GLUSTER NSR
(New Style Replication)

Design Document

Jeff Darcy
(Jdarcy@redhat.com)

Avra Sengupta
(asengupt@redhat.com)

Venky Shankar
(vshankar@redhat.com)

mailto:jdarcy@redhat.com
mailto:asengupt@redhat.com
mailto:vshankar@redhat.com

TABLE OF CONTENTS

1. Feature Summary
2. Introduction
3. Architecture
Overview
1. Leader Election
2. NSR Client
3. Journaling
4. In-Memory Journal
5. NSR Server
5. Reconciliation
4. Appendix

1. Feature Summary

NSR or New Style Replication is a server side replication mechanism,
which provides better fault tolerance and improved performance.

This feature will reduce, the client side latency, owing to NSR’s replication
mechanism, which leverages server side bandwidth. This design principle,
will not only improves performance, but will also make NSR split brain

resistant.

2. Introduction

New Style Replication relies on two basic virtues: Journalling, and leader
based coordination. Instead of sending data to all the servers of a replica,
the client will send data to one server(the leader, which will be elected via
etcd) in every replica subvolume. The leader will then forward the data, to
other servers in the replica subvolume, and propagate the replies back to
the client. The reads will also be sent to, and processed by the current
leader.

This approach along with a precise operation based journalling, will enable
NSR to perform data recovery, and eliminate split-brain scenarios. It will
also help increase client’s throughput, as it will now be able to use it’s full
bandwidth to perform ops(reads/writes) on only one server.

3. Architecture

Overview
In this section we will cover NSR architecture, identify and explore each of
the modules that will act as building blocks for the feature.

I"'r "'\“I
eted : - :
[support] : client ;
= J
in glusterd > N
: server : /O path

: + (mostly generated code)
| I " J '
E f » :
[reconciliation] E jounal ;
i Y vy

1. Leader Election
We will be using etcd for leader election. etcd provides TTL(Time To
Leave) on objects, which enables us to lease leadership to servers
for terms.

A monitor cluster(etcd cluster) is created, and is used to save the
term value, and store the leader key. The leader key is watched by all
servers in the replica group. If the key is empty, any server can write
its id on it and thus get elected as the leader of the replica group. The

4

written value is given a TTL that removes it after a set interval, and
the elected leader must rewrite it periodically to remain elected and
renew it's lease. By the use of etcd’'s atomic compare and swap
operation, there is no risk of a clash between two instances being
undetected.

The etcd cluster will also be used to store information about the
journal’s terms.

Note: The above exercise needs to be done for every replica group in
the subvolume, as every replica group will have it's own leader.

2. NSR Client

The nsr-client translator will help the client figure out which server in
the replica group is the leader, and send the write and read
operations to the same. It needs to check the return code of the
operation, and accordingly retry on a different brick if it receives an
error code stating that the brick is not the current leader.

no

3. Journaling

NSR will rely on a full data journaling model, which will make its
reconciliation much more robust. The journal comprises of two parts,
the event log and the index.

Term 10 GBnasie ':-"=Data

(S SV Events @ Data

L .
Event Log Index

a. The Event Log : The event log is divided into terms, and within
each term a series of events corresponding to user I/O requests is
stored. The events themselves are stored in one file, while bulk
data is stored in one or more supplementary files.

Data for #1

NEW_ENTRY #1 Data for #2

R\

NEW_ENTRY #2

Data File A

NEW_ENTRY #3
Main File
Data for #3

Data File B

Each term’s main event-log file contains short event records,
which may contain pointers to one or more supplemental data

6

files. Each such pointer consists of an ID, identifying a particular
data file, plus an offset into that file.

An event once it enters the state machine, can go through various
state changes throughout it’s lifecycle.

’

INVALID | UNCOMMITTED] | IN_PROGRESS

(after rollback) (new request) J | (before destage)
v l

COMMITTED NEED_FSYNC

(after fsync) (after destage)

i) Uncommitted : This is the first state every Journal Entry is going
to be in, when it’s first introduced in the “state machine”. This also
means that this particular Journal Entry has not yet been acted
upon and the actual fop is still pending.

ii) In Progress : This is the state that the Journal Entry is moved
into, right before the actual fop is performed in the Data Store. This
enables us to differentiate between a Journal Entry that has not
yet been worked upon, from one that might be in any state of
modification as part of the fop.

iii) Waiting For Sync : This is the state where the Journal Entry will
be moved to, once the actual fop is performed, but a fsync is still
pending. This means that the data might or might not be in the disk
right now, but the fop is successfully complete.

iv) Committed : When a sync comes, all journals till that point, who
were in “Waiting For Sync” state, are moved to “Committed” state.
This completes the lifecycle of the Journal Entry.

v) Invalid : When a Journal is in Uncommitted state, and has not
yet been acted upon, and a rollback request for the same comes,
that particular entry is marked as “Invalid”, suggesting that this
particular Journal Entry will not be acted upon.

NEW_REQUEST Request Type Request ID

GFID

Extension data length

(extension data plus padding to four-byte boundary)

All entries in the event log, start with a four-byte header, starting
with an event type. The other contents of the header can vary
depending on the the event type. A Request ID in the above
header will be used to associate all related events with one
another.

There will usually be multiple terms “in play”, at once, but only one
term will be the current term. Any term that ceases to be the
current term, will stop collecting new request events, but might
collect other internal events related to destaging or reconciliation.
Once those events are finished, the term is considered as
completed, and is kept around only for reconciliation.

A term can be deleted, when two conditions are met - it's not
needed locally, and it's not needed for reconciliation.

b. The Index :We maintain and store a Bloom filter for each term, to
enable efficient determination of, whether a term contains anything
at all relevant to a subsequent read (or reconciliation). Each data
block, directory entry, or metadata field is treated as a separate
entity for filter purposes, even if a single request affects multiple
entities. For each entity, we calculate a hash and use that to
populate the particular term’s Bloom filter.

F—

GFID l
Bloom
Filter

data: block number

Sub ID

entry: file name
other: magic constants

We will also maintain a global filter, to quickly determine, whether
any term still contains relevant data for a read or a reconciliation. It
will be kept at a coarser granularity, than per-term filters by using
only GFIDs, without further refinement by sub-id.

4. In-Memory Journal

Because there might be an indefinite amount of time before writes are
destaged from the journal to the main store, we need to account for
in-journal data on reads.

F 3

F 3

e

k.. 4
Term Term User
Store N-1 N View

Each term here needs to act, as an overlay on anything previous,
“hiding” any older content from view. Here only the blocks with the
arrows pointing to them, represent data that the user can still see. All
other blocks are hidden.

5. NSR Server

The leader plays a crucial role at the core of NSR. Every replica
group (not a volume or a cluster), will have one leader at any given
point in time. It will perform the following responsibilities:

A. It will be the only member of the group, which would be accepting
writes. Non-leader servers of the replica group, on receiving a
write request, will let the client know that it's not the leader.

B. The leader, on receiving the write, forwards it to the followers
without performing any operation on it.

C. When any non-leader node receives a request, it writes the fop in
the journal. The entry in the journal will be in “Uncommitted” state
at this point in time.

D. Once the fop is written in the Journal, the non-leader sends an
acknowledgement back to the leader.

E. The leader, on receiving acknowledgements from the followers,
decides (based on the current quorum), if quorum will not meet
even if the leader’s successful.

10

F. If Quorum will meet, the leader will try toadd the fop in it's own
journal as an “Uncommitted Entry”, else it will proceed to step I.

G. After the leader successfully writes the journal entry, it checks if
quorum is now met. If the leader fails to perform the write, a
leadership change is initiated in the background.

H. If Quorum is met(irrespective of the leader’s success or failure),
then the leader sends a +ve ack to the client, else if quorum is not
met it will proceed to step |.

I. The leader send a -ve ack to the client, and then issues rollback
for the same to the followers. If the rollback reaches the followers
before they have begun destaging, then the journal entry is
marked as “Invalid”. If not, then either a roll-back or a roll-forward
of the same, will happen during reconciliation, based on the state
of the leader and other followers.

5. Reconciliation
Reconciliation in NSR will work hand in hand with Journaling, which
enables precise recovery. In the event that a leader has gone down,
and there aren’t enough servers to form quorum, then all writes will
be rejected, until quorum is regained.

Reconciliation, will be driven by the current leader, and will act upon
the term information present in etcd, as well as the term states in
each replica brick.

a. The reconciliation process will run through all the entries in order,
starting from the oldest term, yet to be reconciled.

b. It will check for overlaps, and discard any part that's no longer
relevant.

c. By figuring out which replicas are in which state, for any given
term, it will propagate from more current to less current.

d. Finally it will mark the entry as completed.

11

Appendix

http://review.gluster.org/#/c/8915/3/
http://www.gluster.org/community/documentation/index.php/Features/
new-style-replication
http://blog.gluster.org/2014/04/new-style-replication/
http://www.projectcalico.org/using-etcd-for-elections/
https://github.com/jdarcy/etcd-api
https://github.com/coreos/etcd/blob/master/Documentation/clustering.
md

12

http://review.gluster.org/#/c/8915/3/
http://www.gluster.org/community/documentation/index.php/Features/new-style-replication
http://www.gluster.org/community/documentation/index.php/Features/new-style-replication
http://blog.gluster.org/2014/04/new-style-replication/
http://www.projectcalico.org/using-etcd-for-elections/
https://github.com/jdarcy/etcd-api
https://github.com/coreos/etcd/blob/master/Documentation/clustering.md
https://github.com/coreos/etcd/blob/master/Documentation/clustering.md

