From: Atousa Pahlevan Duprat <apahlevan@xxxxxxxx> The various SHA1 implementations were spread around in 3 directories. This makes it easier to understand what implementations are available at a glance. Signed-off-by: Atousa Pahlevan Duprat <apahlevan@xxxxxxxx> --- Makefile | 10 +- block-sha1/sha1.c | 251 -------------------------------------------------- block-sha1/sha1.h | 22 ----- cache.h | 2 +- compat/sha1-chunked.c | 19 ---- compat/sha1-chunked.h | 2 - ppc/sha1.c | 72 --------------- ppc/sha1.h | 25 ----- ppc/sha1ppc.S | 224 -------------------------------------------- sha1/blk-sha1.c | 251 ++++++++++++++++++++++++++++++++++++++++++++++++++ sha1/blk-sha1.h | 22 +++++ sha1/chk-sha1.c | 19 ++++ sha1/chk-sha1.h | 2 + sha1/ppc-sha1.c | 72 +++++++++++++++ sha1/ppc-sha1.h | 25 +++++ sha1/ppc-sha1asm.S | 224 ++++++++++++++++++++++++++++++++++++++++++++ 16 files changed, 621 insertions(+), 621 deletions(-) delete mode 100644 block-sha1/sha1.c delete mode 100644 block-sha1/sha1.h delete mode 100644 compat/sha1-chunked.c delete mode 100644 compat/sha1-chunked.h delete mode 100644 ppc/sha1.c delete mode 100644 ppc/sha1.h delete mode 100644 ppc/sha1ppc.S create mode 100644 sha1/blk-sha1.c create mode 100644 sha1/blk-sha1.h create mode 100644 sha1/chk-sha1.c create mode 100644 sha1/chk-sha1.h create mode 100644 sha1/ppc-sha1.c create mode 100644 sha1/ppc-sha1.h create mode 100644 sha1/ppc-sha1asm.S diff --git a/Makefile b/Makefile index 6a4ca59..94f74d7 100644 --- a/Makefile +++ b/Makefile @@ -1345,12 +1345,12 @@ ifdef APPLE_COMMON_CRYPTO endif ifdef BLK_SHA1 - SHA1_HEADER = "block-sha1/sha1.h" - LIB_OBJS += block-sha1/sha1.o + SHA1_HEADER = "sha1/blk-sha1.h" + LIB_OBJS += sha1/blk-sha1.o else ifdef PPC_SHA1 - SHA1_HEADER = "ppc/sha1.h" - LIB_OBJS += ppc/sha1.o ppc/sha1ppc.o + SHA1_HEADER = "sha1/ppc-sha1.h" + LIB_OBJS += sha1/ppc-sha1.o sha1/ppc-sha1asm.o else ifdef APPLE_COMMON_CRYPTO COMPAT_CFLAGS += -DCOMMON_DIGEST_FOR_OPENSSL @@ -1363,7 +1363,7 @@ endif endif ifdef SHA1_MAX_BLOCK_SIZE - LIB_OBJS += compat/sha1-chunked.o + LIB_OBJS += sha1/chk-sha1.o BASIC_CFLAGS += -DSHA1_MAX_BLOCK_SIZE="$(SHA1_MAX_BLOCK_SIZE)" endif ifdef NO_PERL_MAKEMAKER diff --git a/block-sha1/sha1.c b/block-sha1/sha1.c deleted file mode 100644 index 22b125c..0000000 --- a/block-sha1/sha1.c +++ /dev/null @@ -1,251 +0,0 @@ -/* - * SHA1 routine optimized to do word accesses rather than byte accesses, - * and to avoid unnecessary copies into the context array. - * - * This was initially based on the Mozilla SHA1 implementation, although - * none of the original Mozilla code remains. - */ - -/* this is only to get definitions for memcpy(), ntohl() and htonl() */ -#include "../git-compat-util.h" - -#include "sha1.h" - -#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) - -/* - * Force usage of rol or ror by selecting the one with the smaller constant. - * It _can_ generate slightly smaller code (a constant of 1 is special), but - * perhaps more importantly it's possibly faster on any uarch that does a - * rotate with a loop. - */ - -#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; }) -#define SHA_ROL(x,n) SHA_ASM("rol", x, n) -#define SHA_ROR(x,n) SHA_ASM("ror", x, n) - -#else - -#define SHA_ROT(X,l,r) (((X) << (l)) | ((X) >> (r))) -#define SHA_ROL(X,n) SHA_ROT(X,n,32-(n)) -#define SHA_ROR(X,n) SHA_ROT(X,32-(n),n) - -#endif - -/* - * If you have 32 registers or more, the compiler can (and should) - * try to change the array[] accesses into registers. However, on - * machines with less than ~25 registers, that won't really work, - * and at least gcc will make an unholy mess of it. - * - * So to avoid that mess which just slows things down, we force - * the stores to memory to actually happen (we might be better off - * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as - * suggested by Artur Skawina - that will also make gcc unable to - * try to do the silly "optimize away loads" part because it won't - * see what the value will be). - * - * Ben Herrenschmidt reports that on PPC, the C version comes close - * to the optimized asm with this (ie on PPC you don't want that - * 'volatile', since there are lots of registers). - * - * On ARM we get the best code generation by forcing a full memory barrier - * between each SHA_ROUND, otherwise gcc happily get wild with spilling and - * the stack frame size simply explode and performance goes down the drain. - */ - -#if defined(__i386__) || defined(__x86_64__) - #define setW(x, val) (*(volatile unsigned int *)&W(x) = (val)) -#elif defined(__GNUC__) && defined(__arm__) - #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) -#else - #define setW(x, val) (W(x) = (val)) -#endif - -/* This "rolls" over the 512-bit array */ -#define W(x) (array[(x)&15]) - -/* - * Where do we get the source from? The first 16 iterations get it from - * the input data, the next mix it from the 512-bit array. - */ -#define SHA_SRC(t) get_be32((unsigned char *) block + (t)*4) -#define SHA_MIX(t) SHA_ROL(W((t)+13) ^ W((t)+8) ^ W((t)+2) ^ W(t), 1); - -#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ - unsigned int TEMP = input(t); setW(t, TEMP); \ - E += TEMP + SHA_ROL(A,5) + (fn) + (constant); \ - B = SHA_ROR(B, 2); } while (0) - -#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) -#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) -#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) -#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) -#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) - -static void blk_SHA1_Block(blk_SHA_CTX *ctx, const void *block) -{ - unsigned int A,B,C,D,E; - unsigned int array[16]; - - A = ctx->H[0]; - B = ctx->H[1]; - C = ctx->H[2]; - D = ctx->H[3]; - E = ctx->H[4]; - - /* Round 1 - iterations 0-16 take their input from 'block' */ - T_0_15( 0, A, B, C, D, E); - T_0_15( 1, E, A, B, C, D); - T_0_15( 2, D, E, A, B, C); - T_0_15( 3, C, D, E, A, B); - T_0_15( 4, B, C, D, E, A); - T_0_15( 5, A, B, C, D, E); - T_0_15( 6, E, A, B, C, D); - T_0_15( 7, D, E, A, B, C); - T_0_15( 8, C, D, E, A, B); - T_0_15( 9, B, C, D, E, A); - T_0_15(10, A, B, C, D, E); - T_0_15(11, E, A, B, C, D); - T_0_15(12, D, E, A, B, C); - T_0_15(13, C, D, E, A, B); - T_0_15(14, B, C, D, E, A); - T_0_15(15, A, B, C, D, E); - - /* Round 1 - tail. Input from 512-bit mixing array */ - T_16_19(16, E, A, B, C, D); - T_16_19(17, D, E, A, B, C); - T_16_19(18, C, D, E, A, B); - T_16_19(19, B, C, D, E, A); - - /* Round 2 */ - T_20_39(20, A, B, C, D, E); - T_20_39(21, E, A, B, C, D); - T_20_39(22, D, E, A, B, C); - T_20_39(23, C, D, E, A, B); - T_20_39(24, B, C, D, E, A); - T_20_39(25, A, B, C, D, E); - T_20_39(26, E, A, B, C, D); - T_20_39(27, D, E, A, B, C); - T_20_39(28, C, D, E, A, B); - T_20_39(29, B, C, D, E, A); - T_20_39(30, A, B, C, D, E); - T_20_39(31, E, A, B, C, D); - T_20_39(32, D, E, A, B, C); - T_20_39(33, C, D, E, A, B); - T_20_39(34, B, C, D, E, A); - T_20_39(35, A, B, C, D, E); - T_20_39(36, E, A, B, C, D); - T_20_39(37, D, E, A, B, C); - T_20_39(38, C, D, E, A, B); - T_20_39(39, B, C, D, E, A); - - /* Round 3 */ - T_40_59(40, A, B, C, D, E); - T_40_59(41, E, A, B, C, D); - T_40_59(42, D, E, A, B, C); - T_40_59(43, C, D, E, A, B); - T_40_59(44, B, C, D, E, A); - T_40_59(45, A, B, C, D, E); - T_40_59(46, E, A, B, C, D); - T_40_59(47, D, E, A, B, C); - T_40_59(48, C, D, E, A, B); - T_40_59(49, B, C, D, E, A); - T_40_59(50, A, B, C, D, E); - T_40_59(51, E, A, B, C, D); - T_40_59(52, D, E, A, B, C); - T_40_59(53, C, D, E, A, B); - T_40_59(54, B, C, D, E, A); - T_40_59(55, A, B, C, D, E); - T_40_59(56, E, A, B, C, D); - T_40_59(57, D, E, A, B, C); - T_40_59(58, C, D, E, A, B); - T_40_59(59, B, C, D, E, A); - - /* Round 4 */ - T_60_79(60, A, B, C, D, E); - T_60_79(61, E, A, B, C, D); - T_60_79(62, D, E, A, B, C); - T_60_79(63, C, D, E, A, B); - T_60_79(64, B, C, D, E, A); - T_60_79(65, A, B, C, D, E); - T_60_79(66, E, A, B, C, D); - T_60_79(67, D, E, A, B, C); - T_60_79(68, C, D, E, A, B); - T_60_79(69, B, C, D, E, A); - T_60_79(70, A, B, C, D, E); - T_60_79(71, E, A, B, C, D); - T_60_79(72, D, E, A, B, C); - T_60_79(73, C, D, E, A, B); - T_60_79(74, B, C, D, E, A); - T_60_79(75, A, B, C, D, E); - T_60_79(76, E, A, B, C, D); - T_60_79(77, D, E, A, B, C); - T_60_79(78, C, D, E, A, B); - T_60_79(79, B, C, D, E, A); - - ctx->H[0] += A; - ctx->H[1] += B; - ctx->H[2] += C; - ctx->H[3] += D; - ctx->H[4] += E; -} - -void blk_SHA1_Init(blk_SHA_CTX *ctx) -{ - ctx->size = 0; - - /* Initialize H with the magic constants (see FIPS180 for constants) */ - ctx->H[0] = 0x67452301; - ctx->H[1] = 0xefcdab89; - ctx->H[2] = 0x98badcfe; - ctx->H[3] = 0x10325476; - ctx->H[4] = 0xc3d2e1f0; -} - -void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, unsigned long len) -{ - unsigned int lenW = ctx->size & 63; - - ctx->size += len; - - /* Read the data into W and process blocks as they get full */ - if (lenW) { - unsigned int left = 64 - lenW; - if (len < left) - left = len; - memcpy(lenW + (char *)ctx->W, data, left); - lenW = (lenW + left) & 63; - len -= left; - data = ((const char *)data + left); - if (lenW) - return; - blk_SHA1_Block(ctx, ctx->W); - } - while (len >= 64) { - blk_SHA1_Block(ctx, data); - data = ((const char *)data + 64); - len -= 64; - } - if (len) - memcpy(ctx->W, data, len); -} - -void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx) -{ - static const unsigned char pad[64] = { 0x80 }; - unsigned int padlen[2]; - int i; - - /* Pad with a binary 1 (ie 0x80), then zeroes, then length */ - padlen[0] = htonl((uint32_t)(ctx->size >> 29)); - padlen[1] = htonl((uint32_t)(ctx->size << 3)); - - i = ctx->size & 63; - blk_SHA1_Update(ctx, pad, 1 + (63 & (55 - i))); - blk_SHA1_Update(ctx, padlen, 8); - - /* Output hash */ - for (i = 0; i < 5; i++) - put_be32(hashout + i * 4, ctx->H[i]); -} diff --git a/block-sha1/sha1.h b/block-sha1/sha1.h deleted file mode 100644 index b864df6..0000000 --- a/block-sha1/sha1.h +++ /dev/null @@ -1,22 +0,0 @@ -/* - * SHA1 routine optimized to do word accesses rather than byte accesses, - * and to avoid unnecessary copies into the context array. - * - * This was initially based on the Mozilla SHA1 implementation, although - * none of the original Mozilla code remains. - */ - -typedef struct { - unsigned long long size; - unsigned int H[5]; - unsigned int W[16]; -} blk_SHA_CTX; - -void blk_SHA1_Init(blk_SHA_CTX *ctx); -void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *dataIn, unsigned long len); -void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx); - -#define git_SHA_CTX blk_SHA_CTX -#define git_SHA1_Init blk_SHA1_Init -#define git_SHA1_Update blk_SHA1_Update -#define git_SHA1_Final blk_SHA1_Final diff --git a/cache.h b/cache.h index 182ac62..961da4e 100644 --- a/cache.h +++ b/cache.h @@ -28,7 +28,7 @@ #ifndef git_SHA_CTX #ifdef SHA1_MAX_BLOCK_SIZE -#include "compat/sha1-chunked.h" +#include "sha1/chk-sha1.h" #define git_SHA_CTX platform_SHA_CTX #define git_SHA1_Init platform_SHA1_Init #define git_SHA1_Update git_SHA1_Update_Chunked diff --git a/compat/sha1-chunked.c b/compat/sha1-chunked.c deleted file mode 100644 index 6adfcfd..0000000 --- a/compat/sha1-chunked.c +++ /dev/null @@ -1,19 +0,0 @@ -#include "cache.h" - -int git_SHA1_Update_Chunked(platform_SHA_CTX *c, const void *data, size_t len) -{ - size_t nr; - size_t total = 0; - const char *cdata = (const char*)data; - - while (len) { - nr = len; - if (nr > SHA1_MAX_BLOCK_SIZE) - nr = SHA1_MAX_BLOCK_SIZE; - platform_SHA1_Update(c, cdata, nr); - total += nr; - cdata += nr; - len -= nr; - } - return total; -} diff --git a/compat/sha1-chunked.h b/compat/sha1-chunked.h deleted file mode 100644 index 7b2df28..0000000 --- a/compat/sha1-chunked.h +++ /dev/null @@ -1,2 +0,0 @@ - -int git_SHA1_Update_Chunked(platform_SHA_CTX *c, const void *data, size_t len); diff --git a/ppc/sha1.c b/ppc/sha1.c deleted file mode 100644 index ec6a192..0000000 --- a/ppc/sha1.c +++ /dev/null @@ -1,72 +0,0 @@ -/* - * SHA-1 implementation. - * - * Copyright (C) 2005 Paul Mackerras <paulus@xxxxxxxxx> - * - * This version assumes we are running on a big-endian machine. - * It calls an external sha1_core() to process blocks of 64 bytes. - */ -#include <stdio.h> -#include <string.h> -#include "sha1.h" - -extern void ppc_sha1_core(uint32_t *hash, const unsigned char *p, - unsigned int nblocks); - -int ppc_SHA1_Init(ppc_SHA_CTX *c) -{ - c->hash[0] = 0x67452301; - c->hash[1] = 0xEFCDAB89; - c->hash[2] = 0x98BADCFE; - c->hash[3] = 0x10325476; - c->hash[4] = 0xC3D2E1F0; - c->len = 0; - c->cnt = 0; - return 0; -} - -int ppc_SHA1_Update(ppc_SHA_CTX *c, const void *ptr, unsigned long n) -{ - unsigned long nb; - const unsigned char *p = ptr; - - c->len += (uint64_t) n << 3; - while (n != 0) { - if (c->cnt || n < 64) { - nb = 64 - c->cnt; - if (nb > n) - nb = n; - memcpy(&c->buf.b[c->cnt], p, nb); - if ((c->cnt += nb) == 64) { - ppc_sha1_core(c->hash, c->buf.b, 1); - c->cnt = 0; - } - } else { - nb = n >> 6; - ppc_sha1_core(c->hash, p, nb); - nb <<= 6; - } - n -= nb; - p += nb; - } - return 0; -} - -int ppc_SHA1_Final(unsigned char *hash, ppc_SHA_CTX *c) -{ - unsigned int cnt = c->cnt; - - c->buf.b[cnt++] = 0x80; - if (cnt > 56) { - if (cnt < 64) - memset(&c->buf.b[cnt], 0, 64 - cnt); - ppc_sha1_core(c->hash, c->buf.b, 1); - cnt = 0; - } - if (cnt < 56) - memset(&c->buf.b[cnt], 0, 56 - cnt); - c->buf.l[7] = c->len; - ppc_sha1_core(c->hash, c->buf.b, 1); - memcpy(hash, c->hash, 20); - return 0; -} diff --git a/ppc/sha1.h b/ppc/sha1.h deleted file mode 100644 index c405f73..0000000 --- a/ppc/sha1.h +++ /dev/null @@ -1,25 +0,0 @@ -/* - * SHA-1 implementation. - * - * Copyright (C) 2005 Paul Mackerras <paulus@xxxxxxxxx> - */ -#include <stdint.h> - -typedef struct { - uint32_t hash[5]; - uint32_t cnt; - uint64_t len; - union { - unsigned char b[64]; - uint64_t l[8]; - } buf; -} ppc_SHA_CTX; - -int ppc_SHA1_Init(ppc_SHA_CTX *c); -int ppc_SHA1_Update(ppc_SHA_CTX *c, const void *p, unsigned long n); -int ppc_SHA1_Final(unsigned char *hash, ppc_SHA_CTX *c); - -#define git_SHA_CTX ppc_SHA_CTX -#define git_SHA1_Init ppc_SHA1_Init -#define git_SHA1_Update ppc_SHA1_Update -#define git_SHA1_Final ppc_SHA1_Final diff --git a/ppc/sha1ppc.S b/ppc/sha1ppc.S deleted file mode 100644 index 1711eef..0000000 --- a/ppc/sha1ppc.S +++ /dev/null @@ -1,224 +0,0 @@ -/* - * SHA-1 implementation for PowerPC. - * - * Copyright (C) 2005 Paul Mackerras <paulus@xxxxxxxxx> - */ - -/* - * PowerPC calling convention: - * %r0 - volatile temp - * %r1 - stack pointer. - * %r2 - reserved - * %r3-%r12 - Incoming arguments & return values; volatile. - * %r13-%r31 - Callee-save registers - * %lr - Return address, volatile - * %ctr - volatile - * - * Register usage in this routine: - * %r0 - temp - * %r3 - argument (pointer to 5 words of SHA state) - * %r4 - argument (pointer to data to hash) - * %r5 - Constant K in SHA round (initially number of blocks to hash) - * %r6-%r10 - Working copies of SHA variables A..E (actually E..A order) - * %r11-%r26 - Data being hashed W[]. - * %r27-%r31 - Previous copies of A..E, for final add back. - * %ctr - loop count - */ - - -/* - * We roll the registers for A, B, C, D, E around on each - * iteration; E on iteration t is D on iteration t+1, and so on. - * We use registers 6 - 10 for this. (Registers 27 - 31 hold - * the previous values.) - */ -#define RA(t) (((t)+4)%5+6) -#define RB(t) (((t)+3)%5+6) -#define RC(t) (((t)+2)%5+6) -#define RD(t) (((t)+1)%5+6) -#define RE(t) (((t)+0)%5+6) - -/* We use registers 11 - 26 for the W values */ -#define W(t) ((t)%16+11) - -/* Register 5 is used for the constant k */ - -/* - * The basic SHA-1 round function is: - * E += ROTL(A,5) + F(B,C,D) + W[i] + K; B = ROTL(B,30) - * Then the variables are renamed: (A,B,C,D,E) = (E,A,B,C,D). - * - * Every 20 rounds, the function F() and the constant K changes: - * - 20 rounds of f0(b,c,d) = "bit wise b ? c : d" = (^b & d) + (b & c) - * - 20 rounds of f1(b,c,d) = b^c^d = (b^d)^c - * - 20 rounds of f2(b,c,d) = majority(b,c,d) = (b&d) + ((b^d)&c) - * - 20 more rounds of f1(b,c,d) - * - * These are all scheduled for near-optimal performance on a G4. - * The G4 is a 3-issue out-of-order machine with 3 ALUs, but it can only - * *consider* starting the oldest 3 instructions per cycle. So to get - * maximum performance out of it, you have to treat it as an in-order - * machine. Which means interleaving the computation round t with the - * computation of W[t+4]. - * - * The first 16 rounds use W values loaded directly from memory, while the - * remaining 64 use values computed from those first 16. We preload - * 4 values before starting, so there are three kinds of rounds: - * - The first 12 (all f0) also load the W values from memory. - * - The next 64 compute W(i+4) in parallel. 8*f0, 20*f1, 20*f2, 16*f1. - * - The last 4 (all f1) do not do anything with W. - * - * Therefore, we have 6 different round functions: - * STEPD0_LOAD(t,s) - Perform round t and load W(s). s < 16 - * STEPD0_UPDATE(t,s) - Perform round t and compute W(s). s >= 16. - * STEPD1_UPDATE(t,s) - * STEPD2_UPDATE(t,s) - * STEPD1(t) - Perform round t with no load or update. - * - * The G5 is more fully out-of-order, and can find the parallelism - * by itself. The big limit is that it has a 2-cycle ALU latency, so - * even though it's 2-way, the code has to be scheduled as if it's - * 4-way, which can be a limit. To help it, we try to schedule the - * read of RA(t) as late as possible so it doesn't stall waiting for - * the previous round's RE(t-1), and we try to rotate RB(t) as early - * as possible while reading RC(t) (= RB(t-1)) as late as possible. - */ - -/* the initial loads. */ -#define LOADW(s) \ - lwz W(s),(s)*4(%r4) - -/* - * Perform a step with F0, and load W(s). Uses W(s) as a temporary - * before loading it. - * This is actually 10 instructions, which is an awkward fit. - * It can execute grouped as listed, or delayed one instruction. - * (If delayed two instructions, there is a stall before the start of the - * second line.) Thus, two iterations take 7 cycles, 3.5 cycles per round. - */ -#define STEPD0_LOAD(t,s) \ -add RE(t),RE(t),W(t); andc %r0,RD(t),RB(t); and W(s),RC(t),RB(t); \ -add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; rotlwi RB(t),RB(t),30; \ -add RE(t),RE(t),W(s); add %r0,%r0,%r5; lwz W(s),(s)*4(%r4); \ -add RE(t),RE(t),%r0 - -/* - * This is likewise awkward, 13 instructions. However, it can also - * execute starting with 2 out of 3 possible moduli, so it does 2 rounds - * in 9 cycles, 4.5 cycles/round. - */ -#define STEPD0_UPDATE(t,s,loadk...) \ -add RE(t),RE(t),W(t); andc %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ -add RE(t),RE(t),%r0; and %r0,RC(t),RB(t); xor W(s),W(s),W((s)-8); \ -add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; xor W(s),W(s),W((s)-14); \ -add RE(t),RE(t),%r5; loadk; rotlwi RB(t),RB(t),30; rotlwi W(s),W(s),1; \ -add RE(t),RE(t),%r0 - -/* Nicely optimal. Conveniently, also the most common. */ -#define STEPD1_UPDATE(t,s,loadk...) \ -add RE(t),RE(t),W(t); xor %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ -add RE(t),RE(t),%r5; loadk; xor %r0,%r0,RC(t); xor W(s),W(s),W((s)-8); \ -add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; xor W(s),W(s),W((s)-14); \ -add RE(t),RE(t),%r0; rotlwi RB(t),RB(t),30; rotlwi W(s),W(s),1 - -/* - * The naked version, no UPDATE, for the last 4 rounds. 3 cycles per. - * We could use W(s) as a temp register, but we don't need it. - */ -#define STEPD1(t) \ - add RE(t),RE(t),W(t); xor %r0,RD(t),RB(t); \ -rotlwi RB(t),RB(t),30; add RE(t),RE(t),%r5; xor %r0,%r0,RC(t); \ -add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; /* spare slot */ \ -add RE(t),RE(t),%r0 - -/* - * 14 instructions, 5 cycles per. The majority function is a bit - * awkward to compute. This can execute with a 1-instruction delay, - * but it causes a 2-instruction delay, which triggers a stall. - */ -#define STEPD2_UPDATE(t,s,loadk...) \ -add RE(t),RE(t),W(t); and %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ -add RE(t),RE(t),%r0; xor %r0,RD(t),RB(t); xor W(s),W(s),W((s)-8); \ -add RE(t),RE(t),%r5; loadk; and %r0,%r0,RC(t); xor W(s),W(s),W((s)-14); \ -add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; rotlwi W(s),W(s),1; \ -add RE(t),RE(t),%r0; rotlwi RB(t),RB(t),30 - -#define STEP0_LOAD4(t,s) \ - STEPD0_LOAD(t,s); \ - STEPD0_LOAD((t+1),(s)+1); \ - STEPD0_LOAD((t)+2,(s)+2); \ - STEPD0_LOAD((t)+3,(s)+3) - -#define STEPUP4(fn, t, s, loadk...) \ - STEP##fn##_UPDATE(t,s,); \ - STEP##fn##_UPDATE((t)+1,(s)+1,); \ - STEP##fn##_UPDATE((t)+2,(s)+2,); \ - STEP##fn##_UPDATE((t)+3,(s)+3,loadk) - -#define STEPUP20(fn, t, s, loadk...) \ - STEPUP4(fn, t, s,); \ - STEPUP4(fn, (t)+4, (s)+4,); \ - STEPUP4(fn, (t)+8, (s)+8,); \ - STEPUP4(fn, (t)+12, (s)+12,); \ - STEPUP4(fn, (t)+16, (s)+16, loadk) - - .globl ppc_sha1_core -ppc_sha1_core: - stwu %r1,-80(%r1) - stmw %r13,4(%r1) - - /* Load up A - E */ - lmw %r27,0(%r3) - - mtctr %r5 - -1: - LOADW(0) - lis %r5,0x5a82 - mr RE(0),%r31 - LOADW(1) - mr RD(0),%r30 - mr RC(0),%r29 - LOADW(2) - ori %r5,%r5,0x7999 /* K0-19 */ - mr RB(0),%r28 - LOADW(3) - mr RA(0),%r27 - - STEP0_LOAD4(0, 4) - STEP0_LOAD4(4, 8) - STEP0_LOAD4(8, 12) - STEPUP4(D0, 12, 16,) - STEPUP4(D0, 16, 20, lis %r5,0x6ed9) - - ori %r5,%r5,0xeba1 /* K20-39 */ - STEPUP20(D1, 20, 24, lis %r5,0x8f1b) - - ori %r5,%r5,0xbcdc /* K40-59 */ - STEPUP20(D2, 40, 44, lis %r5,0xca62) - - ori %r5,%r5,0xc1d6 /* K60-79 */ - STEPUP4(D1, 60, 64,) - STEPUP4(D1, 64, 68,) - STEPUP4(D1, 68, 72,) - STEPUP4(D1, 72, 76,) - addi %r4,%r4,64 - STEPD1(76) - STEPD1(77) - STEPD1(78) - STEPD1(79) - - /* Add results to original values */ - add %r31,%r31,RE(0) - add %r30,%r30,RD(0) - add %r29,%r29,RC(0) - add %r28,%r28,RB(0) - add %r27,%r27,RA(0) - - bdnz 1b - - /* Save final hash, restore registers, and return */ - stmw %r27,0(%r3) - lmw %r13,4(%r1) - addi %r1,%r1,80 - blr diff --git a/sha1/blk-sha1.c b/sha1/blk-sha1.c new file mode 100644 index 0000000..abacf05 --- /dev/null +++ b/sha1/blk-sha1.c @@ -0,0 +1,251 @@ +/* + * SHA1 routine optimized to do word accesses rather than byte accesses, + * and to avoid unnecessary copies into the context array. + * + * This was initially based on the Mozilla SHA1 implementation, although + * none of the original Mozilla code remains. + */ + +/* this is only to get definitions for memcpy(), ntohl() and htonl() */ +#include "../git-compat-util.h" + +#include "blk-sha1.h" + +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) + +/* + * Force usage of rol or ror by selecting the one with the smaller constant. + * It _can_ generate slightly smaller code (a constant of 1 is special), but + * perhaps more importantly it's possibly faster on any uarch that does a + * rotate with a loop. + */ + +#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; }) +#define SHA_ROL(x,n) SHA_ASM("rol", x, n) +#define SHA_ROR(x,n) SHA_ASM("ror", x, n) + +#else + +#define SHA_ROT(X,l,r) (((X) << (l)) | ((X) >> (r))) +#define SHA_ROL(X,n) SHA_ROT(X,n,32-(n)) +#define SHA_ROR(X,n) SHA_ROT(X,32-(n),n) + +#endif + +/* + * If you have 32 registers or more, the compiler can (and should) + * try to change the array[] accesses into registers. However, on + * machines with less than ~25 registers, that won't really work, + * and at least gcc will make an unholy mess of it. + * + * So to avoid that mess which just slows things down, we force + * the stores to memory to actually happen (we might be better off + * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as + * suggested by Artur Skawina - that will also make gcc unable to + * try to do the silly "optimize away loads" part because it won't + * see what the value will be). + * + * Ben Herrenschmidt reports that on PPC, the C version comes close + * to the optimized asm with this (ie on PPC you don't want that + * 'volatile', since there are lots of registers). + * + * On ARM we get the best code generation by forcing a full memory barrier + * between each SHA_ROUND, otherwise gcc happily get wild with spilling and + * the stack frame size simply explode and performance goes down the drain. + */ + +#if defined(__i386__) || defined(__x86_64__) + #define setW(x, val) (*(volatile unsigned int *)&W(x) = (val)) +#elif defined(__GNUC__) && defined(__arm__) + #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) +#else + #define setW(x, val) (W(x) = (val)) +#endif + +/* This "rolls" over the 512-bit array */ +#define W(x) (array[(x)&15]) + +/* + * Where do we get the source from? The first 16 iterations get it from + * the input data, the next mix it from the 512-bit array. + */ +#define SHA_SRC(t) get_be32((unsigned char *) block + (t)*4) +#define SHA_MIX(t) SHA_ROL(W((t)+13) ^ W((t)+8) ^ W((t)+2) ^ W(t), 1); + +#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ + unsigned int TEMP = input(t); setW(t, TEMP); \ + E += TEMP + SHA_ROL(A,5) + (fn) + (constant); \ + B = SHA_ROR(B, 2); } while (0) + +#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) +#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) +#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) +#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) +#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) + +static void blk_SHA1_Block(blk_SHA_CTX *ctx, const void *block) +{ + unsigned int A,B,C,D,E; + unsigned int array[16]; + + A = ctx->H[0]; + B = ctx->H[1]; + C = ctx->H[2]; + D = ctx->H[3]; + E = ctx->H[4]; + + /* Round 1 - iterations 0-16 take their input from 'block' */ + T_0_15( 0, A, B, C, D, E); + T_0_15( 1, E, A, B, C, D); + T_0_15( 2, D, E, A, B, C); + T_0_15( 3, C, D, E, A, B); + T_0_15( 4, B, C, D, E, A); + T_0_15( 5, A, B, C, D, E); + T_0_15( 6, E, A, B, C, D); + T_0_15( 7, D, E, A, B, C); + T_0_15( 8, C, D, E, A, B); + T_0_15( 9, B, C, D, E, A); + T_0_15(10, A, B, C, D, E); + T_0_15(11, E, A, B, C, D); + T_0_15(12, D, E, A, B, C); + T_0_15(13, C, D, E, A, B); + T_0_15(14, B, C, D, E, A); + T_0_15(15, A, B, C, D, E); + + /* Round 1 - tail. Input from 512-bit mixing array */ + T_16_19(16, E, A, B, C, D); + T_16_19(17, D, E, A, B, C); + T_16_19(18, C, D, E, A, B); + T_16_19(19, B, C, D, E, A); + + /* Round 2 */ + T_20_39(20, A, B, C, D, E); + T_20_39(21, E, A, B, C, D); + T_20_39(22, D, E, A, B, C); + T_20_39(23, C, D, E, A, B); + T_20_39(24, B, C, D, E, A); + T_20_39(25, A, B, C, D, E); + T_20_39(26, E, A, B, C, D); + T_20_39(27, D, E, A, B, C); + T_20_39(28, C, D, E, A, B); + T_20_39(29, B, C, D, E, A); + T_20_39(30, A, B, C, D, E); + T_20_39(31, E, A, B, C, D); + T_20_39(32, D, E, A, B, C); + T_20_39(33, C, D, E, A, B); + T_20_39(34, B, C, D, E, A); + T_20_39(35, A, B, C, D, E); + T_20_39(36, E, A, B, C, D); + T_20_39(37, D, E, A, B, C); + T_20_39(38, C, D, E, A, B); + T_20_39(39, B, C, D, E, A); + + /* Round 3 */ + T_40_59(40, A, B, C, D, E); + T_40_59(41, E, A, B, C, D); + T_40_59(42, D, E, A, B, C); + T_40_59(43, C, D, E, A, B); + T_40_59(44, B, C, D, E, A); + T_40_59(45, A, B, C, D, E); + T_40_59(46, E, A, B, C, D); + T_40_59(47, D, E, A, B, C); + T_40_59(48, C, D, E, A, B); + T_40_59(49, B, C, D, E, A); + T_40_59(50, A, B, C, D, E); + T_40_59(51, E, A, B, C, D); + T_40_59(52, D, E, A, B, C); + T_40_59(53, C, D, E, A, B); + T_40_59(54, B, C, D, E, A); + T_40_59(55, A, B, C, D, E); + T_40_59(56, E, A, B, C, D); + T_40_59(57, D, E, A, B, C); + T_40_59(58, C, D, E, A, B); + T_40_59(59, B, C, D, E, A); + + /* Round 4 */ + T_60_79(60, A, B, C, D, E); + T_60_79(61, E, A, B, C, D); + T_60_79(62, D, E, A, B, C); + T_60_79(63, C, D, E, A, B); + T_60_79(64, B, C, D, E, A); + T_60_79(65, A, B, C, D, E); + T_60_79(66, E, A, B, C, D); + T_60_79(67, D, E, A, B, C); + T_60_79(68, C, D, E, A, B); + T_60_79(69, B, C, D, E, A); + T_60_79(70, A, B, C, D, E); + T_60_79(71, E, A, B, C, D); + T_60_79(72, D, E, A, B, C); + T_60_79(73, C, D, E, A, B); + T_60_79(74, B, C, D, E, A); + T_60_79(75, A, B, C, D, E); + T_60_79(76, E, A, B, C, D); + T_60_79(77, D, E, A, B, C); + T_60_79(78, C, D, E, A, B); + T_60_79(79, B, C, D, E, A); + + ctx->H[0] += A; + ctx->H[1] += B; + ctx->H[2] += C; + ctx->H[3] += D; + ctx->H[4] += E; +} + +void blk_SHA1_Init(blk_SHA_CTX *ctx) +{ + ctx->size = 0; + + /* Initialize H with the magic constants (see FIPS180 for constants) */ + ctx->H[0] = 0x67452301; + ctx->H[1] = 0xefcdab89; + ctx->H[2] = 0x98badcfe; + ctx->H[3] = 0x10325476; + ctx->H[4] = 0xc3d2e1f0; +} + +void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, unsigned long len) +{ + unsigned int lenW = ctx->size & 63; + + ctx->size += len; + + /* Read the data into W and process blocks as they get full */ + if (lenW) { + unsigned int left = 64 - lenW; + if (len < left) + left = len; + memcpy(lenW + (char *)ctx->W, data, left); + lenW = (lenW + left) & 63; + len -= left; + data = ((const char *)data + left); + if (lenW) + return; + blk_SHA1_Block(ctx, ctx->W); + } + while (len >= 64) { + blk_SHA1_Block(ctx, data); + data = ((const char *)data + 64); + len -= 64; + } + if (len) + memcpy(ctx->W, data, len); +} + +void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx) +{ + static const unsigned char pad[64] = { 0x80 }; + unsigned int padlen[2]; + int i; + + /* Pad with a binary 1 (ie 0x80), then zeroes, then length */ + padlen[0] = htonl((uint32_t)(ctx->size >> 29)); + padlen[1] = htonl((uint32_t)(ctx->size << 3)); + + i = ctx->size & 63; + blk_SHA1_Update(ctx, pad, 1 + (63 & (55 - i))); + blk_SHA1_Update(ctx, padlen, 8); + + /* Output hash */ + for (i = 0; i < 5; i++) + put_be32(hashout + i * 4, ctx->H[i]); +} diff --git a/sha1/blk-sha1.h b/sha1/blk-sha1.h new file mode 100644 index 0000000..b864df6 --- /dev/null +++ b/sha1/blk-sha1.h @@ -0,0 +1,22 @@ +/* + * SHA1 routine optimized to do word accesses rather than byte accesses, + * and to avoid unnecessary copies into the context array. + * + * This was initially based on the Mozilla SHA1 implementation, although + * none of the original Mozilla code remains. + */ + +typedef struct { + unsigned long long size; + unsigned int H[5]; + unsigned int W[16]; +} blk_SHA_CTX; + +void blk_SHA1_Init(blk_SHA_CTX *ctx); +void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *dataIn, unsigned long len); +void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx); + +#define git_SHA_CTX blk_SHA_CTX +#define git_SHA1_Init blk_SHA1_Init +#define git_SHA1_Update blk_SHA1_Update +#define git_SHA1_Final blk_SHA1_Final diff --git a/sha1/chk-sha1.c b/sha1/chk-sha1.c new file mode 100644 index 0000000..6adfcfd --- /dev/null +++ b/sha1/chk-sha1.c @@ -0,0 +1,19 @@ +#include "cache.h" + +int git_SHA1_Update_Chunked(platform_SHA_CTX *c, const void *data, size_t len) +{ + size_t nr; + size_t total = 0; + const char *cdata = (const char*)data; + + while (len) { + nr = len; + if (nr > SHA1_MAX_BLOCK_SIZE) + nr = SHA1_MAX_BLOCK_SIZE; + platform_SHA1_Update(c, cdata, nr); + total += nr; + cdata += nr; + len -= nr; + } + return total; +} diff --git a/sha1/chk-sha1.h b/sha1/chk-sha1.h new file mode 100644 index 0000000..7b2df28 --- /dev/null +++ b/sha1/chk-sha1.h @@ -0,0 +1,2 @@ + +int git_SHA1_Update_Chunked(platform_SHA_CTX *c, const void *data, size_t len); diff --git a/sha1/ppc-sha1.c b/sha1/ppc-sha1.c new file mode 100644 index 0000000..2ca9a5a --- /dev/null +++ b/sha1/ppc-sha1.c @@ -0,0 +1,72 @@ +/* + * SHA-1 implementation. + * + * Copyright (C) 2005 Paul Mackerras <paulus@xxxxxxxxx> + * + * This version assumes we are running on a big-endian machine. + * It calls an external sha1_core() to process blocks of 64 bytes. + */ +#include <stdio.h> +#include <string.h> +#include "ppc-sha1.h" + +extern void ppc_sha1_core(uint32_t *hash, const unsigned char *p, + unsigned int nblocks); + +int ppc_SHA1_Init(ppc_SHA_CTX *c) +{ + c->hash[0] = 0x67452301; + c->hash[1] = 0xEFCDAB89; + c->hash[2] = 0x98BADCFE; + c->hash[3] = 0x10325476; + c->hash[4] = 0xC3D2E1F0; + c->len = 0; + c->cnt = 0; + return 0; +} + +int ppc_SHA1_Update(ppc_SHA_CTX *c, const void *ptr, unsigned long n) +{ + unsigned long nb; + const unsigned char *p = ptr; + + c->len += (uint64_t) n << 3; + while (n != 0) { + if (c->cnt || n < 64) { + nb = 64 - c->cnt; + if (nb > n) + nb = n; + memcpy(&c->buf.b[c->cnt], p, nb); + if ((c->cnt += nb) == 64) { + ppc_sha1_core(c->hash, c->buf.b, 1); + c->cnt = 0; + } + } else { + nb = n >> 6; + ppc_sha1_core(c->hash, p, nb); + nb <<= 6; + } + n -= nb; + p += nb; + } + return 0; +} + +int ppc_SHA1_Final(unsigned char *hash, ppc_SHA_CTX *c) +{ + unsigned int cnt = c->cnt; + + c->buf.b[cnt++] = 0x80; + if (cnt > 56) { + if (cnt < 64) + memset(&c->buf.b[cnt], 0, 64 - cnt); + ppc_sha1_core(c->hash, c->buf.b, 1); + cnt = 0; + } + if (cnt < 56) + memset(&c->buf.b[cnt], 0, 56 - cnt); + c->buf.l[7] = c->len; + ppc_sha1_core(c->hash, c->buf.b, 1); + memcpy(hash, c->hash, 20); + return 0; +} diff --git a/sha1/ppc-sha1.h b/sha1/ppc-sha1.h new file mode 100644 index 0000000..c405f73 --- /dev/null +++ b/sha1/ppc-sha1.h @@ -0,0 +1,25 @@ +/* + * SHA-1 implementation. + * + * Copyright (C) 2005 Paul Mackerras <paulus@xxxxxxxxx> + */ +#include <stdint.h> + +typedef struct { + uint32_t hash[5]; + uint32_t cnt; + uint64_t len; + union { + unsigned char b[64]; + uint64_t l[8]; + } buf; +} ppc_SHA_CTX; + +int ppc_SHA1_Init(ppc_SHA_CTX *c); +int ppc_SHA1_Update(ppc_SHA_CTX *c, const void *p, unsigned long n); +int ppc_SHA1_Final(unsigned char *hash, ppc_SHA_CTX *c); + +#define git_SHA_CTX ppc_SHA_CTX +#define git_SHA1_Init ppc_SHA1_Init +#define git_SHA1_Update ppc_SHA1_Update +#define git_SHA1_Final ppc_SHA1_Final diff --git a/sha1/ppc-sha1asm.S b/sha1/ppc-sha1asm.S new file mode 100644 index 0000000..1711eef --- /dev/null +++ b/sha1/ppc-sha1asm.S @@ -0,0 +1,224 @@ +/* + * SHA-1 implementation for PowerPC. + * + * Copyright (C) 2005 Paul Mackerras <paulus@xxxxxxxxx> + */ + +/* + * PowerPC calling convention: + * %r0 - volatile temp + * %r1 - stack pointer. + * %r2 - reserved + * %r3-%r12 - Incoming arguments & return values; volatile. + * %r13-%r31 - Callee-save registers + * %lr - Return address, volatile + * %ctr - volatile + * + * Register usage in this routine: + * %r0 - temp + * %r3 - argument (pointer to 5 words of SHA state) + * %r4 - argument (pointer to data to hash) + * %r5 - Constant K in SHA round (initially number of blocks to hash) + * %r6-%r10 - Working copies of SHA variables A..E (actually E..A order) + * %r11-%r26 - Data being hashed W[]. + * %r27-%r31 - Previous copies of A..E, for final add back. + * %ctr - loop count + */ + + +/* + * We roll the registers for A, B, C, D, E around on each + * iteration; E on iteration t is D on iteration t+1, and so on. + * We use registers 6 - 10 for this. (Registers 27 - 31 hold + * the previous values.) + */ +#define RA(t) (((t)+4)%5+6) +#define RB(t) (((t)+3)%5+6) +#define RC(t) (((t)+2)%5+6) +#define RD(t) (((t)+1)%5+6) +#define RE(t) (((t)+0)%5+6) + +/* We use registers 11 - 26 for the W values */ +#define W(t) ((t)%16+11) + +/* Register 5 is used for the constant k */ + +/* + * The basic SHA-1 round function is: + * E += ROTL(A,5) + F(B,C,D) + W[i] + K; B = ROTL(B,30) + * Then the variables are renamed: (A,B,C,D,E) = (E,A,B,C,D). + * + * Every 20 rounds, the function F() and the constant K changes: + * - 20 rounds of f0(b,c,d) = "bit wise b ? c : d" = (^b & d) + (b & c) + * - 20 rounds of f1(b,c,d) = b^c^d = (b^d)^c + * - 20 rounds of f2(b,c,d) = majority(b,c,d) = (b&d) + ((b^d)&c) + * - 20 more rounds of f1(b,c,d) + * + * These are all scheduled for near-optimal performance on a G4. + * The G4 is a 3-issue out-of-order machine with 3 ALUs, but it can only + * *consider* starting the oldest 3 instructions per cycle. So to get + * maximum performance out of it, you have to treat it as an in-order + * machine. Which means interleaving the computation round t with the + * computation of W[t+4]. + * + * The first 16 rounds use W values loaded directly from memory, while the + * remaining 64 use values computed from those first 16. We preload + * 4 values before starting, so there are three kinds of rounds: + * - The first 12 (all f0) also load the W values from memory. + * - The next 64 compute W(i+4) in parallel. 8*f0, 20*f1, 20*f2, 16*f1. + * - The last 4 (all f1) do not do anything with W. + * + * Therefore, we have 6 different round functions: + * STEPD0_LOAD(t,s) - Perform round t and load W(s). s < 16 + * STEPD0_UPDATE(t,s) - Perform round t and compute W(s). s >= 16. + * STEPD1_UPDATE(t,s) + * STEPD2_UPDATE(t,s) + * STEPD1(t) - Perform round t with no load or update. + * + * The G5 is more fully out-of-order, and can find the parallelism + * by itself. The big limit is that it has a 2-cycle ALU latency, so + * even though it's 2-way, the code has to be scheduled as if it's + * 4-way, which can be a limit. To help it, we try to schedule the + * read of RA(t) as late as possible so it doesn't stall waiting for + * the previous round's RE(t-1), and we try to rotate RB(t) as early + * as possible while reading RC(t) (= RB(t-1)) as late as possible. + */ + +/* the initial loads. */ +#define LOADW(s) \ + lwz W(s),(s)*4(%r4) + +/* + * Perform a step with F0, and load W(s). Uses W(s) as a temporary + * before loading it. + * This is actually 10 instructions, which is an awkward fit. + * It can execute grouped as listed, or delayed one instruction. + * (If delayed two instructions, there is a stall before the start of the + * second line.) Thus, two iterations take 7 cycles, 3.5 cycles per round. + */ +#define STEPD0_LOAD(t,s) \ +add RE(t),RE(t),W(t); andc %r0,RD(t),RB(t); and W(s),RC(t),RB(t); \ +add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; rotlwi RB(t),RB(t),30; \ +add RE(t),RE(t),W(s); add %r0,%r0,%r5; lwz W(s),(s)*4(%r4); \ +add RE(t),RE(t),%r0 + +/* + * This is likewise awkward, 13 instructions. However, it can also + * execute starting with 2 out of 3 possible moduli, so it does 2 rounds + * in 9 cycles, 4.5 cycles/round. + */ +#define STEPD0_UPDATE(t,s,loadk...) \ +add RE(t),RE(t),W(t); andc %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ +add RE(t),RE(t),%r0; and %r0,RC(t),RB(t); xor W(s),W(s),W((s)-8); \ +add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; xor W(s),W(s),W((s)-14); \ +add RE(t),RE(t),%r5; loadk; rotlwi RB(t),RB(t),30; rotlwi W(s),W(s),1; \ +add RE(t),RE(t),%r0 + +/* Nicely optimal. Conveniently, also the most common. */ +#define STEPD1_UPDATE(t,s,loadk...) \ +add RE(t),RE(t),W(t); xor %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ +add RE(t),RE(t),%r5; loadk; xor %r0,%r0,RC(t); xor W(s),W(s),W((s)-8); \ +add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; xor W(s),W(s),W((s)-14); \ +add RE(t),RE(t),%r0; rotlwi RB(t),RB(t),30; rotlwi W(s),W(s),1 + +/* + * The naked version, no UPDATE, for the last 4 rounds. 3 cycles per. + * We could use W(s) as a temp register, but we don't need it. + */ +#define STEPD1(t) \ + add RE(t),RE(t),W(t); xor %r0,RD(t),RB(t); \ +rotlwi RB(t),RB(t),30; add RE(t),RE(t),%r5; xor %r0,%r0,RC(t); \ +add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; /* spare slot */ \ +add RE(t),RE(t),%r0 + +/* + * 14 instructions, 5 cycles per. The majority function is a bit + * awkward to compute. This can execute with a 1-instruction delay, + * but it causes a 2-instruction delay, which triggers a stall. + */ +#define STEPD2_UPDATE(t,s,loadk...) \ +add RE(t),RE(t),W(t); and %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \ +add RE(t),RE(t),%r0; xor %r0,RD(t),RB(t); xor W(s),W(s),W((s)-8); \ +add RE(t),RE(t),%r5; loadk; and %r0,%r0,RC(t); xor W(s),W(s),W((s)-14); \ +add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; rotlwi W(s),W(s),1; \ +add RE(t),RE(t),%r0; rotlwi RB(t),RB(t),30 + +#define STEP0_LOAD4(t,s) \ + STEPD0_LOAD(t,s); \ + STEPD0_LOAD((t+1),(s)+1); \ + STEPD0_LOAD((t)+2,(s)+2); \ + STEPD0_LOAD((t)+3,(s)+3) + +#define STEPUP4(fn, t, s, loadk...) \ + STEP##fn##_UPDATE(t,s,); \ + STEP##fn##_UPDATE((t)+1,(s)+1,); \ + STEP##fn##_UPDATE((t)+2,(s)+2,); \ + STEP##fn##_UPDATE((t)+3,(s)+3,loadk) + +#define STEPUP20(fn, t, s, loadk...) \ + STEPUP4(fn, t, s,); \ + STEPUP4(fn, (t)+4, (s)+4,); \ + STEPUP4(fn, (t)+8, (s)+8,); \ + STEPUP4(fn, (t)+12, (s)+12,); \ + STEPUP4(fn, (t)+16, (s)+16, loadk) + + .globl ppc_sha1_core +ppc_sha1_core: + stwu %r1,-80(%r1) + stmw %r13,4(%r1) + + /* Load up A - E */ + lmw %r27,0(%r3) + + mtctr %r5 + +1: + LOADW(0) + lis %r5,0x5a82 + mr RE(0),%r31 + LOADW(1) + mr RD(0),%r30 + mr RC(0),%r29 + LOADW(2) + ori %r5,%r5,0x7999 /* K0-19 */ + mr RB(0),%r28 + LOADW(3) + mr RA(0),%r27 + + STEP0_LOAD4(0, 4) + STEP0_LOAD4(4, 8) + STEP0_LOAD4(8, 12) + STEPUP4(D0, 12, 16,) + STEPUP4(D0, 16, 20, lis %r5,0x6ed9) + + ori %r5,%r5,0xeba1 /* K20-39 */ + STEPUP20(D1, 20, 24, lis %r5,0x8f1b) + + ori %r5,%r5,0xbcdc /* K40-59 */ + STEPUP20(D2, 40, 44, lis %r5,0xca62) + + ori %r5,%r5,0xc1d6 /* K60-79 */ + STEPUP4(D1, 60, 64,) + STEPUP4(D1, 64, 68,) + STEPUP4(D1, 68, 72,) + STEPUP4(D1, 72, 76,) + addi %r4,%r4,64 + STEPD1(76) + STEPD1(77) + STEPD1(78) + STEPD1(79) + + /* Add results to original values */ + add %r31,%r31,RE(0) + add %r30,%r30,RD(0) + add %r29,%r29,RC(0) + add %r28,%r28,RB(0) + add %r27,%r27,RA(0) + + bdnz 1b + + /* Save final hash, restore registers, and return */ + stmw %r27,0(%r3) + lmw %r13,4(%r1) + addi %r1,%r1,80 + blr -- 2.4.9 (Apple Git-60) -- To unsubscribe from this list: send the line "unsubscribe git" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html