The IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch) WG in the Internet Area of the IETF is undergoing rechartering. The IESG has not made any determination yet. The following draft charter was submitted, and is provided for informational purposes only. Please send your comments to the IESG mailing list (iesg@ietf.org by 2016-03-03. IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch) ----------------------------------------------------------------------- Current status: Active WG Chairs: Pascal Thubert <pthubert@cisco.com> Thomas Watteyne <thomas.watteyne@inria.fr> Assigned Area Director: Brian Haberman <brian@innovationslab.net> Internet Area Directors: Brian Haberman <brian@innovationslab.net> Terry Manderson <terry.manderson@icann.org> Mailing list: Address: 6tisch@ietf.org To subscribe: https://www.ietf.org/mailman/listinfo/6tisch Archive: https://mailarchive.ietf.org/arch/browse/6tisch/ Charter: https://datatracker.ietf.org/doc/charter-ietf-6tisch/ 6TiSCH: "IPv6 over the TSCH mode of IEEE 802.15.4e". Background/Introduction: ------------------------ Low-power and Lossy Networks (LLNs) interconnect a possibly large number of resource-constrained nodes to form a wireless mesh network. The 6LoWPAN, ROLL and CoRE IETF Working Groups have defined protocols at various layers of the protocol stack, including an IPv6 adaptation layer, a routing protocol and a web transfer protocol. This protocol stack has been used with IEEE802.15.4 low-power radios. The Timeslotted Channel Hopping (TSCH) mode was introduced in 2012 as an amendment to the Medium Access Control (MAC) portion of the IEEE802.15.4 standard. TSCH is the emerging standard for industrial automation and process control LLNs, with a direct inheritance from WirelessHART and ISA100.11a. Defining IPv6 over TSCH, 6TiSCH is a key to enable the further adoption of IPv6 in industrial standards and the convergence of Operational Technology (OT) with Information Technology (IT). The nodes in a IEEE802.15.4 TSCH network communicate by following a Time Division Multiple Access (TDMA) schedule. A timeslot in this schedule provides a unit of bandwidth that is allocated for communication between neighbor nodes. The allocation can be programmed such that the predictable transmission pattern matches the traffic. This avoids idle listening, and extends battery lifetime for constrained nodes. Channel-hopping improves reliability in the presence of narrow- band interference and multi-path fading. These techniques enable a new range of use cases for LLNs, including: - Control loops in a wireless process control network, in which high reliability and a fully deterministic behavior are required. - Service Provider networks transporting data from different independent clients, and for which an operator needs flow isolation and traffic shaping. - Networks comprising energy harvesting nodes, which require an extremely low and predictable average power consumption. IEEE802.15.4 only defines the link-layer mechanisms. It does not define how the network communication schedule is built and matched to the traffic requirements of the network. Description of Working Group: ----------------------------- The Working Group will focus on enabling IPv6 over the TSCH mode of the IEEE802.15.4 standard. The extent of the problem space for the WG is one or more LLNs, possibly federated through a common backbone link via one or more LLN Border Routers (LBRs). The WG will rely on, and if necessary extend, existing mechanisms for authenticating LBRs. Initially, the WG has limited its scope to distributed routing over a static schedule using the Routing Protocol for LLNs (RPL) on the resulting network. This new charter allows for the dynamic allocation of cells and their exchange between adjacent peers to accommodate the available bandwidth to the variations of throughput in IP traffic. The WG will continue working on securing the join process and making that fit within the constraints of high latency, low throughput and small frame sizes that characterize IEEE802.15.4 TSCH. Additionally, IEEE802.15.4 TSCH being a deterministic MAC, it is envisioned that 6TiSCH will benefit from the work of DetNet WG to establish the so-called deterministic tracks. The group will define the objects and methods that need to be configured, and provide the associated requirements to DetNet. The WG will interface with other appropriate groups in the IETF Internet, Operations and Management, Routing and Security areas. Work Items: ----------- The group will: - Produce a specification of the 6top sublayer that describes the protocol for neighbor nodes to negotiate adding/removing cells. This work will leverage cross participation from IEEE members including the IEEE 6TiSCH Interest Group (IG 6T) to define protocol elements and associated frame formats. - Produce a specification for a default 6top Scheduling Function including the policy to enable distributed dynamic scheduling of timeslots for IP traffic. This may include the capability for nodes to appropriate chunks of the matrix without starving, or interfering with other 6TiSCH nodes. This particular work will focus on IP traffic since the work on tracks is not yet advanced enough to specify their requirements. - Produce requirements to the DetNet WG, detailing 6TiSCH chunks and tracks, and the data models to manipulate them from an external controller such as a PCE. - Produce a specification for a secure 6TiSCH network bootstrap, adapted to the constraints of 6TiSCH nodes and leveraging existing art when possible. - Keep updating the "6TiSCH architecture" that describes the design of 6TiSCH networks. This document highlights the different architectural blocks, signaling and data flows, including the operation of the network in the presence of multiple LBRs. The existing document will be augmented to cover dynamic scheduling and application of the DetNet work but will not be delivered within this round of chartering. - Producing a YANG Data Models to manage 6tisch is foreseen, but left to a later phase. Non-milestone work items: ------------------------- The Working Group regularly organizes interoperability events with support from ETSI (i.e., ETSI 6TiSCH Plugtests) to get feedback from implementers early on in the standardization process, and produce better standards. Milestones: Apr 2016 - Second submission of draft-ietf-6tisch-minimal to the IESG Apr 2016 - WG call to adopt draft-ietf-6tisch-6top-sf0 Apr 2016 - WG call to adopt draft-ietf-6tisch-6top-sublayer Jul 2016 - ETSI 6TiSCH #3 plugtests Jul 2016 - Initial submission of draft-ietf-6tisch-6top-sublayer to the IESG Oct 2016 - Initial submission of draft-ietf-6tisch-6top-sf0 to the IESG Dec 2016 - Evaluate WG progress, propose new charter to the IESG Apr 2017 - Initial submission of 6TiSCH terminology to the IESG Apr 2017 - Initial submission of 6TiSCH architecture to the IESG Dec 2017 - 6TiSCH architecture and terminology in RFC publication queue