Gfortran issue

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



from Jerome Huck

Good morning.

I did use Gfortran GCC 9.0 on Windows 7 64 bits on an old Fortran77. I
attached both the source code and the GCC outputs.
I have warning with COMMON. The COMMONS are the same along the code...
When compiled I have warnings with different sizes !!!
I do not know if it is a bug. I will say it is an issue.
There were some bugs/issues in the past see :

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=45044

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=45045

If you can give me some clues/hints on the subject.

Best regards.

Jerome Huck.

C	PROGRAM No. 12: RECTANGULAR LIFTING SURFACE (VLM)
C       -------------------------------------------------
C  3D-VLM CODE FOR SIMPLE WING PLANFORMS WITH GROUND EFFECT (BY JOE KATZ, 1974).
      DIMENSION QF(6,14,3),QC(4,13,3),DS(4,13,4)
      DIMENSION GAMA(4,13),DL(4,13),DD(4,13),DP(4,13)
      DIMENSION A(52,52),GAMA1(52),DW(52),IP(52)
      DIMENSION A1(5,13),DLY(13),GAMA1J(5),X(4)
      COMMON/NO1/ DS,X,B,C,S,AR,SN1,CS1
      COMMON/NO2/ IB,JB,CH,SIGN
      COMMON/NO3/ A1
      COMMON/NO4/ QF,QC,DXW
C
C     ==========
C     INPUT DATA
C     ==========
C
      IB=4
      JB=13
      X(1)=0.
      X(2)=0.
      X(3)=4.
      X(4)=4.
      B=13.
      VT=1.0
      ALPHA1=5.0

1000  continue
      print*,' '
	WRITE(6,101)
	print*,' '
	print*,'  Input the x coordinates of the wing''s 4 corner points.'
	print*,' '
	print*,'X(1) is the root L.E., X(2) is the tip L.E., '
	print*,'X(3) is the tip T.E., and X(4) is the root T.E.'
	print*,'                    '
	print*,'     2------3       '
	print*,'     |      |       '
	print*,'     |      |       '
	print*,'     |      |       '
	print*,'     |      |       '
	print*,'     1------4       '
      print*,'                    '
	read*,x(1),x(2),x(3),x(4)
      print*, '  Input the Wing Semi-Span, B (0 to stop)'
	read*,b

	print*,' Input alpha in degrees.'
	read*,alpha1

	if(b.eq.0.)stop
      CH=1000.

C     X(1) TO X(4) ARE X-COORDINATES OF THE WING'S FOUR CORNERPOINTS.
C     B - WING SPAN, VT - FREE STREAM SPEED, B - WING SPAN, 
C     CH - HEIGHT ABOVE GROUND
C
C     CONSTANTS
      DXW=100.0*B
      DO 1 I=1,IB
      DO 1 J=1,JB
C     GAMA(I,J)=1.0  IS REQUIRED FOR INFLUENCE MATRIX CALCULATIONS.
 1    GAMA(I,J)=1.0
      RO=1.
      PAY=3.141592654     
      ALPHA=ALPHA1*PAY/180.
      SN1=SIN(ALPHA)
      CS1=COS(ALPHA)
      IB1=IB+1
      IB2=IB+2
      JB1=JB+1
C
C     =============
C     WING GEOMETRY
C     =============
C
      CALL GRID
      WRITE(6,101)
      WRITE(6,102) ALPHA1,B,C,S,AR,VT,IB,JB,CH
C
C     ========================
C     AERODYNAMIC CALCULATIONS
C     ========================
C                             
C     INFLUENCE COEFFICIENTS CALCULATION   
C
      K=0                                  
      DO 14 I=1,IB                         
      DO 14 J=1,JB                         
      SIGN=0.0                             
      K=K+1                                
      CALL WING(QC(I,J,1),QC(I,J,2),QC(I,J,3),GAMA,U,V,W,1.0,I,J)
      L=0                                  
      DO 10 I1=1,IB                        
      DO 10 J1=1,JB                        
      L=L+1                                
C     A(K,L) - IS THE NORMAL VELOCITY COMPONENT DUE TO A UNIT VORTEX  
C              LATTICE.                                               
 10   A(K,L)=A1(I1,J1)                                                
C     ADD INFLUENCE OF WING'S OTHER HALF 
      CALL WING(QC(I,J,1),-QC(I,J,2),QC(I,J,3),GAMA,U,V,W,1.0,I,J)
      L=0                                                             
      DO 11 I1=1,IB                                                   
      DO 11 J1=1,JB                                                   
      L=L+1                                                           
 11   A(K,L)=A(K,L)+A1(I1,J1)                                         
      IF(CH.GT.100.0) GOTO 12                                         
C     ADD INFLUENCE OF MIRROR IMAGE (DUE TO GROUND)
      SIGN=10.0                                                       
      CALL WING(QC(I,J,1),QC(I,J,2),-QC(I,J,3),GAMA,U,V,W,1.0,I,J)
      L=0                                                             
      DO 8 I1=1,IB                                                    
      DO 8 J1=1,JB                                                    
      L=L+1                                                           
 8    A(K,L)=A(K,L)+A1(I1,J1)                                         

C     ADD MIRROR IMAGE INFLUENCE OF WING'S OTHER HALF.                
      CALL WING(QC(I,J,1),-QC(I,J,2),-QC(I,J,3),GAMA,U,V,W,1.0,I,J)
      L=0                                                             
      DO 9 I1=1,IB                                                    
      DO 9 J1=1,JB                                                    
      L=L+1                                                           
 9    A(K,L)=A(K,L)+A1(I1,J1)                                         
      SIGN=0.0                                                        
 12   CONTINUE                                                        
C
 13   CONTINUE                                                        
C                                                                     
C     CALCULATE WING GEOMETRICAL DOWNWASH                             
C
      UINF=VT
      VINF=0.0
      WINF=0.0
C     THIS IS THE GENERAL FORMULATION FOR RIGHT HAND SIDE.
      DW(K)=-(UINF*DS(I,J,1)+VINF*DS(I,J,2)+WINF*DS(I,J,3))
 14   CONTINUE                                                        
C                                                                     
C     SOLUTION OF THE PROBLEM:  DW(I)=A(I,J)*GAMA(I)

C                                                                     
      K1=IB*JB                                                        
      DO 15 K=1,K1                                                    
 15   GAMA1(K)=DW(K)
      CALL DECOMP(K1,52,A,IP)                                         
 16   CONTINUE                                                        
      CALL SOLVER(K1,52,A,GAMA1,IP)                                   
C     HERE           *     THE SAME ARRAY SIZE IS REQUIRED,          
C                          AS SPECIFIED IN THE BEGINNING OF THE CODE 
C                                                                    
C     WING VORTEX LATTICE LISTING                                    
C                                                                    
      K=0                                                            
      DO 17 I=1,IB                                                    
      DO 17 J=1,JB                                                    
      K=K+1                                                           
 17   GAMA(I,J)=GAMA1(K)                                              
C                                                                     
C     ==================                                              
C     FORCES CALCULATION                                              
C     ==================                                              
C                                                                     
      FL=0.                                                           
      FD=0.                                                           
      FM=0.                                                           
      QUE=0.5*RO*VT*VT                                                
      DO 20 J=1,JB                                                    
      DLY(J)=0.                                                       
      DO 20 I=1,IB                                                    
      IF(I.EQ.1) GAMAIJ=GAMA(I,J)                                     
      IF(I.GT.1) GAMAIJ=GAMA(I,J)-GAMA(I-1,J)                         
      DYM=QF(I,J+1,2)-QF(I,J,2)
      DL(I,J)=RO*VT*GAMAIJ*DYM
C     INDUCED DRAG CALCULATION 
      CALL WING(QC(I,J,1),QC(I,J,2),QC(I,J,3),GAMA,U1,V1,W1,0.0,I,J)
      CALL WING(QC(I,J,1),-QC(I,J,2),QC(I,J,3),GAMA,U2,V2,W2,0.0,I,J)
      IF(CH.GT.100.0) GOTO 194
      CALL WING(QC(I,J,1),QC(I,J,2),-QC(I,J,3),GAMA,U3,V3,W3,0.0,I,J)
      CALL WING(QC(I,J,1),-QC(I,J,2),-QC(I,J,3),GAMA,U4,V4,W4,0.0,I,J)
      GOTO 195
 194  W3=0.
      W4=0.
 195  WIND=W1+W2-W3-W4
C     ADD INFLUENCE OF MIRROR IMAGE (GROUND).
      ALFI=-WIND/VT
      DD(I,J)=RO*DYM*VT*GAMAIJ*ALFI
C
      DP(I,J)=DL(I,J)/DS(I,J,4)/QUE
      DLY(J)=DLY(J)+DL(I,J)                                           
      FL=FL+DL(I,J)                                                   
      FD=FD+DD(I,J)                                                   
      FM=FM+DL(I,J)*(QF(I,J,1)-X(1))
 20   CONTINUE                                                        
      CL=FL/(QUE*S)                                                   
      CD=FD/(QUE*S)                                                   
      CM=FM/(QUE*S*C)                                                 
C                                                                     
C     OUTPUT
C                                                                     
      WRITE(6,104) CL,FL,CM,CD
      WRITE(6,110)                                                    


      DO 21 J=1,JB                                                    
      DO 211 I=2,IB                                                   
 211  GAMA1J(I)=GAMA(I,J)-GAMA(I-1,J)                                 
      DLYJ=DLY(J)/B*JB
 21   WRITE(6,103) J,DLYJ,DP(1,J),DP(2,J),DP(3,J),DP(4,J),GAMA(1,J),  
     1GAMA1J(2),GAMA1J(3),GAMA1J(4)                                   
C                                                                     
C     END OF PROGRAM                                                  
 100  CONTINUE                                                        
C                                                                     
C     FORMATS                                                         
C                                                                     
 101  FORMAT(1H ,/,20X,'WING LIFT DISTRIBUTION CALCULATION  (WITH GROUND
     1 EFFECT)',/,20X,56('_'))                                          
 102  FORMAT(1H ,/,10X,'ALFA:',F10.2,8X,'B   :',
     1F10.2,8X,'C   :  ',F13.2,/,10X,
     2'S   :',F10.2,8X,'AR  :',F10.2,8X,'V(INF)   :',F10.2,/,10X,
     3'IB  :',I10,8X,'JB  :',I10,8X,'L.E. HEIGHT:', F8.2,/)
 103  FORMAT(1H ,I3,' I ',F9.3,' II ',4(F9.3,' I '),' I ',4(F9.3,' I '))
 104  FORMAT(/,1H ,'CL=',F10.4,2X,'L=',F10.4,4X,'CM=',F10.4,3X,
     1'CD=',F13.7)
 110  FORMAT(1H ,/,5X,'I     DL',4X,'II',22X,'DCP',22X,'I  I',25X,      
     1'GAMA',/,118('='),/,5X,'I',15X,'I= 1',11X,'2',11X,'3',11X,        
     2'4',5X,'I  I',5X,'1',11X,'2',11X,'3',11X,'4',/,118('='))          
 112  FORMAT(1H ,'QF(I=',I2,',J,X.Y.Z)= ',15(F6.1))                     
 113  FORMAT(1H ,110('='))                                              

C
      GOTO 1000
      END
C
      SUBROUTINE GRID
      DIMENSION QF(6,14,3),QC(4,13,3),DS(4,13,4),X(4)
      COMMON/NO1/ DS,X,B,C,S,AR,SN1,CS1
      COMMON/NO2/ IB,JB,CH,SIGN
      COMMON/NO4/ QF,QC,DXW
C                                             
      PAY=3.141592654
C     X(1) - IS ROOT L.E., X(2) TIP L.E., X(3) TIP T.E., AND X(4) IS ROOT T.E.
C     IB: NO. OF CHORDWISE BOXES,  JB: NO. OF SPANWISE BOXES 
      IB1=IB+1
      IB2=IB+2
      JB1=JB+1
C     
C     WING FIXED VORTICES LOCATION   ( QF(I,J,(X,Y,Z))...) 
C                                                          
      DY=B/JB
      DO 3 J=1,JB1
      YLE=DY*(J-1)
      XLE=X(1)+(X(2)-X(1))*YLE/B
      XTE=X(4)+(X(3)-X(4))*YLE/B
C     XLE AND XTE ARE L.E. AND T.E. X-COORDINATES
      DX=(XTE-XLE)/IB
      DO 1 I=1,IB1
      QF(I,J,1)=(XLE+DX*(I-0.75))*CS1
      QF(I,J,2)=YLE
C Note this vvv is different from the original Katz version
      QF(I,J,3)=-QF(I,J,1)*SN1+CH
 1    CONTINUE
C     WAKE FAR FIELD POINTS
      QF(IB2,J,1)=XTE+DXW                                           
      QF(IB2,J,2)=QF(IB1,J,2)                                          
 3    QF(IB2,J,3)=QF(IB1,J,3)
C
C     WING COLOCATION POINTS    
C
      DO 4 J=1,JB
      DO 4 I=1,IB
      QC(I,J,1)=(QF(I,J,1)+QF(I,J+1,1)+QF(I+1,J+1,1)+QF(I+1,J,1))/4
      QC(I,J,2)=(QF(I,J,2)+QF(I,J+1,2)+QF(I+1,J+1,2)+QF(I+1,J,2))/4
      QC(I,J,3)=(QF(I,J,3)+QF(I,J+1,3)+QF(I+1,J+1,3)+QF(I+1,J,3))/4
C

C     COMPUTATION OF NORMAL VECTORS
C
      CALL PANEL(QF(I,J,1),QF(I,J,2),QF(I,J,3),QF(I+1,J,1),QF(I+1,J,2),
     1QF(I+1,J,3),QF(I,J+1,1),QF(I,J+1,2),QF(I,J+1,3),QF(I+1,J+1,1),
     2QF(I+1,J+1,2),QF(I+1,J+1,3),DS(I,J,1),DS(I,J,2),DS(I,J,3),
     3DS(I,J,4))
 4    CONTINUE
C
C     B -IS SEMI SPAN, C -AV. CHORD, S - AREA 
      S=0.5*(X(3)-X(2)+X(4)-X(1))*B
      C=S/B
      AR=2.*B*B/S                                          
C                                                                     
      RETURN                                                          
      END                                                             
C                                                                     
      SUBROUTINE PANEL(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4,C1,C2,C3,S)
C     CALCULATION OF PANEL AREA AND NORMAL VECTOR.
      A1=X2-X3
      A2=Y2-Y3
      A3=Z2-Z3
      B1=X4-X1
      B2=Y4-Y1
      B3=Z4-Z1
C     NORMAL VECTOR
      X=A2*B3-A3*B2
      Y=B1*A3-A1*B3
      Z=A1*B2-A2*B1
      A=SQRT(X**2+Y**2+Z**2)
      C1=X/A
      C2=Y/A
      C3=Z/A
C     CALCULATION OF PANEL AREA 
      E1=X3-X1
      E2=Y3-Y1
      E3=Z3-Z1
      F1=X2-X1
      F2=Y2-Y1
      F3=Z2-Z1
C     NORMAL AREAS (F*B+B*E)
      S11=F2*B3-F3*B2
      S12=B1*F3-F1*B3
      S13=F1*B2-F2*B1
      S21=B2*E3-B3*E2
      S22=E1*B3-B1*E3
      S23=B1*E2-B2*E1
      S=0.5*(SQRT(S11**2+S12**2+S13**2)+SQRT(S21**2+S22**2+S23**2))
      RETURN
      END

C
      SUBROUTINE VORTEX(X,Y,Z,X1,Y1,Z1,X2,Y2,Z2,GAMA,U,V,W)
C     SUBROUTINE VORTEX CALCULATES THE INDUCED VELOCITY (U,V,W) AT A POI
C     (X,Y,Z) DUE TO A VORTEX ELEMENT VITH STRENGTH GAMA PER UNIT LENGTH
C     POINTING TO THE DIRECTION (X2,Y2,Z2)-(X1,Y1,Z1).

      PAY=3.141592654
      RCUT=1.0E-10
C     CALCULATION OF R1 X R2
      R1R2X=(Y-Y1)*(Z-Z2)-(Z-Z1)*(Y-Y2)
      R1R2Y=-((X-X1)*(Z-Z2)-(Z-Z1)*(X-X2))
      R1R2Z=(X-X1)*(Y-Y2)-(Y-Y1)*(X-X2)
C     CALCULATION OF (R1 X R2 )**2

      SQUARE=R1R2X*R1R2X+R1R2Y*R1R2Y+R1R2Z*R1R2Z
C     CALCULATION OF R0(R1/R(R1)-R2/R(R2))
      R1=SQRT((X-X1)*(X-X1)+(Y-Y1)*(Y-Y1)+(Z-Z1)*(Z-Z1))
      R2=SQRT((X-X2)*(X-X2)+(Y-Y2)*(Y-Y2)+(Z-Z2)*(Z-Z2))
      IF((R1.LT.RCUT).OR.(R2.LT.RCUT).OR.(SQUARE.LT.RCUT)) GOTO 1      
      R0R1=(X2-X1)*(X-X1)+(Y2-Y1)*(Y-Y1)+(Z2-Z1)*(Z-Z1)
      R0R2=(X2-X1)*(X-X2)+(Y2-Y1)*(Y-Y2)+(Z2-Z1)*(Z-Z2)
      COEF=GAMA/(4.0*PAY*SQUARE)*(R0R1/R1-R0R2/R2)
      U=R1R2X*COEF
	V=R1R2Y*COEF
	W=R1R2Z*COEF
	GO TO 2
C WHEN POINT (X,Y,Z) LIES ON VORTEX ELEMENT; ITS INDUCED VELOCITY IS
 1    U=0.
      V=0.
      W=0.
 2    CONTINUE
      RETURN
      END
C
      SUBROUTINE WING(X,Y,Z,GAMA,U,V,W,ONOFF,I1,J1)
      DIMENSION GAMA(4,13),QF(6,14,3),A1(5,13)
      DIMENSION DS(4,13,4)
      COMMON/NO1/ DS
      COMMON/NO2/ IB,JB,CH,SIGN
      COMMON/NO3/ A1
      COMMON/NO4/ QF
C
C     CALCULATES INDUCED VELOCITY AT A POINT (X,Y,Z), DUE TO VORTICITY
C     DISTRIBUTION GAMA(I,J), OF SEMI-CONFIGURATION - IN A WING FIXED
C     COORDINATE SYSTEM.
      U=0
      V=0
      W=0
      IB1=IB+1
      DO 1 I=1,IB1
      DO 1 J=1,JB
C                   I3 IS WAKE VORTEX COUNTER
      I3=I
      IF(I.EQ.IB1) I3=IB
      VORTIC=GAMA(I3,J)
      IF(ONOFF.LT.0.1) GOTO 2
      CALL VORTEX(X,Y,Z,QF(I,J,1),QF(I,J,2),QF(I,J,3),QF(I,J+1,1),QF(I,J
     1+1,2),QF(I,J+1,3),VORTIC,U1,V1,W1)
      CALL VORTEX(X,Y,Z,QF(I+1,J+1,1),QF(I+1,J+1,2),QF(I+1,J+1,3),
     3QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),VORTIC,U3,V3,W3)
  2   CALL VORTEX(X,Y,Z,QF(I,J+1,1),QF(I,J+1,2),QF(I,J+1,3),QF(I+1,J+1,1
     2),QF(I+1,J+1,2),QF(I+1,J+1,3),VORTIC,U2,V2,W2)
      CALL VORTEX(X,Y,Z,QF(I+1,J,1),QF(I+1,J,2),QF(I+1,J,3),QF(I,J,1),
     4QF(I,J,2),QF(I,J,3),VORTIC,U4,V4,W4)
C
      U0=U2+U4+(U1+U3)*ONOFF
      V0=V2+V4+(V1+V3)*ONOFF
      W0=W2+W4+(W1+W3)*ONOFF
      A1(I,J)=U0*DS(I1,J1,1)+V0*DS(I1,J1,2)+W0*DS(I1,J1,3)
      IF(SIGN.GE.1.0) 
     *            A1(I,J)=U0*DS(I1,J1,1)+V0*DS(I1,J1,2)-W0*DS(I1,J1,3)
      IF(I.EQ.IB1) A1(IB,J)=A1(IB,J)+A1(IB1,J)

      U=U+U0
      V=V+V0
      W=W+W0
C
 1    CONTINUE
      RETURN
      END
C
      SUBROUTINE DECOMP(N,NDIM,A,IP)
      REAL A(NDIM,NDIM),T                                               
      INTEGER IP(NDIM)                                                  
C     MATRIX TRIANGULARIZATION BY GAUSSIAN ELIMINATION.                 
C     N = ORDER OF MATRIX. NDIM = DECLARED DIMENSION OF ARRAY A.
C     A = MATRIX TO BE TRIANGULARIZED.                                  
C     IP(K) , K .LT. N = INDEX OF K-TH PIVOT ROW.                       


C                                                                       
      IP(N) = 1                                                         
      DO 6 K = 1, N                                                     
      IF(K.EQ.N) GOTO 5
      KP1 = K + 1                                                     
      M = K                                                           
      DO 1 I = KP1, N                                                 
      IF( ABS(A(I,K)).GT.ABS(A(M,K))) M=I
1     CONTINUE                                                        
      IP(K) = M                                                       
      IF(M.NE.K) IP(N) = -IP(N)                                     
      T = A(M,K)                                                    
      A(M,K) = A(K,K)                                               
      A(K,K) = T                                                    
      IF(T.EQ.0.E0) GO TO 5                                         
      DO 2  I = KP1, N                                              
2     A(I,K) = -A(I,K)/T                                            
      DO 4  J = KP1, N                                              
      T = A(M,J)                                                    
      A(M,J) = A(K,J)                                               
      A(K,J) = T                                                    
      IF(T .EQ. 0.E0) GO TO 4                                       
      DO 3 I = KP1, N                                               
3     A(I,J) = A(I,J) + A(I,K)*T                                 
4     CONTINUE                                                   
5     IF(A(K,K) .EQ. 0.E0) IP(N) = 0                             
6     CONTINUE                                                   

      RETURN                                                     
      END                                                        
C                                                                
      SUBROUTINE SOLVER(N,NDIM,A,B,IP)   
	REAL A(NDIM,NDIM), B(NDIM), T
	INTEGER IP(NDIM)                        
C     SOLUTION OF LINEAR SYSTEM, A*X = B.                           
C    N = ORDER OF MATRIX.                                        
C    NDIM = DECLARED DIMENSION OF THE ARRAY A.                   
C    B = RIGHT HAND SIDE VECTOR.                                 
C    IP = PIVOT VECTOR OBTAINED FROM SUBROUTINE DECOMP.
C    B = SOLUTION VECTOR, X.                                     
C                                                                
      IF(N.EQ.1) GOTO 9                                       
      NM1 = N - 1                                                
      DO 7 K = 1, NM1                                            
      KP1 = K + 1                                              
      M = IP(K)                                                
      T = B(M)                                                 
      B(M) = B(K)                                              
      B(K) = T                                                 
      DO 7  I = KP1, N                                         
7     B(I) = B(I) + A(I,K)*T                                     
      DO 8 KB = 1, NM1                                           
      KM1 = N - KB                                             
      K = KM1 + 1                                              
      B(K) = B(K)/A(K,K)                                       
      T = -B(K)                                                
      DO 8 I = 1, KM1                                          
8     B(I) = B(I) + A(I,K)*T                                     
9     B(1) = B(1)/A(1,1)                                         
      RETURN                                                     
      END
C:\Users\Jerome Huck\Desktop\VLM\vlm.f:235.17:

      COMMON/NO1/ DS,X,B,C,S,AR,SN1,CS1                                 
                 1
Warning: Named COMMON block 'no1' at (1) shall be of the same size as elsewhere (872 vs 832 bytes)
C:\Users\Jerome Huck\Desktop\VLM\vlm.f:237.17:

      COMMON/NO4/ QF,QC,DXW                                             
                 1
Warning: Named COMMON block 'no4' at (1) shall be of the same size as elsewhere (1636 vs 1008 bytes)

[Index of Archives]     [Linux C Programming]     [Linux Kernel]     [eCos]     [Fedora Development]     [Fedora Announce]     [Autoconf]     [The DWARVES Debugging Tools]     [Yosemite Campsites]     [Yosemite News]     [Linux GCC]

  Powered by Linux