Would there be a use for cluster-specific filesystem tools?

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi guys,

(I'm new to this, so pardon me if my shenanigans turns out to be a waste of your time.)

I have been experimenting with Gluster by copying and deleting large numbers of files of all sizes.  What I found was that when deleting a large number of small files, the deletion process seems to take a good chunk of my time -- in some cases it seemed to take a significant percentage of the time that it took to copy the files to the cluster to begin with.  I'm guessing that the reason is a combination of find and rm -fr processing files serially and having to wait on the packets to travel back and forth over the network.  But with a clustering filesystem, the bottleneck is processing files serially and waiting for network packets when you don't have to.

So I decided to try an experiment.  Instead of using /bin/rm to delete files serially, I wrote my own quick-and-dirty recursive rm (and recursive ls) that uses pthreads (listed as "cluster-rm" and "cluster-ls" in the table below):

Methods:

1) This was done on a Linux system.  I suspect that Linux (or any modern OS) caches filesystem information.  For example, after setting up a directory, when running rm -fr on that directory, the time for rm to complete is lessened if I first run find on the same directory.  So to avoid this caching effect, each command was run on it's own test directory.  (I.e. find was never run on the same directory as rm -fr or cluster-rm.)  This approach seemed to prevent inconsistencies resulting from any caching behavior, resulting in run times that were more consistent.

2) Each test directory contained the exact same data for each of the four commands tested (find, cluster-ls, rm, cluster-rm) for each test run.

3) All commands were run on a client machine and not one of the cluster nodes.

Results:

Data Size
Command
Test #1
Test #2
Test #3
Test #4
49GB
find -print
real    6m45.066s
user    0m0.172s
sys    0m0.748s
real    6m18.524s
user    0m0.140s
sys    0m0.508s
real    5m45.301s
user    0m0.156s
sys    0m0.484s
real    5m58.577s
user    0m0.132s
sys    0m0.480s

cluster-ls
real    2m32.770s
user    0m0.208s
sys    0m1.876s
real    2m21.376s
user    0m0.164s
sys    0m1.568s
real    2m40.511s
user    0m0.184s
sys    0m1.488s
real    2m36.202s
user    0m0.172s
sys    0m1.412s






49GB
rm -fr
real    16m36.264s
user    0m0.232s
sys    0m1.724s
real    16m16.795s
user    0m0.248s
sys    0m1.528s
real    15m54.503s
user    0m0.204s
sys    0m1.396s
real    16m10.037s
user    0m0.168s
sys    0m1.448s

cluster-rm
real    1m50.717s
user    0m0.236s
sys    0m1.820s
real    1m44.803s
user    0m0.192s
sys    0m2.100s
real    2m6.250s
user    0m0.224s
sys    0m2.200s
real    2m6.367s
user    0m0.224s
sys    0m2.316s






97GB
find -print
real    11m39.990s
user    0m0.380s
sys    0m1.428s
real    11m21.018s
user    0m0.380s
sys    0m1.224s
real    11m33.257s
user    0m0.288s
sys    0m0.924s
real    11m4.867s
user    0m0.332s
sys    0m1.244s

cluster-ls
real    4m46.829s
user    0m0.504s
sys    0m3.228s
real    5m15.538s
user    0m0.408s
sys    0m3.736s
real    4m52.075s
user    0m0.364s
sys    0m3.004s
real    4m43.134s
user    0m0.452s
sys    0m3.140s






97GB
rm -fr
real    29m34.138s
user    0m0.520s
sys    0m3.908s
real    28m11.000s
user    0m0.556s
sys    0m3.480s
real    28m37.154s
user    0m0.412s
sys    0m2.756s
real    28m41.724s
user    0m0.380s
sys    0m4.184s

cluster-rm
real    3m30.750s
user    0m0.524s
sys    0m4.932s
real    4m20.195s
user    0m0.456s
sys    0m5.316s
real    4m45.206s
user    0m0.444s
sys    0m4.584s
real    4m26.894s
user    0m0.436s
sys    0m4.732s






145GB
find -print
real    16m26.498s
user    0m0.520s
sys    0m2.244s
real    16m53.047s
user    0m0.596s
sys    0m1.740s
real    15m10.704s
user    0m0.364s
sys    0m1.748s
real    15m53.943s
user    0m0.456s
sys    0m1.764s

cluster-ls
real    6m52.006s
user    0m0.644s
sys    0m5.664s
real    7m7.361s
user    0m0.804s
sys    0m5.432s
real    7m4.109s
user    0m0.652s
sys    0m4.800s
real    6m37.229s
user    0m0.656s
sys    0m4.652s






145GB
rm -fr
real    40m10.396s
user    0m0.624s
sys    0m5.492s
real    42m17.851s
user    0m0.844s
sys    0m4.872s
real    39m6.493s
user    0m0.484s
sys    0m4.868s
real    39m52.047s
user    0m0.496s
sys    0m4.980s

cluster-rm
real    6m49.769s
user    0m0.708s
sys    0m6.440s
real    8m34.644s
user    0m0.852s
sys    0m8.345s
real    6m3.563s
user    0m0.636s
sys    0m5.844s
real    6m31.808s
user    0m0.664s
sys    0m5.996s






1.1TB
find -print real    62m4.043s
user    0m1.300s
sys    0m5.448s
real    61m11.584s
user    0m1.204s
sys    0m5.172s
real    65m37.389s
user    0m1.708s
sys    0m4.276s
real    63m51.822s
user    0m3.096s
sys    0m9.869s

cluster-ls
real    73m12.463s
user    0m2.472s
sys    0m19.289s
real    68m37.846s
user    0m2.080s
sys    0m18.625s
real    72m56.417s
user    0m2.516s
sys    0m18.601s
real    69m3.575s
user    0m4.316s
sys    0m35.986s






1.1TB
rm -fr
real    188m1.925s
user    0m2.240s
sys    0m21.705s
real    190m21.850s
user    0m2.372s
sys    0m18.885s
real    200m25.712s
user    0m5.840s
sys    0m46.363s
real    196m12.686s
user    0m4.916s
sys    0m41.519s

cluster-rm
real    85m46.463s
user    0m2.512s
sys    0m30.478s
real    90m29.055s
user    0m2.600s
sys    0m30.382s
real    88m16.063s
user    0m4.456s
sys    0m51.667
real    77m42.096s
user    0m2.464s
sys    0m31.638s


Conclusions:

1) Once I had a threaded version of rm, a threaded version of ls was easy to make, so I included it in the tests (listed above as cluster-ls).  Performance looked spiffy up until the 1.1TB range, when cluster-ls started taking more time than find.  Right now I can't explain why.  1.1TB takes a long time to set up and process (about a day for each set of four commands), it could be that regular nightly backups might be interfering with performance.  If that's the case, then it calls into question the usefulness of my threaded approach.  Also, naturally the output from cluster-ls is out of order, so grep and sed would most likely be used in conjunction with something like that, and I haven't yet time-tested 'cluster-ls | some-other-command' against using plain old find by itself.

2) Results from cluster-rm look pretty good to me across the board.  Again, performance seems to fall off in the 1.1TB tests, and the reasons are not clear to me at this time, but performance is still half that of rm -fr.  Run times fluctuate more than in the previous tests, but I suppose that's to be expected.  But since performance does drop, it makes me wonder how well this approach scales on larger sets of data.

3) My threaded cluster-rm/ls commands are not clever.  While traversing directories, any subdirectories found would result in a new thread to process it, up until some hard-coded limit is reached (for the above results, 100 threads were used).  After the thread count limit is reached, directories are processed using plain old recursion until a thread exits, freeing up a thread to process another subdirectory.

Further Research:

A) I would like to test further with larger data sets.

B) I would like to implement a smarter algorithm for determining how many threads to use to maximize performance.  Rather than a hard-coded maximum, a better approach might be to use some metric for measuring number of inodes processed per second, and use that to determine the effectiveness of adding more threads until a local maxima is reached.

C) How do these numbers change if the commands are run on one of the cluster nodes instead of a client?

I have some ideas of smarter things to try, but I am at best an inexperienced (if enthusiastic) dabbler in the programming arts.  A professional would likely do a much better job.

But if this data looks at all interesting or useful, then maybe there would be a call for a handful of cluster-specific filesystem tools?

Michael Peek

_______________________________________________
Gluster-users mailing list
Gluster-users@xxxxxxxxxxx
http://supercolony.gluster.org/mailman/listinfo/gluster-users

[Index of Archives]     [Gluster Development]     [Linux Filesytems Development]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux