Revision Letter

Editor: Jaehoon Paul Jeong
Date: March 31, 2021

OLD: draft-ietf-i2nsf-nsf-monitoring-data-model-06
NEW: draft-ietf-i2nsf-nsf-monitoring-data-model-07

Dear Andy Bierman,

| sincerely appreciate your detailed comments to improve the YANG module of our I2NSF
NSF Monitoring YANG Data Model Draft.

| have addressed the pyang reporting errors. | use a bold font for your comments and use a
regular font for my responses with a prefix “=> [PAUL]".

Assignment Reviewer: Andy Bierman

State Completed

Review
review-ietf-i2nsf-nsf-monitoring-data-model-06-yangdoctors-lc-bierman-2021-03-23
Posted at
https:/Imailarchive.ietf.org/arch/msg/yang-doctors/KsSYxOnUclY8CjHtm9xhAbOMeSc
Reviewed rev. 06

Review resultReady with Issues

Review completed: 2021-03-23

Status: Ready with Issues

Most of the issues raised in the review of draft-04 have been
addressed.

Major Issues:

- None

Moderate Issues:

1) too many YANG features

There are 13 YANG features, one for each of the 13 notification-stmts
defined. There should be as few YANG features defined as possible.
They should only be used if it is an unreasonable burden (compared

to the feature value) for all servers to support the functionality.

=> [PAUL] We reduced the number of YANG features in the module from 13 features to 7
features.

The removed features are supposed to be supported on every NSF (server) as it holds basic
information for monitoring the server. The removed features are as the following:

feature iZnsf-system—detection-alarm {

description
"This feature means it supports IZNSF system—detection-alarm
notification™;
}
feature ilnsf-system—detection-ewvent {
description
"This feature means it supports IZNSF system—detection-ewvent
notification™;
}
feature iZnsf-nsf-detection-session-takle {
description
"This feature means it supports I2ZNSF nsf-detection-session—tabkle
notification™;
}
feature ilnsf-nsf-system—access—-log |
description
"This feature means it supports IZNSF system—access—-log
notification™;
}
feature iZnsf-system-res-util-log |
description
"This feature means it supports IZNSF system—res—util-log
notification™;
}
feature ilnsf-system—user—activity-log {
description
"This feature means it supports IZNSF system—user—activity-log
notification™;
}

The remaining features are only implemented on a specific NSF (server) that supports such
security-specific features. Hence, we leave the remaining features on the data model. The
remaining features are shown below:

feature iZnsf-nsf-detection-ddos {
description
"This feature means it supports IZHNSF nsf-detection—-£flood
notification";
}
feature ilnsf-nsf-detection-virus |
description
"This feature means it supports IZNSF nsf-detection-wirus
notification™;
}
feature iZnsf-nsf-detection-intrusion |
description
"This feature means it supports IZHNS5F nsf-detection-intrusion
notification™;
}
feature iZnsf-nsf-detection-botnet |
description
"This feature means it supports IZHNSF nsf-detection-botnet
notification™;
}
feature iZnsf-nsf-detection-web—attack {
description
"This feature means it supports IZHNSF nsf-detection-web-attack
notification";
}
feature iZnsf-nsf-log-dpi {
description
"This feature means it supports IZNSF nsf-log-dpi
notification™;
}
feature iZnsf-nsf-log-vuln-scan {
description
"This feature means it supports IZNS5F nsf-log-vuln-scan
notification™;

2) list /i2nsf-monitoring-configuration/system-alarm

This is yet another alarm management system created in the IETF.
I guess the WG decided that RFC 8632 was not suitable.

It is not clear how this system prevents excessive notifications
sent to a client.

What happens when the CPU, memory, or disk usage crosses back and

forth over the threshold? Seems like an alarm is generated for each
upward crossing of the threshold leaf.

The precise behavior for triggering and then re-arming an alarm
needs to be specified in the YANG module.

RMON Alarms (RFC 2819) defines one way to prevent bursts of
SNMP notifications, using an alarm reset threshold.

YANG Push (RFC 8641) uses a dampening-period approach to prevent
flooding the receiver with notifications.

Also, it is not clear what use-case is served by "threshold = 0".

The range is 0..100 instead of 1. .100.

=> [PAUL] In the document, a dampening type is defined to mitigate the impact of repetitive
notifications. We added a new data model for configuring the dampening period.

NEW

grouping dampening {
description
"A grouping for dampening period of notification.";
leaf dampening-period {

type uint32;

units "centiseconds";

default "0";

description
"Specifies the minimum interval between the assembly of
successive update records for a single receiver of a
subscription. Whenever subscribed objects change and
a dampening-period interval (which may be zero) has
elapsed since the previous update record creation for
a receiver, any subscribed objects and properties
that have changed since the previous update record
will have their current values marshalled and placed
in a new update record.";

reference
"RFC 8641: Subscription to YANG Notifications for
Datastore Updates - Section 5.";

}
}

container i2nsf-monitoring-configuration {
description
"The container for configuring I2NSF monitoring.";
container i2nsf-system-detection-alarm-configuration {
if-feature "i2nsf-system-detection-alarm";
description
"The container for configuring I2NSF system-detection-alarm
notification";
uses enable-notification;
list system-alarm {
key alarm-type;
description
"Configuration for system alarm (i.e., CPU, Memory,
and Disk Usage)";
uses dampening;

}

We also updated the range from 0..100 to 1..100 in the data model.

OLD

leaf threshold {
type uint8 {
range "0..100";

1
!
units "percent";
description
"The configuration for threshold percentage to trigger

the alarm.";
!
s

NEW

leaf threshold {
type uint8 {
range "1..100";

1
s

units "percent";
description
"The configuration for threshold percentage to trigger

the alarm.";
y
S

Minor Issues:
3) too many notifications

This module creates a lot of notifications to manage, and they are
all optional to implement. This increases complexity in both
the client implementation and operations.

If you really need all 13 notifications then OK, but
13 notification events is a lot for one YANG module,
especially if this set will get even larger over time.

Here is one way to reduce the number of event definitions.
The example below has 1 event and 13 sub-event types, but it could
also apply to N event types each with some sub-event types.

This design template adds one more layer in the notification message,
but it is probably easier for the client and operator to manage.

The deployment may require filters and access control rules that become
more complex for a large number of notifications.

notification i2nsf-event {
description
"Wrapper for all 2NSF events";

choice sub-event-type {
description
"This choice must be augmented with cases for each allowed
sub-event. Only 1 sub-event will be instantiated in each
i2nsf-event message. Each case is expected to define one
container with all the sub-event fields.";

Il could put sub-events inline
case i2nsf-system-detection-alarm {
if-feature "i2nsf-system-detection-alarm”;
container i2nsf-system-detection-alarm {
Il contents of i2nsf-system-detection-alarm data

}
}

}
}

Il could add sub-events via augments at any time
augment "/i2nsf-event/sub-event-type" {
case i2nsf-system-detection-event {
if-feature "i2nsf-system-detection-event™;
container i2nsf-system-detection-event {
Il contents of i2nsf-system-detection-event data
}
}
}

=> [PAUL] We have updated the data model according to your guide to reduce the number of
notifications. We created 3 parent notifications (i.e., i2nsf-event, i2nsf-logs, and
12nsf-nsf-event). Each notification is used for different purposes. The i2nsf-event is used for
general notifications that are triggered by an event and should be supported on all types of
NSF. The i2nsf-log is used for notifications that are received from the logs of the NSF. The
12nsf-nsf-event is used for advanced notifications that are supported only on security-specific
NSF (e.g., 12nsf-nsf-detection-ddos and 12nsf-nsf-detection-virus).

Parts of the changed data model are shown below, the full changes can be seen in the
document.

OLD

notification i2nsf-system-detection-alarm {
if-feature "12nsf-system-detection-alarm";
description
"This notification is sent, when a system alarm
1s detected.";

leaf alarm-category {
type identityref {
base alarm-type;
}
description
"The alarm category for
system-detection-alarm notification";
h
uses characteristics;
uses i2nsf-system-alarm-type-content;
uses common-monitoring-data;

NEW

notification 12nsf-event {
description

"Notification for I2NSF Event.";
choice sub-event-type {

description
"This choice must be augmented with cases for each allowed

sub-event. Only 1 sub-event will be instantiated in each
12nsf-event message. Each case is expected to define one
container with all the sub-event fields.";
case i2nsf-system-detection-alarm {
container i2nsf-system-detection-alarm {
description
"This notification is sent, when a system alarm
is detected.";
leaf alarm-category {
type identityref {
base alarm-type;
h
description
"The alarm category for
system-detection-alarm notification";

Nits:

4) underscore vs. hyphen

There are many field names in sec. 7 that are incorrect
because they use an underscore instead of a hyphen char
(e.g. req_cookies but leaf name is req-cookies)

=> [PAUL] We have updated the Section 7 of the document to follow the naming in the data
model.

5) verbose SNMP-style names

The term -configuration in the object names is unusual.

Repeating the parent name (like SMIv2) is not usually done in YANG.

(e.g., i2nsf-system-detection-event-configuration)

=> [PAUL] We removed the “-configuration” in the data model except the parent container.

OLD

container i2nsf-monitoring-configuration {
description
"The container for configuring I2NSF monitoring.";
container i2nsf-system-detection-alarm-configuration {
description
"The container for configuring I2NSF system-detection-alarm
notification";

NEW

container i2nsf-monitoring-configuration {
description
"The container for configuring I2NSF monitoring.";
container i2nsf-system-detection-alarm {
description
"The container for configuring I2NSF system-detection-alarm
notification";

6) identifiers should use well-known abbreviations or spell

out the word if not too long. E.g "ave" -> "average"

=> [PAUL] We have spelled out the words or used well known abbreviations in the
documents.

OLD

leaf in-traffic-ave-rate {
type uint32;
units "pps";
description

"Inbound traffic average rate in packets per second (pps)";

}

NEW

leaf in-traffic-average-rate {
type uint32;
units "pps";
description
"Inbound traffic average rate in packets per second (pps)";

}

7) Is there a reason some identities are ALL-CAPS and others

are all-lower-case? This should be explained in the YANG module.

=> [PAUL] We have updated the data model to be lower-cased in all identities for keeping the
consistency of the data model.

Example:
OLD
identity MEM-USAGE-ALARM {
base alarm-type;
description
"A memory alarm is alerted.";
h
NEW

identity mem-usage-alarm {
base alarm-type;
description
"A memory alarm is alerted.";

N
s

=> [PAUL] There are other changes in the current document.
1. We found some useful monitoring information that can help improve the module. To
handle specific traffic flow statistics for data analysis (e.g., the detection of DoS or
DDoS attacks), we added a new feature as the following:

NEW

notification i2nsf-event {
description
"Notification for I2NSF Event.";
choice sub-event-type {

case 12nsf-traffic-flows {
container i2nsf-traffic-flows {
description
"This notification is sent to inform about the traffic
flows.";
leaf src-ip {
type inet:ip-address;
description
"The source IPv4 (or IPv6) address of the packet";
}
leaf dst-ip {
type inet:ip-address;
description
"The destination IPv4 (or IPv6) address of the packet";
§
leaf protocol {
type identityref {
base protocol-type;
}
description
"The protocol type for nsf-detection-intrusion
notification";
§

leaf src-port {
type inet:port-number;
description
"The source port of the packet";
§
leaf dst-port {
type inet:port-number;
description
"The destination port of the packet";
}
leaf arrival-rate {
type uint32;
units "pps";
description
"The arrival rate of the packet in packets
per second";
h
uses characteristics;
uses common-monitoring-data;

}
b

10

2. We also added a new field for ddos-attack event to give more information, i.e., attack

destination IP address.

OLD

case 12nsf-nsf-detection-ddos {
if-feature "12nsf-nsf-detection-ddos";
container i2nsf-nsf-detection-ddos {
description
"This notification is sent, when a specific flood type
is detected.";
uses i2nsf-nsf-event-type-content;
leaf attack-type {
type identityref {
base flood-type;
}

description
"Any one of Syn flood, ACK flood, SYN-ACK flood,
FIN/RST flood, TCP Connection flood, UDP flood,
ICMP (i.e., ICMPv4 or ICMPv6) flood, HTTP flood,
HTTPS flood, DNS query flood, DNS reply flood, SIP
flood, etc.";
}
leaf start-time {
type yang:date-and-time;
mandatory true;
description
"The time stamp indicating when the attack started";
}
leaf end-time {
type yang:date-and-time;
mandatory true;
description
"The time stamp indicating when the attack ended";
}
leaf attack-src-ip {
type inet:ip-address;
description
"The source IPv4 (or IPv6) addresses of attack
traffic. If there are a large amount of [Pv4
(or IPv6) addresses, then pick a certain number
of resources according to different rules.";
}
uses attack-rates;
uses log-action;
uses characteristics;
uses common-monitoring-data;

1

NEW

case 12nsf-nsf-detection-ddos {
if-feature "12nsf-nsf-detection-ddos";
container i2nsf-nsf-detection-ddos {
description
"This notification is sent, when a specific flood type
is detected.";
uses 12nsf-nsf-event-type-content;
leaf attack-type {
type identityref {
base flood-type;
}
description
"Any one of Syn flood, ACK flood, SYN-ACK flood,
FIN/RST flood, TCP Connection flood, UDP flood,
ICMP (i.e., ICMPv4 or ICMPv6) flood, HTTP flood,
HTTPS flood, DNS query flood, DNS reply flood, SIP
flood, etc.";
}
leaf start-time {
type yang:date-and-time;
mandatory true;
description
"The time stamp indicating when the attack started";
}
leaf end-time {
type yang:date-and-time;
mandatory true;
description
"The time stamp indicating when the attack ended";
}
leaf attack-src-ip {
type inet:ip-address;
description
"The source IPv4 (or IPv6) addresses of attack
traffic. If there are a large number of IPv4
(or IPv6) addresses, then pick a certain number
of resources according to different rules.";
}
leaf attack-dst-ip {
type inet:ip-address;
description
"The destination IPv4 (or IPv6) addresses of attack
traffic. If there are a large number of [Pv4
(or IPv6) addresses, then pick a certain number
of resources according to different rules.";

12

|
S

uses attack-rates;

uses log-action;

uses characteristics;

uses common-monitoring-data;

——

Thanks for your help and support.

Best Regards,
Paul

Mr. Jaehoon (Paul) Jeong, Ph.D.

Associate Professor

Department of Computer Science and Engineering

Sungkyunkwan University

Office: +82-31-299-4957

Email: jaehoon.paul@gmail.com, pauljeong@skku.edu

Personal Homepage: http://iotlab.skku.edu/people-jaehoon-jeong.php

13

