A new IETF working group has been proposed in the Internet Area of the IETF. The IESG has not made any determination as yet. The following description was submitted, and is provided for informational purposes only. Please send your comments to the IESG mailing list (iesg@ietf.org) by October 13. MIPv6 Signaling and Handoff Optimization (mipshop) -------------------------------------------------- Current Status: Proposed Working Group Description of Working Group: Mobile IPv6 specifies routing support to permit IP hosts using IPv6 to move between IP subnetworks while maintaining session continuity. Mobile IPv6 supports transparency above the IP layer, including maintenance of active TCP connections and UDP port bindings. To accomplish this, the mobile node notifies its home agent (and potentially also its correspondent nodes) of the current binding between its home address and its care of address. This binding allows a mobile node to maintain connectivity with the Internet as it moves between subnets. Depending on what steps a mobile node must perform on a new subnet, the lag between when the mobile node has layer 2 connectivity and when it begins sending and receiving packets on the new link may be substantial. A mobile node must first detect at layer 3 that its point of attachment has changed, then it must perform configuration on the new link, including router discovery and configuring a new care of address. After that, the mobile node must perform binding updates with the home address and any correspondent nodes. Since many layer 2 mobility technologies require that the mobile node drop its link connectivity to the old subnet when moving, any packets between the correspondent node and the mobile node sent or in-flight during this time arrive at the old care of address, where they are dropped. Such packet loss may have significant adverse effects. The Mobile IP Working group had previously been developing two technologies to address the issues of signaling overhead and handoff latency/packet loss: - Hierarchical Mobile IPv6 mobility management (HMIPv6) HMIPv6 deals with reducing the amount and latency of signaling between a MN, its Home Agent and one or more correspondents by introducing the Mobility Anchor Point (MAP) (a special node located in the network visited by the mobile node). The MAP acts somewhat like a local home agent for the visiting mobile node by limiting the amount of signaling required outside the MAP's domain. - Fast Handovers for Mobile IPv6 (FMIPv6) FMIPv6 reduces packet loss by providing fast IP connectivity as soon as a new link is established. It does so by fixing up the routing during link configuration and binding update, so that packets delivered to the old care of address are forwarded to the new. In addition, FMIPv6 provides support for preconfiguration of link information (such as the subnet prefix) in the new subnet while the mobile node is still attached to the old subnet. This reduces the amount of preconfiguration time in the new subnet. These two technologies can be used separately or together to reduce or eliminate signaling overhead and packet loss due to handoff delays in Mobile IPv6. Scope of MIPSHOP: The MIPSHOP Working Group will complete the FMIPv6 and HMIPv6 work begun in the Mobile IP Working Group. Specifically, the WG will: 1) Complete the specification of HMIPv6 protocol. 2) Complete the specification of FMIPv6 protocol. Because work (ongoing or originating) in other working groups may suggest changes or alternative designs for HMIPv6 and FMIPv6, these specifications will be advanced as Experimental RFCs until more experience is obtained with IP mobility in IPv6. 3) Complete work on a set of requirements for "Localized Mobility Management (LMM)", whereby a Mobile Node is able to continue receiving packets in a new subnet before the corresponding changes in either the Home Agent or Correspondent Node binding. It is the intention that the requirements be consistent with the FMIPv6 and HMIPv6 protocols; in the event that there are inconsistencies, they will be documented. 4) Complete work on the applicability of FMIPv6 in the specific case of 802.11 networks for advancement as Informational RFC. There are security issues that arise because of the highly dynamic nature of the security relationships between, say, a mobile node and its mobility anchor points, or between a mobile node and its access routers in a fast handover scenario. The working group is not required to provide solutions to all these issues before publishing its experimental and informational protocols. The working group will document the security requirements and the shortcomings of the solutions in the corresponding protocol specifications. This will provide valuable feedback to other groups or subsequent efforts.