them to maintain separate clocks for each of the domains supported, at least in software. Boundary Clocks MUST NOT combine timing information from different domains.

12. Management and Signaling Messages

PTP Management messages MAY be used. Management messages intended for a specific clock, i.e. the IEEE 1588 [IEEE1588] defined attribute targetPortIdentity.clockIdentity is not set to All 1s, MUST be sent as a unicast message. Similarly, if any signaling messages are used they MUST also be sent as unicast messages whenever the message is intended for a specific PTP Node.

13. Forbidden PTP Options

Clocks operating in the Enterprise Profile MUST NOT use Peer-to-Peer timing for delay measurement. Grandmaster Clusters are NOT ALLOWED. The Alternate TimeTransmitter option is also NOT ALLOWED. Clocks operating in the Enterprise Profile MUST NOT use Alternate Timescales. Unicast discovery and unicast negotiation MUST NOT be used. Clocks operating in the Enterprise Profile MUST NOT use any optional feature that requires Announce messages to be altered by Transparent Clocks, as this would require the Transparent Clock to change the source address and prevent the timeReceiver nodes from discovering the protocol address of the timeTransmitter.

14. Interoperation with IEEE 1588 Default Profile

Clocks operating in the Enterprise Profile will interoperate with clocks operating in the Default Profile described in IEEE 1588 [IEEE1588] Annex I.3. This variant of the Default Profile uses the End-to-End delay measurement mechanism. In addition, the Default Profile would have to operate over IPv4 or IPv6 networks, and use management messages in unicast when those messages are directed at a specific clock. If either of these requirements are not met than Enterprise Profile clocks will not interoperate with Annex I.3 Default Profile Clocks. The Enterprise Profile will not interoperate with the Annex I.4 variant of the Default Profile which requires use of the Peer-to-Peer delay measurement mechanism.

Enterprise Profile Clocks will interoperate with clocks operating in other PTP Profiles if the clocks in the other PTP Profiles obey the rules of the Enterprise Profile. These rules MUST NOT be changed to achieve interoperability with other PTP Profiles.

15. Profile Identification

The IEEE 1588 standard requires that all PTP Profiles provide the following identifying information.

PTP Profile: Enterprise Profile Version: 1.0

Profile identifier: 00-00-5E-00-01-00

This PTP Profile was specified by the IETF

A copy may be obtained at https://datatracker.ietf.org/wg/tictoc/documents

16. Acknowledgements

The authors would like to thank Richard Cochran, Kevin Gross, John Fletcher, Laurent Montini and many other members of IETF for reviewing and providing feedback on this draft.

This document was initially prepared using 2-Word-v2.0.template.dot and has later been converted manually into xml format using an xml2rfc template.

17. IANA Considerations

There are no IANA requirements in this specification.

18. Security Considerations

Protocols used to transfer time, such as PTP and NTP can be important to security mechanisms which use time windows for keys and authorization. Passing time through the networks poses a security risk since time can potentially be manipulated. The use of multiple simultaneous timeTransmitters, using multiple PTP domains can mitigate problems from rogue timeTransmitters and on-path attacks. Note that Transparent Clocks alter PTP content on-path, but in a manner specified in IEEE 1588-2019 [IEEE1588] that helps with time transfer accuracy. See sections 9 and 10. Additional security mechanisms are outside the scope of this document.

PTP native management messages SHOULD NOT be used, due to the lack of a security mechanism for this option. Secure management can be obtained using standard management mechanisms which include security, for example NETCONF NETCONF [RFC6241].

General security considerations of time protocols are discussed in RFC 7384 [RFC7384].

19. References

19.1. Normative References

- [IEEE1588] Institute of Electrical and Electronics Engineers, "IEEE std. 1588-2019, "IEEE Standard for a Precision Clock Synchronization for Networked Measurement and Control Systems."", November 2019, https://www.ieee.org>.
- [IEEE1588g] Institute of Electrical and Electronics Engineers, "IEEE std. 1588g-2022, "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Amendment 2: Master-Slave Optional Alternative Terminology"", December 2022, https://www.ieee.org.
 - [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI 10.17487/RFC0768, August 1980, https://www.rfc-editor.org/info/rfc768.
 - [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, DOI 10.17487/RFC0791, September 1981, https://www.rfc-editor.org/info/rfc791.
 - [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, https://www.rfc-editor.org/info/rfc2119>.
 - [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 2119, DOI 10.17487/RFC2119, May 2017, https://www.rfc-editor.org/info/rfc8174.
 - [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, July 2017, https://www.rfc-editor.org/info/rfc8200.

19.2. Informative References

- [G8271] International Telecommunication Union, "ITU-T G.8271/Y.1366, "Time and Phase Synchronization Aspects of Packet Networks"", March 2020, https://www.itu.int.
- **[IPv6Registry]** Venaas, S., "IPv6 Multicast Address Space Registry", February 2024, https://iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml.
 - [ISPCS] Arnold, D., "Plugfest Report", October 2017, https://www.ispcs.org.
 - [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010, https://www.rfc-editor.org/info/rfc5905>.

[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, https://www.rfc-editor.org/info/rfc6241.

[RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384, October 2014, https://www.rfc-editor.org/info/rfc7384.

Authors' Addresses

Doug Arnold

Meinberg-USA 3 Concord Rd Shrewsbury, Massachusetts 01545 United States of America

Email: doug.arnold@meinberg-usa.com

Heiko Gerstung

Meinberg Lange Wand 9 31812 Bad Pyrmont Germany

Email: heiko.gerstung@meinberg.de