Table of Contents

INErOdUCHIONoooiiiiiiiiiee e e e e eare e e e e e 2

1 Getting Startedcoooeiieeeeee e 3

2 Signals and Callbacksccccoecuviiiiiiiiiiiiiiceecceeee e, 5

BPACKING ..o e e e e e e 12
A WINAOWSooiiiiiiiiiiiieiecccirteeeeeeecree e e s e e eare e e e e e s eaanaaee e s e nnnns 16
D DHALOES ... e 19
G LADEIS ... 21
7 IIMAGES ...ttt ettt se e e e e e e e e et teesaaaaa s seseeseeeeaeaeens 23
S BULLONSonnncccccccceere e s e e s e e e s e s e e s s s e e e s s e s s e s e s s saaens 24
s B 2N 11 1 o) /2 PP PP PO PR 27
1O MIEIIUS ..o s 29
11 File CRhOOSercoooiiiiiiiiiiiteec e 32
12 DYawing ATQccceiiveeuiiieeeieeeiiieeeeeeeecirreeeeeessanreeseesesassseeens 35

13 Print OPerationcccceveeeeeeeeiieeeeeiiirrieeeeeeeeeeeeeesennnnnnnnns 39

Introduction

When I first started learning to program using GTK+3.0, I found that the available
information was, either for a different version or, in some areas, too detailed and technical, and
somewhat confusing. In other areas, the detail I required, as a beginner, was presumably
regarded as obvious and was glossed over.

After many hours struggling with limited information, and a lot of trial and error, I finally
managed to write a complete, fully working program using GTK+3.0.

During this process I made a lot of notes and, when I had finished, I realised that I had
enough information to write a book to help others learn what I have found out.

It is not my intention to provide a detailed programming manual, but to set out enough
information to enable the reader to begin programming. Also, I have given pointers to where
further, more detailed information can be found if required.

The first three chapters should be read by all programmers whatever their requirements,
as they contain basic information needed for all programs. The other chapters deal with a
selection of the available widgets which may or may not be required for any particular program,
and therefore are designed to be dipped into as required. Full details of all of the widgets are
available in the API documentation.

I have assumed that the reader has sufficient experience to handle files, and create and
run programs using the terminal. I also assume that they have a basic knowledge of the 'C'
language.

I trust that I have provided enough clear information to enable the reader to start writing
programs without too much difficulty, and in a reasonably short time.

1 Getting Started

Full details of the GTK+3.0 Application Programming Interface (API) are contained in
the GTK+3.0 API documentation, and this will be frequently referred to in future chapters, so it
is recommended that a copy is downloaded from the GTK+ web-site before going any further
so that the relevant parts can be accessed at any point while reading this guide.

Throughout this guide examples have been included to illustrate the point being made at
the time. Each one may be compiled and run to see the effect of the instructions being
discussed.

In each program, where a name of the form_name is used, the instruction may be
compiled as it stands, but it is assumed that the programmer will replace it by a more
meaningful name.

Compiling
To compile any of the examples, the simplest method is to use :-
gcc program name.c -0 program name ~pkg-config —cflags gtk+-3.0 —libs gtk+-3.0"

First, please note the use of backward sloping apostrophies. Using the upright type will not
work. Also, if the compiler cannot find the pkg-config program, then it will be necessary to load
and install it before continuing.

Basic Program

All GTK+3.0 programs contain the same basic instructions, and the following program is the
minimum required to create a basic window.

#include <gtk/gtk.h>
static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);
int main(int argc, char *argv[])
{
GtkWidget *window_name;
gtk init(&argc, &argv);
window_name = gtk _window_new(GTK_WINDOW_TOPLEVEL);
g signal connect(window name, "delete event", G CALLBACK(delete event), NULL);
gtk widget show all(window_name);

gtk _main();

return 0;

}

static gboolean delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)

{
gtk _main_quit();

return FALSE;

The first line of the program results in all of the required libraries being included.

The next is a declaration of the callback routine required to delete the program when the
window is closed. For more information on callback routines, refer to Chapter 2.

The next line is a standard C main routine call which is followed by a declaration of a
widget called 'window_name', after which gtk_init is called to carry out all of the necessary
initialisation of the gtk system.

A window is then created using gtk_window_new(). For further details about the many
window setting routines, see Chapter 4.

The next line connects the “delete_event” signal to the delete_event callback routine,
about which there are more details in chapter 2.

Any of the items used to populate a window, and the window itself are referred to as
widgets. The widgets which have been created, in this case a basic window only, are made
visible by the gtk_widget_show_all() routine.

After all of the windows, and other widgets have been set up, gtk_main is called to
transfer control to the GTK+ system. This will retain control until gtk_main_quit() is called, in
this case in the delete_event callback routine then, when the window is destroyed, the gtk_main
program will be terminated

2 Signals and Callbacks

While the program is under control of the GTK+ system, widgets can be made to
generate signals, usually as a result of action by the user. These signals can be used to initiate
execution of instructions contained in a function referred to as a callback routine. The
instructions can be anything specified by the programmer.

There are two types of signal. The first is usually emitted by a widget as a result of user
action e.g. clicking on a button, and the second is emitted as a result of action by an input
device, e.g. clicking a mouse button. The latter are referred to as events.

Widget Signals

The process for adding a widget to a window and setting up a callback routine is the
same for all widgets. To demonstrate this, a button will be added to the window and a callback
will be used to change the label in the button when the button is clicked.

First the callback routine should be declared, but to do this it is necessary to determine
the appropriate format for the declaration. Most widget callback routines are of similar form but
it is best to be sure, so search the API documentation for the GtkButton widget. Click on this
and then search for the list of signals. In this case the clicked signal will be used. Select clicked
to find that the callback routine is of the form :-

void user_function (GtkButton *button, gpointer user_data)

Therefore, at the start of the program, before the main routine is started, add the
declaration :-

static void callback name(GtkWidget*, gpointer);

Then, at the start of the main routine add a declaration of the button :-

GtkWidget *button_name;

After the window has been created and its callback routine connected, create a button
with a label. The format of this command is again shown in the API documentation as one of
the many routines listed under Functions in the GtkButton section. This shows that the format

of the command is :-

GtkWidget * gtk_button_new_with_label (const gchar c*label);

https://developer.gnome.org/glib/unstable/glib-Basic-Types.html#gchar

Therefore the button is created by :-
button_name = gtk button new with label(“Off”);

Clicking on the button must now be connected to the required callback routine using a
command of the form :-

g_signal connect(widget, signal, callback, data);

Where widget is the name of the widget generating the signal,
signal is the signal which has been generated,
callback is the name of the callback routine,
data is a pointer to data used by the callback routine.

This is the general format for all signals generated by widgets, those generated by input
devices, known as events, have a different form shown below.

For the purposes of the example, the command should be :-

g_signal connect(button name, “clicked”, G_CALLBACK(callback name,
NULL);

The pointer to the data is NULL in this case as the callback does not require any data.
Where data is required, it can be convenient to create a data structure and use the name of the
structure as a pointer to all of the data contained in it.

The button now should be added to the window using:-

gtk container_add(GTK_CONTAINER(window name), button name);
Finally the callback needs to be defined :-

static void callback name(GtkWidget *widget, gpointer data)
{
if (strcmp(gtk _button_get label(GTK_BUTTON(widget)), “Off")
gtk button set label(GTK BUTTON(widget), “On”);
else

gtk _button_set label(GTK_BUTTON(widget), “Off”);
}

The details of the button_set_label and button_get_label commands are available in the
GtkButton section of the API documentation.

Note that the pointer to the button is the first parameter passed to the callback and has
type widget, therefore this needs to be retyped to button for the button_get and button_set

6

routines as they are expecting a pointer of type button.
Putting all of the above together gives :-

#include <gtk/gtk.h>

static gboolean delete event(GtkWidget*, GdkEvent*, gpointer);
static void callback name(GtkWidget*, gpointer);

int main(int argc, char *argv[])

{

Gtkwidget *window_name, *button_ name;

gtk _init(&argc, &argv);

window name = gtk window new(GTK WINDOW TOPLEVEL);

g_signal connect(window_name, "delete event", G_CALLBACK(delete_event),
NULL);

button name = gtk button new with label("Off");

g signal connect(button name, "clicked", G CALLBACK(callback name), NULL);

gtk _container_add(GTK_CONTAINER(window_name), button name);

gtk widget show_all(window_name);

gtk main();

return 0;

}

static gboolean delete event(GtkWidget *widget, GdkEvent *event, gpointer data)

{
gtk _main_quit();

return FALSE;
}

static void callback name(GtkWidget *widget, gpointer data)
{

if (strcmp(gtk button get label(GTK BUTTON(widget)), "Off") == 0)
gtk button set label(GTK BUTTON(widget), "On");
else
gtk _button_set label(GTK_BUTTON(widget), "Off");
}
Events

Events are signals which are usually emitted when an input device, such as a mouse, has
generated a signal. They are part of the Gdk system and therefore the full details of all of the
available events are detailed in the Gdk API documentation. In general, events are treated in a
similar manner to widget signals but there are differences which will be highlighted in the
following example.

In the example, pressing the left mouse button generates an event which passes the
mouse position to the callback routine. This will be used to set the label's text to show the
position..

First, as with signals, the callback routine should be declared. Event callbacks have an
additional parameter to pass event data to the callback. In this case it will be the mouse x and y
position when the button is pressed.

static void callback name(GtkWidget*, GdkEvent*, gpointer);

As there is no need to pass other data to the callback routine in this example, the third
parameter will be used to pass a pointer to the label i.e.

static void callback name(GtkWidget*, GdkEvent*, GtkLabel*);

There is no need for a button to be created for this example, but a label will be used to
display the position of the mouse when the button is pressed, therefore, in this example, add
the label in a similar manner to the button in the previous example..

GtkWidget *label name;
And create the label using :-
label name = gtk _label new(“Position”);

A drawing area has also been used for the mouse pointer to move over when the mouse
button is pressed. This is added and created in a similar manner but a request to determine its
size is sent to the window manager to make a suitably large area for the mouse to move over :-

GtkWidget *drawing_area_ name;

drawing area name = gtk drawing area new();
gtk widget set size request(drawing area name, 300, 300);

These now need to be added to the window. As there is more than one widget, it will be
necessary to use one of the forms of packing boxes, in this case a vertical box. Full details of
packing widgets into windows are given in chapter 3.

gtk _container_add(GTK_CONTAINER(window_name), v_box name);

The required events must now be added to the window. The usual ones for a mouse are
GDK_BUTTON_PRESS_MASK | GDK_BUTTON_MOTION_MASK |
GDK_BUTTON_RELEASE_MASK. The first is used when the mouse button is pressed, the
second when the mouse is moved, and the third when the button is released, the event data
providing the x and y position of the mouse in each case In this example, only the

BUTTON_PRESS_MASK is required.
This event must now be connected to the callback in a similar manner to a signal.

g_signal connect(G_OBJECT(window), “button press_event”,
G_CALLBACK(callback name), (gpointer) label name);

Note that the fourth parameter is a pointer to the label in order to pass it to the callback.

Putting all of the above together gives :-

#include <gtk/gtk.h>

static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);
static gboolean callback name(GtkWidget*, GdkEventButton*, GtkLabel*);

int main(int argc, char *argv[])
{
Gtkwidget *window _name, *v_box name, *drawing area name, *label name,
*separator name;

gtk init(&argc, &argv);

window_name = gtk _window_new(GTK_WINDOW_TOPLEVEL);
g signal connect(window name, "delete event", G CALLBACK(delete event),
NULL);

drawing area_name = gtk drawing_area new();

gtk _widget set size request(drawing area_ name, 300, 300);
separator_name = gtk separator new(GTK ORIENTATION HORIZONTAL);
label name = gtk _label new("Position");

v_box name = gtk box_new(GTK_ORIENTATION VERTICAL, 0);

gtk container_add(GTK_CONTAINER(window_name), v_box name);

gtk _box pack start(GTK_BOX(v_box name), drawing_ area name, FALSE, FALSE, 0);
gtk _box pack start(GTK_BOX(v_box name), separator_name, FALSE, FALSE, 0);
gtk _box pack_start(GTK_BOX(v_box name), label name, FALSE, FALSE, 20);

gtk _widget_add_events(drawing area name, GDK_BUTTON_ PRESS MASK);

g _signal connect(G_OBJECT(drawing area name), "button press event",
G_CALLBACK(callback _name), (gpointer) label name);

gtk _widget show_all(window_name);

gtk main();

return 0;

}
static gboolean delete event(GtkWidget *widget, GdkEvent *event, gpointer data)
{

gtk main_quit();

return FALSE;

static gboolean callback name(GtkWidget *area, GdkEventButton *event, GtkLabel *label)
{

gint x = event->x, y = event->y, i, width, height;

width = gtk widget get allocated width(area);
height = gtk widget get allocated height(area);
if (x <= width / 2)
{
if (y <= height / 2)
gtk label set text(GTK_LABEL(label), "Top left");

else
gtk label set text(GTK LABEL(label), "Bottom Left");
}
else
{
if (y <= height / 2)
gtk label set text(GTK LABEL(label), "Top right");
else
gtk label set text(GTK LABEL(label), "Bottom right");
}

return FALSE;
}

Note that, if the program is copied and pasted into an editor, the minus sign becomes a
non_printing character, therefore this needs to be deleted and a proper minus sign inserted to
get the required effect.

Swapped Widget Callbacks

There is a third variety of call to a callback routine which is used when it is required for
the signal from one widget to be used in place of the signal from another. The most common
occurrence is when a button is clicked in order to close a window. To do this the
g_signal_connect_swapped command is used.

Returning to the basic program, alter it as follows :-

GtkWidget *window name, *button name;
gtk _init ...

window _name = ...
g_signal_connect(

button_name = gtk button new with_ label("Exit");
gtk container_add(GTK_CONTAINER(window_name), button name);
g_signal connect_ swapped(button name, "clicked", G_CALLBACK

(delete event), window name);

gtk _widget show_all

10

The g_signal_connect_swapped command, in this instance, results in the “clicked” signal
from the button being used instead of the “delete_event” signal to call the delete_event callback
routine for the window.

11

3 Packing

Because the gtk+ window manager automatically resizes and positions widgets as it
thinks is suitable, it is not possible to position widgets using absolute coordinates, therefore a
system of packing widgets into windows has been developed using theoretical boxes. There is a
variety of specialised types of box to choose from, depending on requirements, but there is a
basic box which is commonly used and which exists in either horizontal or vertical form.

It should be remembered that a container, such as a box, is a widget, and boxes have
widgets placed within them, therefore containers may be nested within each other. Thus a
notebook container may have a grid container in one of its pages, and the grid could have a box
within one of its cells.

Boxes

In an horizontal box, widgets are packed in order either from left to right, or from right to
left. Equally, for a vertical box, widgets will be packed either from top to bottom, or from
bottom to top.

A box is created using :-
gtk _box new(orientation, spacing);

orientation is either GTK_ORIENTATION HORIZONTAL or
GTK_ORIENTATION_VERTICAL
spacing = number of pixels between children.

A child widget is added to a box using :-

gtk box pack start(box, child, expand, fill, padding);
or

gtk box pack end(box, child, expand, fill, padding);

depending on whether the box is to be packed from the beginning, forward, or from the
end, backward.

If expand is TRUE,any spare space allocated to box will be evenly divided between all
children for which expand is set to TRUE.

If fill is TRUE, space given to the child by the expand option is allocated to the child
itself and causes the child to expand. It has no effect if expand is FALSE.

Padding is the amount of space, in pixels, to be added equally either side of each child
widget.

12

The following examples should make things clearer.

In the first example, the basic program has a vertical box added to the window, and a
horizontal box placed within the vertical box. Three buttons are added to the horizontal box,
starting at the left. The boxes have the spacing parameter set to 0, the expand and fill packing
parameters are set to FALSE and the padding parameter is 0.

In the basic program it will be necessary to declare the boxes and the buttons :-

GtkWidget *window name, *h box name, *v_box name;
Gtkwidget *button_1 name, *button_2 name, *button_3 name;

In this example, after the window has been created, the size should be requested to be
600 x 600 pixels. This is to provide spare space to be allocated to the widgets. The size is
requested using :-

gtk window set default size(GTK WINDOW(window name), 600, 600);

The GTK_WINDOW cast is required because the window has been declared as a widget,
but the command requires the window name to be of type window.

After all of the window creation commands, but before the window show command, add
instructions to create the vertical box, and add the horizontal box to it :-

v_box name = gtk box_new(GTK_ORIENTATION VERTICAL, 0);

gtk _container_add(GTK_CONTAINER(window_name), v_box name);

h_box_name = gtk box new(GTK_ORIENTATION HORIZONTAL, 0);

gtk _box pack_start(GTK_BOX(v_box name), h box name, FALSE, FALSE, 0);

Then create the three buttons, adding each one in turn to the horizontal box :-

button_1 name = gtk _button _new with_ label("Button 1");
gtk _box pack start(GTK_BOX(h_box name), button_l name, FALSE, FALSE, 0);
button_2 name = gtk _button new with label("Button 2");
gtk box pack_start(GTK_BOX(h_box name), button 2 name, FALSE, FALSE, 0);
button 3 name = gtk button new with label("Button 3");
gtk _box pack start(GTK_BOX(h_box name), button_3 name, FALSE, FALSE, 0);

Running the program should show a square window with three buttons at the top edge
with no spacing between them.

Now set the spacing parameter of the h_box_name to 40 and gaps will appear between
the buttons, but button 1 will still be placed at the left edge. This is because the spacing
parameter only provides spacing between widgets but does not provide any before the first, or
after the last widget in the box.

13

Reset the spacing to 0 but now set the padding parameter for each button to 20. This time
a space of 20 pixels appears before button 1, 2 spaces of 20 pixels between buttons 1 and 2, and
between buttons 2 and 3, and the remaining space to the right of the buttons. This is because the
padding parameter adds the space of 20 pixels to either side of each button.

Reset the padding parameter to 0 and, for each button, set the Expand parameter to
TRUE. This will take the spare space to the right of the buttons and distribute it evenly, either
side of each button i.e. if there were 60 pixels to the right of the third button, 10 would be
placed before the first button, 20 between each of the buttons, and 10 after the third button. This
is useful to lay out the buttons equally spaced across a window.

Leaving the Expand parameter set to TRUE, also set the Fill parameter to true for button
2. Button 2 will now spread to fill the space allocated to it. Note that the Fill parameter has no
effect if the Expand parameter is FALSE.

Grids

If it is required to lay out widgets in rows and columns, it may be more convenient to
use a grid container. This will make it easier to align the widgets both vertically and
horizontally.

The use of a grid is similar to that for boxes but, having created the grid, the widgets are
added using a command of the form :-

gtk _grid_attach(*grid, *widget, column, row, width, height);

where grid is the created grid,
widget is the widget to be added,
column is the column number,
row is the row number,
width is the number of columns to be spanned by the widget,
height is the number of rows to be spanned by the widget.

In the previous box example, replace the declarations of the boxes :-
GtkWwidget *window_name, *grid_ name;

The buttons and window should be created as before, but replace the commands to create
the boxes as follows :-

grid name = gtk grid new();
gtk _container_add(GTK_CONTAINER(window_name), grid name);

and then add the buttons :-

14

button_1 name = gtk _button_new with label("Button 1");
gtk _ grld atatach(GTK GRID(grld name), button_1 name, 1, 1, 1, 1);
button 2 name = gtk button new with label("Button 2");
gtk grld atatach(GTK_GRID(grld name), button 2 name, 2, 2, 1, 1);
button_3 name = gtk _button _new with label("Button 3");
gtk _ grld atatach(GTK GRID(grld name), button_3 name, 3, 3, 1, 1);

Others

There are several other special purpose containers of which the Listbox, Stack, Overlay,
Paned and Notebook containers may be worth considering. The API documentation gives a
basic description of the operation of each container, and then experimenting to achieve the
required effect is probably the best approach.

15

4 Windows

Windows are created, having been declared as a widget, using :-

window name = gtk window new(GTK WINDOW TOPLEVEL);

The function parameter can be either GTK_WINDOW_TOPLEVEL or
GTK_WINDOW_POPUP. Most windows should be TOPLEVEL ones and, if this is not
appropriate, a dialog should be considered before using a POPUP window.

The window's title may be set using :-

gtk window _set title(GTK WINDOW(window name), "Title name");

Note that the window_name, which was declared as a widget, has to be cast as a window
for this function.

A window's size and position are always determined by the window manager, but
requests can be made for the initial values, which the window manager usually accepts.
The initial size can be set using :-

gtk _window_set_default size(GTK _WINDOW(window_name), width, height);

The size is set to the number of pixels specified by the width and height parameters.

and the window may be positioned using :-
gtk _window_move(GTK_WINDOW(window_name), across, down);

The window_name must again be recast. The window will be positioned by the number
of pixels specified in the across and down parameters relative to the top left corner of the
screen.

The main window of a program should have its delete event, which is triggered when the
window is closed by clicking on the cross at the top right hand corner, connected to a callback
which calls the gtk_main_quit function, in order to close the program when the window is
closed, otherwise the program will continue to run until the computer is shut down. This is
shown in the example of a basic program detailed in chapter 1.

The window title, the resizing and closing buttons and the drag handles are all referred to
as window decorations. If a plain window is required without decorations, it may be set up
using :-

gtk _window_set_decorated(GTK_WINDOW(window_name), FALSE);

16

but remember to create some method of closing the window, or hiding it, unless it is
required at all times.

When a widget is created it is not initially visible and therefore, when a program is
initially set up it is usual to call the gtk_widget_show_all(window_name) function
immediately before the gtk_main() call in order to make all widgets visible. Widgets may be set
as visible or hidden using :-

gtk widget show(widget name); OI gtk widget hide(widget name);

Any child widget made visible will not be shown until its parent widget is made visible,
and equally, when a parent widget is made visible, any hidden child widgets will not be shown.

Where a second window has been created as a child of an existing window, the child
window may be made modal. This means that, while the child window exists, the main window
will not accept any input. When the child window has been closed, the main window again
becomes active. A window may be made modal by :-

gtk _window_set modal(GTK _WINDOW(window_name), TRUE);

The following example shows the features described above in a complete program. The
points to note are that, in the g_signal_connect call to the show_window callback, the fourth
parameter is a pointer to the modal window in order to pass it to the callback routine, also, if the
modal window is visible, it is not possible to close the main window by clicking on its cross. To
close the program the Exit button on the modal window must be clicked.

#include <gtk/gtk.h>

static void show window(GtkWidget*, GtkWidget*);
static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);

int main(int argc, char *argv[])
{
Gtkwidget *window_name, *modal_ window_name;
GtkWwidget *v_box name, *h _box name, *main_button_name, *modal_button name;

gtk _init(&argc, &argv);

window_name = gtk _window_new(GTK_WINDOW_TOPLEVEL);

gtk window_set title(GTK WINDOW(window_name), "Main");

gtk window_set default size(GTK WINDOW(window_name), 300, 200);

gtk window move(GTK WINDOW(window name), 650, 400);

g_signal_connect(window_name, "delete_ event", G_CALLBACK(delete_event), NULL);

v_box name = gtk box new(GTK_ORIENTATION VERTICAL, 0);

gtk container add(GTK_CONTAINER(window name), v_box name);

h _box name = gtk box new(GTK ORIENTATION HORIZONTAL, 0);
gtk_box pack start(GTK_BOX(v_box name), h box name, FALSE, FALSE, 70);
main_button name = gtk button new with label("Show modal window");

gtk box pack start(GTK BOX(h box name), main button name, TRUE, FALSE, 0);

17

gtk _widget_ _show_all(window_name);

modal window name = gtk window_new(GTK WINDOW_ TOPLEVEL);

gtk _window_set decorated(GTK_WINDOW(modal window_name), FALSE);

gtk _window_set default_ size(GTK_WINDOW(modal window_name), 200, 120);
gtk window move(GTK_WINDOW(modal window_name), 250, 450);

gtk window_set modal(GTK _WINDOW(modal window name), TRUE);

v_box name = gtk box new(GTK ORIENTATION VERTICAL, 0);

gtk _container_add(GTK_CONTAINER(modal window_name), v_box name);

h_box name = gtk _box new(GTK_ORIENTATION HORIZONTAL, 0);

gtk _box pack start(GTK_BOX(v_box name), h box name, FALSE, FALSE, 40);

modal button name = gtk button new with label("Exit");

gtk_box pack start(GTK_BOX(h_box name), modal button_name, TRUE, FALSE, 40);

g _signal connect(main button name, "clicked", G_CALLBACK(show_window),
(gpointer)modal window_ name);

g signal connect swapped(modal button name, "clicked", G CALLBACK(delete event),
NULL);

gtk main();

return 0;

}
static gboolean delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)
{

gtk main_quit();

return FALSE;

}
static void show window(GtkWidget *widget, GtkWidget *window)
{
gtk _widget_show_all(window);
}

18

5 Dialogs

A dialog is a pop-up window which is usually used to prompt the user for input. A dialog
is split into two sections, the top section which is referred to as the 'content area' is a v_box
which is normally used to contain a label which passes a request to the user. The lower section
is referred to as the 'action area' and usually contains buttons to perform actions such as cancel
or ok. Dialogs are normally modal so that an action must be activated before any further
activity on the main window can be carried out.

To create a dialog use :-

dialog name = gtk dialog _new _with buttons("Title name", window_name, flags, button
responses, NULL);

where Title_name is the title to be diplayed at the top of the dialog,
window_name is the name of the parent window,
flags can be one or both of GTK_DIALOG_MODAL or
GTK_DIALOG_DELETE_WITH_PARENT,
the button responses are pair combinations of a button and a response ID number.
When any button is clicked, a dialog issues a “response” signal with the ID number
which has been associated with the button, so that the button that has been clicked can be
identified. A list of all of the required buttons, with their IDs, should be given, separated by
commas. After the last button pair, NULL should be added.

The following example shows the usual main window, this time with a button labelled
“Exit”. Clicking on this button will call the show_dialog callback, and it should be noted that
the g_signal_connect command has, as its fourth parameter, the main window name, so that the
dialog can be associated with it.

In the callback routine, the dialog is created as modal with two buttons, a Cancel button
with an ID of 1, and an OK button with an ID of 2. A message is also placed in the content area.

Finally the dialog is run and, if the Cancel button has been clicked, the dialog is
destroyed, or if the OK button has been clicked, the program is destroyed.

#include <gtk/gtk.h>

static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);
static void show dialog(GtkWidget*, GtkWidget*);

int main(int argc, char *argv[])

{
GtkWidget *window name, *dialog_ name;
GtkWidget *v_box name, *h box name, *main button name;

19

gtk _init(&argc, &argv);

window _name = gtk window_new(GTK WINDOW TOPLEVEL);

gtk _window_set title(GTK_WINDOW(window_name), "Main");

gtk _window_set default size(GTK_WINDOW(window_name), 300, 200);

gtk _window_move(GTK_WINDOW(window_name), 650, 400);

g_signal connect(window_name, "delete event", G_CALLBACK(delete_event),
NULL);

v_box name = gtk box new(GTK ORIENTATION VERTICAL, 0);

gtk _container_add(GTK_CONTAINER(window_name), v_box name);

h_box name = gtk _box new(GTK_ORIENTATION HORIZONTAL, 0);

gtk box pack_start(GTK_BOX(v_box name), h box name, FALSE, FALSE, 70);

main button name = gtk button new with label("Exit");

gtk _box pack start(GTK_BOX(h_box name), main button_name, TRUE, FALSE, 0);

gtk _widget_ _show_all(window_name);

g _signal connect(main button name, "clicked", G_CALLBACK(show_dialog),
(gpointer)window name);

gtk main();

return 0;

}

static gboolean delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)

{
gtk main quit();

return FALSE;
}

static void show dialog(GtkWidget *widget name, GtkWidget *new window name)

{
gint result name;
GtkWidget *dialog_name, *content area name, *label name;

dialog name = gtk dialog new with buttons("Dialog", GTK WINDOW(new _window name),

GTK_DIALOG_MODAL, ("Cancel"), 1, ("OK"), 2, NULL);
gtk _window_set_default_ size(GTK_WINDOW(dialog _name), 200, 120);
content area name = gtk dialog get content area(GTK DIALOG(dialog name));
label name = gtk label new("Do you really wish to exit");

gtk container add(GTK CONTAINER(content area name), label name);
gtk widget show all(dialog name);

result name = gtk dialog_run(GTK_DIALOG(dialog_name));
switch (result name)
{
case 1 :
gtk _widget_destroy(dialog_name);
break;
case 2 :
gtk _main_quit();
break;
default :
break;

20

6 Labels

Labels usually contain a small amount of text to provide information to the user. They
may also be used to add identification text to a widget such as a button.

To create a label use :-

label name = gtk _label name("label text");

or for a button use :-
button_name = gtk button new with label("label text");

Labels may contain underlined characters, known as mnemonics, which may be used in
conjunction with the ALT key to activate the widget containing the label. For example, a button
containing a label may have a mnemonic character which, when pressed with the ALT key will
have the same result as if the button has been clicked. The underline does not become visible
until the ALT key is pressed.

To create a button with a mnemonic use :-
button_name = gtk button new with mnemonic("_labeltext");
This is shown in the following example.

#include <gtk/gtk.h>
static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);

int main(int argc, char *argv[])
{
GtkWidget *window_name;
GtkWidget *v_box name, *h box name, *button_name;

gtk _init(&argc, &argv);

window_name = gtk window_new(GTK WINDOW_TOPLEVEL);

gtk window_set title(GTK WINDOW(window_name), "Main");

gtk _window_set_default_ size(GTK_WINDOW(window_name), 300, 200);

gtk window move(GTK WINDOW(window name), 650, 400);

v_box name = gtk box new(GTK_ORIENTATION VERTICAL, 0);

gtk _container_add(GTK_CONTAINER(window_name), v_box name);

h _box name = gtk box new(GTK ORIENTATION HORIZONTAL, 0);

gtk _box pack start(GTK_BOX(v_box name), h box name, FALSE, FALSE, 70);

button_name = gtk button new with mnemonic("_Labeltext");

gtk _box pack start(GTK_BOX(h_box name), button_name, TRUE, FALSE, 0);

g_signal connect swapped(button name, "clicked", G_CALLBACK(delete event),
window_name);

g signal connect(window name, "delete event", G CALLBACK(delete event), NULL);

21

gtk _widget_ _show_all(window_name);
gtk main();

return 0;

}

static gboolean delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)
{
gtk main quit();

return FALSE;

22

7 Images

Images may be displayed in a window, the usual variety being a pixbuf loaded from a
file. This can be achieved using :-

image name = gtk image new from file("image.png");

If the image is directly available, it may be loaded using :-

image name = gtk image new from pixbuf(pixbuf name);

For other types of image, reference should be made to the API documentation.

The following is an example of loading the image from a file. To run this example, it is
necessary to have the image file in the same folder as the example program.

To the basic program declarations add :-
Gtkwidget *v_box name, *image name;
and after the window has been created add :-

v_box name = gtk box new(GTK ORIENTATION VERTICAL, 0);

gtk _container_add(GTK_CONTAINER(window_name), v_box name);

image name = gtk _image new from file("image.png");

gtk _box pack start(GTK_BOX(v_box name), image name, FALSE, FALSE, 20);

23

8 Buttons

Basic Buttons

A button is usually used to trigger a callback function, either when it is clicked, or when
the mnemonic key is pressed on the keyboard at the same time as the ALT key.
To create a button without a mnemonic use :-

button_name = gtk button new with label("label text");

and for one with a mnemonic use :-
button name = gtk button new with mnemonic(" Labeltext");

either of these, when activated, will cause the button to emit the “clicked” signal, which
should be connected to a callback using :-

g_signal connect(button name, "clicked", G_CALLBACK(callback name), NULL):
The callback should be declared as :-

static void callback name(GtkWidget*, gpointer);
and should normally have the form :-

static void callback name(GtkWidget *widget name, gpointer data name)

{
\\ callback content

}

The following example has a different callback format as it is swapped to the
“delete_event” used to delete the main window.

#include <gtk/gtk.h>
static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);

int main(int argc, char *argv[])
{
GtkWidget *window name;
GtkWidget *v_box name, *h _box name, *button_name;

gtk init(&argc, &argv);
window_name = gtk _window_new(GTK_WINDOW_TOPLEVEL);
gtk _window_set_title(GTK _WINDOW(window_name), "Main");

gtk _window_set default size(GTK WINDOW(window_name), 300, 200);
gtk _window _move(GTK WINDOW(window _name), 650, 400);

24

v_box name = gtk _box new(GTK_ORIENTATION VERTICAL, 0);

gtk _container_add(GTK_CONTAINER(window_name), v_box name);

h _box name = gtk box new(GTK ORIENTATION HORIZONTAL, 0);

gtk _box pack start(GTK_BOX(v_box name), h box name, FALSE, FALSE, 70);

button_name = gtk button new with mnemonic("_Labeltext");

gtk _box pack start(GTK_BOX(h_box name), button_name, TRUE, FALSE, 0);

g_signal connect_ swapped(button name, "clicked", G_CALLBACK(delete event),
window_name);

g_signal_connect(window_name, "delete_ event", G_CALLBACK(delete_event), NULL);

gtk _widget _show_all(window_name);

gtk main();

return 0;

}

static gboolean delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)

{
gtk main quit();

return FALSE;

Toggle Buttons

A toggle button is one which, when clicked, stays activated until it is clicked again. It is
created using :-

toggle button name = gtk _toggle button new();.

Similarly to an ordinary button, it may also be created with a label or a mnemonic.

To read the current state of the toggle button use :-
state = gtk _toggle button_get active(GTK_TOGGLE_BUTTON(toggle button name));
or set it with :-

gtk toggle button set active(GTK_TOGGLE BUTTON(toggle button name), state);

where state is TRUE or FALSE.

Whenever the toggle button is clicked, a “toggled” signal is emitted which should be
connected to a callback function using :-

g_signal connect(toggle button name, "toggled", G_CALLBACK(callback name),
NULL);

the callback function having the form :-

void callback name(GtkToggleButton *toggle button, gpointer data)

25

{
\\ callback content;

}

Check Buttons

A check button is a small toggle button which is usually placed next to its label. It is
created using :-

check button_name = gtk check button new();

In all other respects it is the same as a toggle button in that it may be created with a label
or a mnemonic, and also emits the “toggled” signal when clicked, which may be connected to a
callback function.

Radio Buttons

Radio buttons are check buttons which have been collected together into a group such
that, when one is selected, all other radio buttons in the same group are deselected.

The first radio button in a group should be created using :-

radio_button name = gtk radio_button_new(NULL);

and the group determined using :-

group name = gtk radio button get group(GTK RADIO BUTTON(radio button name));

All subsequent radio buttons in the same group should then be created replacing the
NULL argument by group_name.

The button to be initially set active should be selected using :-
gtk toggle button set active(GTK TOGGLE BUTTON(radio button name));

In all other respects they are the same as toggle buttons in that they may be created with a
label or a mnemonic, and also emit the “toggled” signal when clicked, which may be connected
to a callback function.

26

9 Entry

The entry widget is a single line text entry widget which, if the entered text is larger than
the allocated space, will scroll to the end of the text.

An entry is created using :-
entry name = gtk entry name();

After entering text, if the Enter key is pressed, the entry emits the “activate” signal which
may be connected to a callback function as follows :-

g _signal connect(entry name, "activate", G _CALLBACK(entry changed), NULL);
The text in the entry may be accessed using :-
text buffer = gtk entry get text(GTK_ENTRY(entry name));

In the following example, text which has been entered will be transferred to a label when
the Enter key is pressed.

#include <gtk/gtk.h>

static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);
static void entry changed(GtkWidget*, GtkWidget*);

int main(int argc, char *argv[])
{
GtkWidget *window_name;
GtkWidget *v_box name, *h box name, *entry name, *label name;

gtk _init(&argc, &argv);

window_name = gtk window_new(GTK WINDOW_TOPLEVEL);
gtk window_set title(GTK WINDOW(window_name), "Main");
gtk _window_set_default_ size(GTK _WINDOW(window_name), 300, 200);
gtk window move(GTK WINDOW(window name), 650, 400);
v_box name = gtk box new(GTK_ORIENTATION VERTICAL, 0);
gtk container_add(GTK_CONTAINER(window_name), v_box name);
entry name = gtk entry new();
gtk _box pack start(GTK_BOX(v_box name), entry name, FALSE, FALSE, 40);
label name = gtk label new("Label");
gtk _box pack start(GTK_BOX(v_box name), label name, FALSE, FALSE, 0);
g_signal connect(entry name, "activate", G_CALLBACK(entry changed),
(gpointer)label name);
g signal connect(window name, "delete event", G CALLBACK(delete event), NULL);

gtk _widget show_all(window_name);

gtk main();

27

return 0;

}

static gboolean delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)

{
gtk main_quit();

return FALSE;
}

static void entry changed(GtkWidget *widget, GtkWidget *label name)
{

const gchar *text name;

text name = gtk entry get text(GTK_ENTRY(widget));
gtk _label set text(GTK_LABEL(label name), text name);

28

10 Menus

Menu Bars

A complete menu consists of a menu bar on which a collection of menus are placed. Each
menu drops down to show a list of menu items, each of which may be activated, by clicking on
it, to trigger a callback function.

Assuming that a window has been created to which a vertical box has been added, then a
menu bar can be created from :-

menu_bar name = gtk menu bar new();

When the menu bar has been populated with various menus, each of which have had
menu items attached, the menu bar may be placed in the vertical box using :-

gtk _box pack start(GTK_BOX(vertical box name), menu bar name, FALSE, FALSE, 0);

Before the menu bar is packed into the vertical box, individual menus are created on the
menu bar. Each of these menus is a sub menu which, having been created, may then be
populated with menu items, each of which may then be connected to a callback function.

To create a menu use :-
menu_name = gtk menu item new _with label("Label text");

The label text is the text that will appear on the menu bar.

Then create a sub menu to contain the menu items using -

sub menu name = gtk menu new();

The sub menu is then attached to the menu using :-

gtk menu_item set submenu(GTK_MENU_ITEM(menu name), Sub _menu name);

The sub menu may now be populated with the required menu items.
To create, connect and attach each menu item use the following :-

menu_item name = gtk menu_item new with label("menu_item text");
g_signal connect(menu_item name, "activate", G_CALLBACK(callback name), NULL);
gtk menu_shell append(GTK MENU_ SHELL(sub_menu name), menu_ item name);

This may be repeated for each menu item which is to be attached to the sub menu. When
all of the menu items have been attached, the sub menu should be placed on the menu bar :-

29

gtk menu shell append(GTK_MENU_SHELL(menu_bar name), sub_menu name);

The whole process may be repeated as many times as necessary to place the required
number of sub menus, each with their associated menu items, on the menu bar. When this has
been completed, the menu bar should be placed in the vertical box using :-

gtk _box pack start(GTK BOX(vertical box name), menu bar name, FALSE, FALSE, 0);

The following example shows how to create a basic menu. The various parts are created
starting with the menu bar onto which are added submenus. Each submenu is then populated
with menu items. The sensitivity menu item shows that a menu item may be made inactive and
greyed out by setting the sensitivity to FALSE.

#include <gtk/gtk.h>
static gboolean delete event(GtkWidget*, GdkEvent*, gpointer);

static void sensitivity selected(GtkWidget*, gpointer);
static void about selected(GtkWidget*, GtkWidget*);

int main(int argc, char *argv[])
{
GtkWidget *window_name;
GtkWidget *vertical box name, *menu bar name, *file, *file menu name,
*sensitivity, *exit;
GtkWidget *help, *help menu name, *about ;

gtk _init(&argc, &argv);

window name = gtk window new(GTK WINDOW TOPLEVEL);

gtk _window_set_title(GTK _WINDOW(window_name), "Main");

gtk _window_set_default_ size(GTK_WINDOW(window_name), 300, 200);
gtk _window _move(GTK WINDOW(window name), 650, 400);
vertical box name = gtk box new(GTK_ORIENTATION VERTICAL, 0);

gtk _container_add(GTK_CONTAINER(window_name), vertical box name);

// Create a new menu bar
menu_bar name = gtk menu bar new();
// Create a submenu with the title "File"

file = gtk _menu_item new with label("File");
file menu _name = gtk menu_new();
gtk menu item set submenu(GTK MENU ITEM(file), file menu name);

// Create a menu item called "Sensitivity" and add it to the File sub menu
sensitivity = gtk _menu_item new _with label("Sensitivity");
g_signal connect(sensitivity, "activate", G_CALLBACK(sensitivity selected),
NULL);
gtk menu shell append(GTK MENU SHELL(file menu name), sensitivity);

// Create a menu item called "Exit" and add it to the File sub menu
exit = gtk menu item new _with label("Exit");
g signal connect(exit, "activate", G CALLBACK(delete event), NULL);
gtk _menu_shell append(GTK_MENU_SHELL(file menu name), exit);

30

// Create a second sub menu with the title "Help"
help = gtk menu item new with label("Help");
help menu name = gtk menu new();
gtk _menu_item set submenu(GTK_MENU_ ITEM(help), help menu name);

// Create a menu item called "About" and add it to the Help sub menu
about = gtk menu item new with label("About");
g signal connect(about, "activate", G CALLBACK(about selected),
(gpointer)vertical box name);
gtk menu shell append(GTK_MENU_SHELL(help menu name), about);

// Add the File and Help sub menus to the menu bar
gtk _menu_shell append(GTK_MENU_SHELL(menu_bar name), file);
gtk _menu_shell append(GTK_MENU_SHELL(menu_bar name), help);

/! Add the menu bar to the vertical box in the main window
gtk _box pack start(GTK _BOX(vertical box name), menu bar name, FALSE, FALSE, 0);

g signal connect(window name, "delete event", G CALLBACK(delete event), NULL);
gtk _widget show_all(window_name);
gtk main();

return 0;

}

static gboolean delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)

{
gtk main quit();

return FALSE;
}

static void sensitivity selected(GtkWidget *widget, gpointer data)

{
gtk widget set sensitive(widget, FALSE);

}
static void about selected(GtkWidget *widget, GtkWidget *v_box)
{
GtkWidget *button name;
button_name = gtk button new with label("Exit");
gtk _box pack_start(GTK_BOX(v_box), button name, FALSE, FALSE, 40);
g signal connect(button name, "clicked", G CALLBACK(delete event), NULL);
gtk widget show(button name);
}

31

11 File Chooser

A File Chooser Dialog is a special purpose dialog that allows a hard disk, or other

memory device, to be browsed in order to select a file to be opened, or for saving a file.

To create a file chooser use :-

dialog _name = gtk file chooser dialog new("Title name", window_name,
action, first button_text, first response, , NULL);

where :-
“Title_name” is the title of the dialog, or NULL,
window_name is the name of the parent window, or NULL,
action is the operating mode of the dialog which may be :-
GTK_FILE_CHOOSER_ACTION_OPEN or
GTK_FILE_CHOOSER_ACTION_SAVE or
GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER.

This is followed by pairs of button text and button response for as many buttons as

are required, the list being terminated by NULL.

File chooser to open file

In the following example, there are two buttons, one for “Cancel” and the other for

“Open”. The chooser is run using gtk_dialog_run(GTK_DIALOG(dialog_name)) which
returns the result of a button being clicked.

#include <gtk/gtk.h>

static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);

int main(int argc, char *argv[])

{

Gtkwidget *window_name, *vertical_ box name;

GtkWidget *dialog name, *label name, *opened label name;
gint res;

char *filename;

gtk _init(&argc, &argv);

window name = gtk window new(GTK WINDOW TOPLEVEL);

gtk window set title(GTK WINDOW(window name), "Main");

gtk _window_set_default_ size(GTK_WINDOW(window_name), 300, 200);
gtk _window _move(GTK_WINDOW(window_name), 650, 400);
vertical box name = gtk box new(GTK_ORIENTATION VERTICAL, 0);

gtk _container add(GTK_CONTAINER(window_name), vertical box name);

g_signal connect(window_name, "delete_ event", G_CALLBACK(delete_event),
NULL);

32

}

dialog name = gtk file chooser dialog new(("Open"), GTK WINDOW(window_name),
GTK_FILE CHOOSER _ACTION OPEN, ("Cancel"), GTK RESPONSE_ CANCEL,
("Open"), GTK_RESPONSE ACCEPT, NULL);
res = gtk dialog run(GTK_DIALOG(dialog_name));
if (res == GTK_RESPONSE_ACCEPT)
{
filename = gtk file chooser get filename(GTK_FILE CHOOSER(dialog name));
label name = gtk label new(filename);
gtk _box pack start(GTK_BOX(vertical box name), label name, FALSE, FALSE,
0);
opened_label name = gtk label new("opened");
gtk _box pack start(GTK_BOX(vertical box name), opened label name, FALSE,
FALSE, 0);
}
gtk _widget_destroy(dialog_name);

gtk widget show_all(window_name);
gtk main();

return 0;

static gboolean delete event(GtkWidget *widget, GdkEvent *event, gpointer data)

{

gtk main_quit();

return FALSE;

File chooser to save file

The next example shows how to use a file chooser to save a new file. If it is required to

overwrite an existing file, it is necessary to add :-

gtk _file chooser_ set_do overwrite confirmation(dialog name, TRUE);
and instead of the command to set the current name,
gtk file chooser set filename(dialog name, existing filename);

Other than the above, the example is very similar to the previous one, but with the action

set to :-

GTK_FILE_CHOOSER_ACTION_SAVE

Further details can be obtained from the API documentation.

Gtkwidget *dialog_name;

33

gint res;

dialog name = gtk file chooser_ dialog new("Save file", parent_window,
GTK_FILE CHOOSER_ ACTION_SAVE, ("Cancel"), GTK_RESPONSE_CANCEL,
("Save"), GTK RESPONSE ACCEPT, NULL);
gtk _file chooser_ set do overwrite confirmation(GTK_FILE CHOOSER(dialog_name),
TRUE);
if (user_edited_a new_document)
gtk _file chooser_ set current name(GTK FILE CHOOSER(dialog name)
("Untitled document"));
else
gtk _file chooser set filename(GTK_FILE CHOOSER(dialog_name),
existing filename);

res = gtk dialog run(GTK DIALOG(dialog));
if (res == GTK_RESPONSE_ACCEPT)
{

char *filename;

filename = gtk file chooser get filename(chooser);
save_to file(filename);
g _free(filename);

gtk _widget destroy(dialog);

34

12 Drawing Area

A Drawing Area is a blank widget which may be added to any window or dialog to
provide an area on which drawing can take place using Cairo drawing commands. The drawing
area may also be connected to mouse and button press signals which may be input. An example
of the use of mouse signals is shown in the section on events.

When the drawing area is created, a “draw” signal is emitted, which may be connected to
a callback to allow items to be drawn on the area. The “draw” signal may also be triggered
using :-

gtk _widget queue_draw_area(drawing_area name, X, y, width, height);

where :-

x and y define the top - left corner of the rectangular area to be redrawn,
width and height define the size of the rectangular area.

This is used to redraw only the required portion of the drawing area which is to be
updated. Further details of Drawing Areas are given in the API documentation.

Creating a Drawing Area is very straightforward, but the example shows how Cairo
commands may be used to draw on the drawing area.

The Drawing Area may be created using :-

drawing area name = gtk drawing area new();
gtk _widget_set_size request(drawing_area_name, 300, 200);
g signal connect(G OBJECT(drawing area name), "draw",
G_CALLBACK(draw_callback), NULL);
gtk _container_add(GTK_CONTAINER(window_name), drawing_area name);

The draw_callback function must be of the form :-
gboolean draw callback(GtkWidget*, cairo t*, gpointer);

cairo_t is a pointer to an area of memory in which cairo stores all of the information
required to create the various items on the drawing area. This pointer is known as the cairo
context which, in this case must be connected to the drawing area so that cairo knows where to
draw. For a drawing area, this connection is effected by the callback connect command which
connects the drawing area to the callback function. The context is used by all of the cairo
commands, and is usually given the name cr.

35

Cairo Commands

Before any lines are drawn, the colour and thickness of the lines should be set using :-

cairo_set source rgb(cr, r, g, b);
cairo_set line width(cr, width);

Then, to draw a line use :-

cairo move to(cr, X, y)i
cairo line to(cr, x, y);
cairo_stroke(cr);

where move_to defines the start point of the line, line_to defines the end point, and stroke
causes the line to be drawn.

For a rectangle use :-

cairo_rectangle(cr, x, y, width, height);
to define the rectangle and then either :-
cairo_stroke(cr); or cairo_fill(cr);

where stroke will draw a rectangle using the defined colour while fill will fill the
rectangle with that colour.

For text it is first necessary to select a font using :-

cairo select font face(cr, "Font name", CAIRO FONT SLANT NORMAL,
CAIRO_FONT WIEGHT BOLD);
cairo_set font size(cr, size);

then to write the text :-

cairo move to(cr, X, y);
cairo_show_text(cr, text name);

More details of various aspects of cairo are available in the cairo API documentation.

Note that, in the following example, #include< cairo.h > has been added to include the
cairo headers. The example also shows how the width and height of the text can be used to
position text in the drawing area. These are known as cairo text extents. Also, if the example is
cut and pasted into an editor, the minus signs may become non-printing characters so it will be
necessary to delete them and retype the minus signs.

36

#include <gtk/gtk.h>
#include <cairo.h>

static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);
gboolean draw_callback(GtkWidget*, cairo_t*, gpointer);

int main(int argc, char *argv[])

{
GtkWidget *window_name;
GtkWidget *drawing_area name;

gtk _init(&argc, &argv);

window name = gtk window new(GTK WINDOW TOPLEVEL);
gtk _window_set_title(GTK_WINDOW(window_name), "Main");
gtk _window_set_default_ size(GTK_WINDOW(window_name), 300, 200);
gtk _window _move(GTK WINDOW(window name), 650, 400);
drawing area name = gtk drawing area new();
gtk widget set size request(drawing area name, 300, 200);
g signal connect(G OBJECT(drawing area name), "draw",
G_CALLBACK(draw_callback), NULL);
gtk _container_add(GTK_CONTAINER(window_name), drawing_area name);

g signal connect(window name, "delete event",
G_CALLBACK(delete_event),NULL);

gtk widget show_all(window_name);
gtk_main(); //Basic program

return 0; //Basic program

static gboolean delete event(GtkWidget *widget, GdkEvent *event, gpointer data)

{
gtk main _quit();

return FALSE;
}

gboolean draw_callback(GtkWidget *widget, cairo_t *cr, gpointer data)
{

guint width, height;

cairo text extents t te;

char *text;

width = gtk widget get allocated width(widget);
height = gtk widget get allocated height(widget);

cairo_set_source rgb(cr, 0, 0, 0);

cairo_select_font face(cr, "Nimbus Sans L", CAIRO_FONT_SLANT NORMAL,
CAIRO_FONT WEIGHT BOLD);

cairo_set_ font_size(cr, 18);

text = "Drawing Area";

cairo_text extents(cr, text, &te);

cairo move to(cr, (width - te.width) / 2, 50);
cairo_show_text(cr, text);

37

cairo move_ to(cr, (width - te.width) / 2, 75);
cairo line to(cr, (width + te.width) / 2, 75);
cairo_stroke(cr);

cairo_rectangle(cr, (width - te.width) / 2, 100, te.width, 50);
cairo_stroke(cr);

return FALSE;

38

13 Print Operation
In order to carry out any printing, the first requirement is to set up a print operation
using :-
operation name = gtk print operation new();

This operation must now be connected to two callbacks, namely begin_print and
draw_page.
Begin_print is connected using :-

g_signal connect(G_OBJECT(operation name), "begin print",
G_CALLBACK(begin print), NULL);

and the callback has the form :-

static void begin print(GtkPrintOperation *operation, GtkPrintContext *context,

gpointer data);

The begin_print callback can be used to set up the various printer settings, however the

draw_page callback can be used to initiate the normal print dialog in which all of the usual

settings can be made. In spite of this, the begin_print callback must have an instruction to set

the number of pages to be printed using :-

gtk _print operation_set n pages(operation, 1);

The rest of the printing is done by the draw_page callback. This callback is connected to

the print operation using :-

g signal connect(G OBJECT(operation name), "draw_page",
G_CALLBACK(draw_page), NULL);

and the callback is of the form :-

static void draw_page(GtkPrintOperation *operation, GtkPrintContext *context,
gint page nr, gpointer data);

The print operation then must be run using :-

res = gtk print operation run(operation name),
GTK_PRINT OPERATION ACTION PRINT DIALOG,
GtkWindow(window name), NULL);

The page to be printed is created using cairo commands in exactly the same way as for

drawing on a drawing area except for the context, in this case, being a printer context.
Therefore the context is created using :-

39

cr = gtk print_context get cairo_context(context);

and the width and height are obtained from :-

width = gtk print context get width(context); and
height = gtk print context get height(context);

Cairo Commands

Before any lines are drawn, the colour and thickness of the lines should be set using :-

cairo_set_source rgb(cr, r, g, b);
cairo set line width(cr, width);

Then, to draw a line use :-

cairo move to(cr, X, y)i
cairo_line to(cr, X, y)i
cairo stroke(cr);

where move_to defines the start point of the line, line_to defines the end point, and stroke
causes the line to be drawn.

For a rectangle use :-

cairo_rectangle(cr, X, y, width, height);
to define the rectangle and then either :-
cairo_stroke(cr); or cairo fill(cr);

where stroke will draw a rectangle using the defined colour while fill will fill the
rectangle with that colour.

For text it is first necessary to select a font using :-

cairo_select_font face(cr, "Font_ name", CAIRO_FONT_ SLANT NORMAL,
CAIRO_FONT WIEGHT BOLD);
cairo_set font size(cr, size);

then to write the text :-

cairo move _to(cr, X, y);
cairo_show_text(cr, text name);

More details of various aspects of cairo are available in the cairo API documentation.

Note that, in the following example, #include< cairo.h > has been added to include the

40

cairo headers. The example also shows how the width and height of the text can be used to
position text in the drawing area. These are known as cairo text extents. Also, if the example is
cut and pasted into an editor, the minus signs may become non-printing characters so it will be
necessary to delete them and retype the minus signs.

#include <gtk/gtk.h>
#include <cairo.h>

static gboolean delete_event(GtkWidget*, GdkEvent*, gpointer);

static void print callback(GtkWidget*, GtkWidget*);

static void begin print(GtkPrintOperation*, GtkPrintContext*, gpointer);

static void draw callback(GtkPrintOperation*, GtkPrintContext*, gint, gpointer);

int main(int argc, char *argv[])

{
GtkWidget *window_name;
GtkWidget *print button name;

gtk _init(&argc, &argv);

window name = gtk window_new(GTK WINDOW TOPLEVEL);

gtk window set title(GTK WINDOW(window name), "Main");

gtk window set default size(GTK WINDOW(window name), 300, 200);

gtk _window move(GTK_WINDOW(window_name), 650, 400);

print_button_name = gtk button new with label("Print");

g signal connect(G OBJECT(print button name), "clicked",
G_CALLBACK(print callback), (gpointer) window name);

gtk _container_add(GTK_CONTAINER(window_name), print_ button_ name);

g_signal connect(window_name, "delete_event", G_CALLBACK(delete_event),
NULL);

gtk _widget show_all(window_name);
gtk main();

return 0;

}

static gboolean delete event(GtkWidget *widget, GdkEvent *event, gpointer data)
{

gtk main_quit();

return FALSE;
}

static void print callback(GtkWidget *widget, GtkWidget *window)
{

gint res;

GtkPrintOperation *print operation_name;

print operation name = gtk print operation new();

g_signal connect(G_OBJECT(print_ operation_name), "begin print",
G_CALLBACK(begin print), NULL);

g_signal connect(G_OBJECT(print operation name), "draw_page",
G_CALLBACK(draw callback), NULL);

res = gtk print operation_run((print_operation_name),

41

GTK_PRINT OPERATION_ ACTION_ PRINT_DIALOG, GTK WINDOW(window), NULL);

static void begin print(GtkPrintOperation *operation, GtkPrintContext *context,

{

gpointer data)

gtk print operation_set n pages(operation, 1);

static void draw callback(GtkPrintOperation *operation, GtkPrintContext *context,

{

gint page_ number, gpointer data)

cairo_t *cr;
guint width, height;
cairo_text extents_t te;

*text;

gtk print context get cairo_context(context);
= gtk print context get width(context);

height = gtk print context get height(context);

cairo_set_source rgb(cr, 0, 0, 0);
cairo_select_font face(cr, "Numbus Sans L", CAIRO_FONT_SLANT NORMAL,

CAIRO_FONT WEIGHT BOLD);

cairo_set_ font_size(cr, 18);

text = "Drawing Area";
cairo_text extents(cr, text, &te);
cairo move_ to(cr, (width - te.width) / 2, 50);

cairo_show_text(cr, text);

cairo _move to(cr, (width - te.width) / 2, 75);
cairo line to(cr, (width + te.width) / 2, 75);
cairo stroke(cr);

cairo_rectangle(cr, (width - te.width) / 2, 100, te.width, 50);
cairo_stroke(cr);

42

