[BUG] git send-email brakes patches with very long lines

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi Giters,

I suspect that "git send-email" has problems with sending patches with very long lines.

Please find the attached two emails, which show this problem. The original file (0001-Add-Dolph-Chebyshev-window.patch) was produced with "git format-patch" from one of my private Git repositories. The other file (0001-Add-Dolph-Chebyshev-window-sent.patch) includes the same patch but sent with "git send-email". The problem is with the last hunk, which is somehow broken by the "git send-email" tool. The very long lines are wrapped and some exclamation marks are inserted.

The result of applying such a broken patch in my repository is as follows:

===== >8 =====
ediap@lespaul ~/git/itpp $ git am 0001-Add-Dolph-Chebyshev-window-sent.patch
Applying Add Dolph Chebyshev window.
fatal: corrupt patch at line 126
Patch failed at 0001.
When you have resolved this problem run "git-am --resolved".
If you would prefer to skip this patch, instead run "git-am --skip".
===== >8 =====

If I send the same patch with mutt inlined or attached, the patch is not broken and applies cleanly.

This problem was observed for the following git versions:
- 1.5.3.8
- 1.5.4.rc3.4.g1633

BR,
/Adam


PS. Email and IP addresses have been removed from the attached patches.

--
.:.  Adam Piatyszek (ediap)  .:.....................................:.
.:.  ediap@xxxxxxxxxxxxxxxxxxxxx  .:................................:.
From 171043d6daec26ede0c4d6584d7a70eea214f0fe Mon Sep 17 00:00:00 2001
From: K <email@xxxxxxxxxxx>
Date: Tue, 15 Jan 2008 22:52:14 +0530
Subject: [PATCH] Add Dolph Chebyshev window.

Add the chebwin function to evaluate the coefficients of the
Dolph-Chebyshev Window, with tests.

The tests check the values output by the Dolph-Chebyshev window
function for lengths 32 and 33 for 50 dB suppression and for lengths
127 and 128 at 25 dB suppression.

Signed-off-by: K <email@xxxxxxxxxxx>
---
 itpp/signal/window.cpp |   39 ++++++++++++++++++++++++++++++++++++++-
 itpp/signal/window.h   |   18 ++++++++++++++++++
 tests/window_test.cpp  |    5 +++++
 tests/window_test.ref  |    4 ++++
 4 files changed, 65 insertions(+), 1 deletions(-)

diff --git a/itpp/signal/window.cpp b/itpp/signal/window.cpp
index 0bf4be5..cfe27a8 100644
--- a/itpp/signal/window.cpp
+++ b/itpp/signal/window.cpp
@@ -27,7 +27,12 @@
  */
 
 #include <itpp/signal/window.h>
-
+#include <itpp/signal/poly.h>
+#include <itpp/base/specmat.h>
+#include <itpp/base/converters.h>
+#include <itpp/base/math/trig_hyp.h>
+#include <itpp/signal/transforms.h>
+#include <itpp/base/operators.h>
 
 namespace itpp {
 
@@ -106,6 +111,38 @@ namespace itpp {
     return t;
   }
 
+  vec chebwin(int n, double at)
+  {
+    it_assert((n > 0), "chebwin(): need a positive order n!");
+    if (n == 1) {
+      return vec("1");
+    }
+
+    at = at < 0 ? -at : at;
+    // compute the parameter beta
+    double beta = std::cosh(::acosh(pow10(at/20.)) / (n-1));
+    vec k = (pi / n) * linspace(0, n - 1, n);
+    vec cos_k = cos(k);
+    // find the window's DFT coefficients
+    vec p = cheb(n - 1, beta * cos_k);
+
+    // Appropriate IDFT and filling up
+    // depending on even/odd n
+    vec w; // the window vector.
+    if (is_even(n)) {
+      w = ifft_real(to_cvec(elem_mult(p, cos_k), elem_mult(p,-sin(k))));
+      int half_length = n / 2 + 1;
+      w = w / w(1);
+      w = concat(reverse(w.left(half_length)), w.mid(2, half_length - 2));
+    }
+    else {
+      w = ifft_real(to_cvec(p));
+      int half_length = (n + 1) / 2;
+      w = w.left(half_length) / w(0);
+      w = concat(reverse(w), w.right(half_length - 1));
+    }
+    return w;
+  }
 
 
 } // namespace itpp
diff --git a/itpp/signal/window.h b/itpp/signal/window.h
index aad510f..12f5205 100644
--- a/itpp/signal/window.h
+++ b/itpp/signal/window.h
@@ -105,6 +105,24 @@ namespace itpp {
   sqrt_win(n) = sqrt(triang(n))
   */
   vec sqrt_win(int n);
+
+  /*! \brief Dolph-Chebyshev Window
+
+
+  The length \c n Dolph-Chebyshev window is a vector \f$w\f$ whose \f$i\f$th
+  transform component is given by
+  \f[
+  W[k] = \frac{T_M\left(\beta \cos\left(\frac{\pi k}{M}\right)
+  \right)}{T_M(\beta)},k = 0, 1, 2, \ldots, M - 1
+  \f]
+
+  where \c T_n(x) is the order \c n Chebyshev polynomial of the first kind.
+  \param n Length of the Doplh-Chebyshev window.
+  \param at Attenutation of side lobe (in dB).
+  \return Symmetric length \c n Doplh-Chebyshev window.
+  \author
+  */
+  vec chebwin(int n, double at);
   //!@}
 
 
diff --git a/tests/window_test.cpp b/tests/window_test.cpp
index 31fcff5..6d3fb15 100644
--- a/tests/window_test.cpp
+++ b/tests/window_test.cpp
@@ -56,5 +56,10 @@ int main(void)
   cout << "triang(32) = " << round_to_zero(triang(32)) << endl;
   cout << "triang(128) = " << round_to_zero(triang(128)) << endl;
 
+  cout << "chebwin(32) = " << round_to_zero(chebwin(32, 50)) << endl;
+  cout << "chebwin(33) = " << round_to_zero(chebwin(33, 20)) << endl;
+  cout << "chebwin(127) = " << round_to_zero(chebwin(127, 25)) << endl;
+  cout << "chebwin(128) = " << round_to_zero(chebwin(128, 25)) << endl;
+
   return 0;
 }
diff --git a/tests/window_test.ref b/tests/window_test.ref
index 7b1793c..e988967 100644
--- a/tests/window_test.ref
+++ b/tests/window_test.ref
@@ -11,3 +11,7 @@ blackman(32) = [0 0.0037516543 0.015638448 0.0374027 0.071464607 0.12028646 0.18
 blackman(128) = [0 0.00022048463 0.00088426938 0.0019983131 0.0035741016 0.0056274806 0.008178424 0.011250741 0.014871722 0.019071735 0.023883764 0.029342905 0.035485826 0.042350182 0.049974012 0.058395105 0.067650362 0.077775135 0.08880258 0.100763 0.11368324 0.12758601 0.14248936 0.15840611 0.17534333 0.19330184 0.21227586 0.23225262 0.25321203 0.27512651 0.29796076 0.32167173 0.34620856 0.37151262 0.3975177 0.42415015 0.45132921 0.47896731 0.50697053 0.53523907 0.56366781 0.59214691 0.62056245 0.64879721 0.67673135 0.70424322 0.73121023 0.7575096 0.7830193 0.80761885 0.83119025 0.85361875 0.87479376 0.89460963 0.91296646 0.9297708 0.94493641 0.95838489 0.97004626 0.97985951 0.98777306 0.99374518 0.99774428 0.99974914 0.99974914 0.99774428 0.99374518 0.98777306 0.97985951 0.97004626 0.95838489 0.94493641 0.9297708 0.91296646 0.89460963 0.87479376 0.85361875 0.83119025 0.80761885 0.7830193 0.7575096 0.73121023 0.70424322 0.67673135 0.64879721 0.62056245 0.59214691 0.56366781 0.53523907 0.50697053 0.47896731 0.45132921 0.42415015 0.3975177 0.37151262 0.34620856 0.32167173 0.29796076 0.27512651 0.25321203 0.23225262 0.21227586 0.19330184 0.17534333 0.15840611 0.14248936 0.12758601 0.11368324 0.100763 0.08880258 0.077775135 0.067650362 0.058395105 0.049974012 0.042350182 0.035485826 0.029342905 0.023883764 0.019071735 0.014871722 0.011250741 0.008178424 0.0056274806 0.0035741016 0.0019983131 0.00088426938 0.00022048463 0]
 triang(32) = [0.03125 0.09375 0.15625 0.21875 0.28125 0.34375 0.40625 0.46875 0.53125 0.59375 0.65625 0.71875 0.78125 0.84375 0.90625 0.96875 0.96875 0.90625 0.84375 0.78125 0.71875 0.65625 0.59375 0.53125 0.46875 0.40625 0.34375 0.28125 0.21875 0.15625 0.09375 0.03125]
 triang(128) = [0.0078125 0.0234375 0.0390625 0.0546875 0.0703125 0.0859375 0.1015625 0.1171875 0.1328125 0.1484375 0.1640625 0.1796875 0.1953125 0.2109375 0.2265625 0.2421875 0.2578125 0.2734375 0.2890625 0.3046875 0.3203125 0.3359375 0.3515625 0.3671875 0.3828125 0.3984375 0.4140625 0.4296875 0.4453125 0.4609375 0.4765625 0.4921875 0.5078125 0.5234375 0.5390625 0.5546875 0.5703125 0.5859375 0.6015625 0.6171875 0.6328125 0.6484375 0.6640625 0.6796875 0.6953125 0.7109375 0.7265625 0.7421875 0.7578125 0.7734375 0.7890625 0.8046875 0.8203125 0.8359375 0.8515625 0.8671875 0.8828125 0.8984375 0.9140625 0.9296875 0.9453125 0.9609375 0.9765625 0.9921875 0.9921875 0.9765625 0.9609375 0.9453125 0.9296875 0.9140625 0.8984375 0.8828125 0.8671875 0.8515625 0.8359375 0.8203125 0.8046875 0.7890625 0.7734375 0.7578125 0.7421875 0.7265625 0.7109375 0.6953125 0.6796875 0.6640625 0.6484375 0.6328125 0.6171875 0.6015625 0.5859375 0.5703125 0.5546875 0.5390625 0.5234375 0.5078125 0.4921875 0.4765625 0.4609375 0.4453125 0.4296875 0.4140625 0.3984375 0.3828125 0.3671875 0.3515625 0.3359375 0.3203125 0.3046875 0.2890625 0.2734375 0.2578125 0.2421875 0.2265625 0.2109375 0.1953125 0.1796875 0.1640625 0.1484375 0.1328125 0.1171875 0.1015625 0.0859375 0.0703125 0.0546875 0.0390625 0.0234375 0.0078125]
+chebwin(32) = [0.050664426 0.066069435 0.10497972 0.15478981 0.21565675 0.28701938 0.36753634 0.45508472 0.5468251 0.63933249 0.72878615 0.81120512 0.88271105 0.93979671 0.97957695 1 1 0.97957695 0.93979671 0.88271105 0.81120512 0.72878615 0.63933249 0.5468251 0.45508472 0.36753634 0.28701938 0.21565675 0.15478981 0.10497972 0.066069435 0.050664426]
+chebwin(33) = [1.5667761 0.436121 0.4911289 0.5465011 0.60155649 0.65559419 0.70790584 0.75778846 0.80455735 0.84755887 0.8861828 0.91987396 0.94814295 0.97057557 0.98684093 0.99669794 1 0.99669794 0.98684093 0.97057557 0.94814295 0.91987396 0.8861828 0.84755887 0.80455735 0.75778846 0.70790584 0.65559419 0.60155649 0.5465011 0.4911289 0.436121 1.5667761]
+chebwin(127) = [2.8062784 0.28379647 0.29780485 0.31203524 0.32647609 0.34111535 0.3559405 0.37093856 0.38609612 0.40139932 0.41683391 0.43238525 0.44803833 0.46377779 0.47958794 0.49545281 0.51135612 0.52728135 0.54321176 0.55913036 0.57502004 0.59086348 0.60664326 0.62234187 0.63794169 0.65342508 0.66877439 0.68397195 0.69900016 0.71384147 0.72847843 0.7428937 0.75707013 0.77099071 0.78463866 0.79799743 0.81105075 0.82378262 0.83617737 0.84821968 0.85989459 0.87118755 0.88208441 0.89257149 0.90263557 0.91226391 0.9214443 0.93016505 0.93841505 0.94618372 0.95346113 0.9602379 0.96650532 0.97225529 0.9774804 0.98217387 0.98632963 0.98994228 0.99300712 0.99552018 0.99747819 0.99887858 0.99971955 1 0.99971955 0.99887858 0.99747819 0.99552018 0.99300712 0.98994228 0.98632963 0.98217387 0.9774804 0.97225529 0.96650532 0.9602379 0.95346113 0.94618372 0.93841505 0.93016505 0.9214443 0.91226391 0.90263557 0.89257149 0.88208441 0.87118755 0.85989459 0.84821968 0.83617737 0.82378262 0.81105075 0.79799743 0.78463866 0.77099071 0.75707013 0.7428937 0.72847843 0.71384147 0.69900016 0.68397195 0.66877439 0.65342508 0.63794169 0.62234187 0.60664326 0.59086348 0.57502004 0.55913036 0.54321176 0.52728135 0.51135612 0.49545281 0.47958794 0.46377779 0.44803833 0.43238525 0.41683391 0.40139932 0.38609612 0.37093856 0.3559405 0.34111535 0.32647609 0.31203524 0.29780485 0.28379647 2.8062784]
+chebwin(128) = [2.8276135 0.28370485 0.29760123 0.31171632 0.32603887 0.34055711 0.35525884 0.37013139 0.38516169 0.40033623 0.41564112 0.43106209 0.4465845 0.46219339 0.47787346 0.49360915 0.50938459 0.52518367 0.54099005 0.55678721 0.57255843 0.58828682 0.6039554 0.61954706 0.63504462 0.65043087 0.66568854 0.68080039 0.69574922 0.71051786 0.72508926 0.73944646 0.75357265 0.76745118 0.78106561 0.79439972 0.80743754 0.82016335 0.83256177 0.84461773 0.85631651 0.86764377 0.87858557 0.88912838 0.89925915 0.90896528 0.91823465 0.92705566 0.93541726 0.94330891 0.95072067 0.95764316 0.96406763 0.96998592 0.97539051 0.98027451 0.9846317 0.98845652 0.99174407 0.99449016 0.99669127 0.99834457 0.99944796 1 1 0.99944796 0.99834457 0.99669127 0.99449016 0.99174407 0.98845652 0.9846317 0.98027451 0.97539051 0.96998592 0.96406763 0.95764316 0.95072067 0.94330891 0.93541726 0.92705566 0.91823465 0.90896528 0.89925915 0.88912838 0.87858557 0.86764377 0.85631651 0.84461773 0.83256177 0.82016335 0.80743754 0.79439972 0.78106561 0.76745118 0.75357265 0.73944646 0.72508926 0.71051786 0.69574922 0.68080039 0.66568854 0.65043087 0.63504462 0.61954706 0.6039554 0.58828682 0.57255843 0.55678721 0.54099005 0.52518367 0.50938459 0.49360915 0.47787346 0.46219339 0.4465845 0.43106209 0.41564112 0.40033623 0.38516169 0.37013139 0.35525884 0.34055711 0.32603887 0.31171632 0.29760123 0.28370485 2.8276135]
-- 
1.5.4.rc3.4.g1633

From ediap@xxxxxxxxxxxxxxxxxxxxx Thu Jan 17 10:20:44 2008
From: =?utf-8?q?Adam=20Pi=C4=85tyszek?= <ediap@xxxxxxxxxxxxxxxxxxxxx>
To: ediap@xxxxxxxxxxx
Cc: K <email@xxxxxxxxxxx>
Subject: [PATCH] Add Dolph Chebyshev window.
Date: Thu, 17 Jan 2008 10:09:20 +0100
Message-Id: <1200560960-696-1-git-send-email-ediap@xxxxxxxxxxxxxxxxxxxxx>
X-Mailer: git-send-email 1.5.4.rc3.4.g1633
Status: RO
Content-Length: 10365
Lines: 136

From: K <email@xxxxxxxxxxx>

Add the chebwin function to evaluate the coefficients of the
Dolph-Chebyshev Window, with tests.

The tests check the values output by the Dolph-Chebyshev window
function for lengths 32 and 33 for 50 dB suppression and for lengths
127 and 128 at 25 dB suppression.

Signed-off-by: K <email@xxxxxxxxxxx>
---
 itpp/signal/window.cpp |   39 ++++++++++++++++++++++++++++++++++++++-
 itpp/signal/window.h   |   18 ++++++++++++++++++
 tests/window_test.cpp  |    5 +++++
 tests/window_test.ref  |    4 ++++
 4 files changed, 65 insertions(+), 1 deletions(-)

diff --git a/itpp/signal/window.cpp b/itpp/signal/window.cpp
index 0bf4be5..cfe27a8 100644
--- a/itpp/signal/window.cpp
+++ b/itpp/signal/window.cpp
@@ -27,7 +27,12 @@
  */
 
 #include <itpp/signal/window.h>
-
+#include <itpp/signal/poly.h>
+#include <itpp/base/specmat.h>
+#include <itpp/base/converters.h>
+#include <itpp/base/math/trig_hyp.h>
+#include <itpp/signal/transforms.h>
+#include <itpp/base/operators.h>
 
 namespace itpp {
 
@@ -106,6 +111,38 @@ namespace itpp {
     return t;
   }
 
+  vec chebwin(int n, double at)
+  {
+    it_assert((n > 0), "chebwin(): need a positive order n!");
+    if (n == 1) {
+      return vec("1");
+    }
+
+    at = at < 0 ? -at : at;
+    // compute the parameter beta
+    double beta = std::cosh(::acosh(pow10(at/20.)) / (n-1));
+    vec k = (pi / n) * linspace(0, n - 1, n);
+    vec cos_k = cos(k);
+    // find the window's DFT coefficients
+    vec p = cheb(n - 1, beta * cos_k);
+
+    // Appropriate IDFT and filling up
+    // depending on even/odd n
+    vec w; // the window vector.
+    if (is_even(n)) {
+      w = ifft_real(to_cvec(elem_mult(p, cos_k), elem_mult(p,-sin(k))));
+      int half_length = n / 2 + 1;
+      w = w / w(1);
+      w = concat(reverse(w.left(half_length)), w.mid(2, half_length - 2));
+    }
+    else {
+      w = ifft_real(to_cvec(p));
+      int half_length = (n + 1) / 2;
+      w = w.left(half_length) / w(0);
+      w = concat(reverse(w), w.right(half_length - 1));
+    }
+    return w;
+  }
 
 
 } // namespace itpp
diff --git a/itpp/signal/window.h b/itpp/signal/window.h
index aad510f..12f5205 100644
--- a/itpp/signal/window.h
+++ b/itpp/signal/window.h
@@ -105,6 +105,24 @@ namespace itpp {
   sqrt_win(n) = sqrt(triang(n))
   */
   vec sqrt_win(int n);
+
+  /*! \brief Dolph-Chebyshev Window
+
+
+  The length \c n Dolph-Chebyshev window is a vector \f$w\f$ whose \f$i\f$th
+  transform component is given by
+  \f[
+  W[k] = \frac{T_M\left(\beta \cos\left(\frac{\pi k}{M}\right)
+  \right)}{T_M(\beta)},k = 0, 1, 2, \ldots, M - 1
+  \f]
+
+  where \c T_n(x) is the order \c n Chebyshev polynomial of the first kind.
+  \param n Length of the Doplh-Chebyshev window.
+  \param at Attenutation of side lobe (in dB).
+  \return Symmetric length \c n Doplh-Chebyshev window.
+  \author
+  */
+  vec chebwin(int n, double at);
   //!@}
 
 
diff --git a/tests/window_test.cpp b/tests/window_test.cpp
index 31fcff5..6d3fb15 100644
--- a/tests/window_test.cpp
+++ b/tests/window_test.cpp
@@ -56,5 +56,10 @@ int main(void)
   cout << "triang(32) = " << round_to_zero(triang(32)) << endl;
   cout << "triang(128) = " << round_to_zero(triang(128)) << endl;
 
+  cout << "chebwin(32) = " << round_to_zero(chebwin(32, 50)) << endl;
+  cout << "chebwin(33) = " << round_to_zero(chebwin(33, 20)) << endl;
+  cout << "chebwin(127) = " << round_to_zero(chebwin(127, 25)) << endl;
+  cout << "chebwin(128) = " << round_to_zero(chebwin(128, 25)) << endl;
+
   return 0;
 }
diff --git a/tests/window_test.ref b/tests/window_test.ref
index 7b1793c..e988967 100644
--- a/tests/window_test.ref
+++ b/tests/window_test.ref
@@ -11,3 +11,7 @@ blackman(32) = [0 0.0037516543 0.015638448 0.0374027 0.071464607 0.12028646 0.18
 blackman(128) = [0 0.00022048463 0.00088426938 0.0019983131 0.0035741016 0.0056274806 0.008178424 0.011250741 0.014871722 0.019071735 0.023883764 0.029342905 0.035485826 0.042350182 0.049974012 0.058395105 0.067650362 0.077775135 0.08880258 0.100763 0.11368324 0.12758601 0.14248936 0.15840611 0.17534333 0.19330184 0.21227586 0.23225262 0.25321203 0.27512651 0.29796076 0.32167173 0.34620856 0.37151262 0.3975177 0.42415015 0.45132921 0.47896731 0.50697053 0.53523907 0.56366781 0.59214691 0.62056245 0.64879721 0.67673135 0.70424322 0.73121023 0.7575096 0.7830193 0.80761885 0.83119025 0.85361875 0.87479376 0.89460963 0.91296646 0.9297708 0.94493641 0.95838489 0.97004626 0.97985951 0.98777306 0.99374518 0.99774428 0.99974914 0.99974914 0.99774428 0.99374518 0.98777306 0.97985951 0.97004626 0.95838489 0.94493641 0.9297708 0.91296646 0.89460963 0.87479376 0.85361875 0.83119025 0.80761885 0.7830193 0.7575096 0.73121023 0.70424322 0.67673135 0.64879721 0.62056245 0.59214691 0.563667!
 81 0.53523907 0.50697053 0.47896731 0.45132921 0.42415015 0.3975177 0.37151262 0.34620856 0.32167173 0.29796076 0.27512651 0.25321203 0.23225262 0.21227586 0.19330184 0.17534333 0.15840611 0.14248936 0.12758601 0.11368324 0.100763 0.08880258 0.077775135 0.067650362 0.058395105 0.049974012 0.042350182 0.035485826 0.029342905 0.023883764 0.019071735 0.014871722 0.011250741 0.008178424 0.0056274806 0.0035741016 0.0019983131 0.00088426938 0.00022048463 0]
 triang(32) = [0.03125 0.09375 0.15625 0.21875 0.28125 0.34375 0.40625 0.46875 0.53125 0.59375 0.65625 0.71875 0.78125 0.84375 0.90625 0.96875 0.96875 0.90625 0.84375 0.78125 0.71875 0.65625 0.59375 0.53125 0.46875 0.40625 0.34375 0.28125 0.21875 0.15625 0.09375 0.03125]
 triang(128) = [0.0078125 0.0234375 0.0390625 0.0546875 0.0703125 0.0859375 0.1015625 0.1171875 0.1328125 0.1484375 0.1640625 0.1796875 0.1953125 0.2109375 0.2265625 0.2421875 0.2578125 0.2734375 0.2890625 0.3046875 0.3203125 0.3359375 0.3515625 0.3671875 0.3828125 0.3984375 0.4140625 0.4296875 0.4453125 0.4609375 0.4765625 0.4921875 0.5078125 0.5234375 0.5390625 0.5546875 0.5703125 0.5859375 0.6015625 0.6171875 0.6328125 0.6484375 0.6640625 0.6796875 0.6953125 0.7109375 0.7265625 0.7421875 0.7578125 0.7734375 0.7890625 0.8046875 0.8203125 0.8359375 0.8515625 0.8671875 0.8828125 0.8984375 0.9140625 0.9296875 0.9453125 0.9609375 0.9765625 0.9921875 0.9921875 0.9765625 0.9609375 0.9453125 0.9296875 0.9140625 0.8984375 0.8828125 0.8671875 0.8515625 0.8359375 0.8203125 0.8046875 0.7890625 0.7734375 0.7578125 0.7421875 0.7265625 0.7109375 0.6953125 0.6796875 0.6640625 0.6484375 0.6328125 0.6171875 0.6015625 0.5859375 0.5703125 0.5546875 0.5390625 0.5234375 0.5078125 0.4921875 0.4!
 765625 0.4609375 0.4453125 0.4296875 0.4140625 0.3984375 0.3828125 0.3671875 0.3515625 0.3359375 0.3203125 0.3046875 0.2890625 0.2734375 0.2578125 0.2421875 0.2265625 0.2109375 0.1953125 0.1796875 0.1640625 0.1484375 0.1328125 0.1171875 0.1015625 0.0859375 0.0703125 0.0546875 0.0390625 0.0234375 0.0078125]
+chebwin(32) = [0.050664426 0.066069435 0.10497972 0.15478981 0.21565675 0.28701938 0.36753634 0.45508472 0.5468251 0.63933249 0.72878615 0.81120512 0.88271105 0.93979671 0.97957695 1 1 0.97957695 0.93979671 0.88271105 0.81120512 0.72878615 0.63933249 0.5468251 0.45508472 0.36753634 0.28701938 0.21565675 0.15478981 0.10497972 0.066069435 0.050664426]
+chebwin(33) = [1.5667761 0.436121 0.4911289 0.5465011 0.60155649 0.65559419 0.70790584 0.75778846 0.80455735 0.84755887 0.8861828 0.91987396 0.94814295 0.97057557 0.98684093 0.99669794 1 0.99669794 0.98684093 0.97057557 0.94814295 0.91987396 0.8861828 0.84755887 0.80455735 0.75778846 0.70790584 0.65559419 0.60155649 0.5465011 0.4911289 0.436121 1.5667761]
+chebwin(127) = [2.8062784 0.28379647 0.29780485 0.31203524 0.32647609 0.34111535 0.3559405 0.37093856 0.38609612 0.40139932 0.41683391 0.43238525 0.44803833 0.46377779 0.47958794 0.49545281 0.51135612 0.52728135 0.54321176 0.55913036 0.57502004 0.59086348 0.60664326 0.62234187 0.63794169 0.65342508 0.66877439 0.68397195 0.69900016 0.71384147 0.72847843 0.7428937 0.75707013 0.77099071 0.78463866 0.79799743 0.81105075 0.82378262 0.83617737 0.84821968 0.85989459 0.87118755 0.88208441 0.89257149 0.90263557 0.91226391 0.9214443 0.93016505 0.93841505 0.94618372 0.95346113 0.9602379 0.96650532 0.97225529 0.9774804 0.98217387 0.98632963 0.98994228 0.99300712 0.99552018 0.99747819 0.99887858 0.99971955 1 0.99971955 0.99887858 0.99747819 0.99552018 0.99300712 0.98994228 0.98632963 0.98217387 0.9774804 0.97225529 0.96650532 0.9602379 0.95346113 0.94618372 0.93841505 0.93016505 0.9214443 0.91226391 0.90263557 0.89257149 0.88208441 0.87118755 0.85989459 0.84821968 0.83617737 0.82378262 !
 0.81105075 0.79799743 0.78463866 0.77099071 0.75707013 0.7428937 0.72847843 0.71384147 0.69900016 0.68397195 0.66877439 0.65342508 0.63794169 0.62234187 0.60664326 0.59086348 0.57502004 0.55913036 0.54321176 0.52728135 0.51135612 0.49545281 0.47958794 0.46377779 0.44803833 0.43238525 0.41683391 0.40139932 0.38609612 0.37093856 0.3559405 0.34111535 0.32647609 0.31203524 0.29780485 0.28379647 2.8062784]
+chebwin(128) = [2.8276135 0.28370485 0.29760123 0.31171632 0.32603887 0.34055711 0.35525884 0.37013139 0.38516169 0.40033623 0.41564112 0.43106209 0.4465845 0.46219339 0.47787346 0.49360915 0.50938459 0.52518367 0.54099005 0.55678721 0.57255843 0.58828682 0.6039554 0.61954706 0.63504462 0.65043087 0.66568854 0.68080039 0.69574922 0.71051786 0.72508926 0.73944646 0.75357265 0.76745118 0.78106561 0.79439972 0.80743754 0.82016335 0.83256177 0.84461773 0.85631651 0.86764377 0.87858557 0.88912838 0.89925915 0.90896528 0.91823465 0.92705566 0.93541726 0.94330891 0.95072067 0.95764316 0.96406763 0.96998592 0.97539051 0.98027451 0.9846317 0.98845652 0.99174407 0.99449016 0.99669127 0.99834457 0.99944796 1 1 0.99944796 0.99834457 0.99669127 0.99449016 0.99174407 0.98845652 0.9846317 0.98027451 0.97539051 0.96998592 0.96406763 0.95764316 0.95072067 0.94330891 0.93541726 0.92705566 0.91823465 0.90896528 0.89925915 0.88912838 0.87858557 0.86764377 0.85631651 0.84461773 0.83256177 0.820!
 16335 0.80743754 0.79439972 0.78106561 0.76745118 0.75357265 0.73944646 0.72508926 0.71051786 0.69574922 0.68080039 0.66568854 0.65043087 0.63504462 0.61954706 0.6039554 0.58828682 0.57255843 0.55678721 0.54099005 0.52518367 0.50938459 0.49360915 0.47787346 0.46219339 0.4465845 0.43106209 0.41564112 0.40033623 0.38516169 0.37013139 0.35525884 0.34055711 0.32603887 0.31171632 0.29760123 0.28370485 2.8276135]
-- 
1.5.4.rc3.4.g1633


[Index of Archives]     [Linux Kernel Development]     [Gcc Help]     [IETF Annouce]     [DCCP]     [Netdev]     [Networking]     [Security]     [V4L]     [Bugtraq]     [Yosemite]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux SCSI]     [Fedora Users]

  Powered by Linux