Hello, I have a function iter1 that iterates a sequence of complex numbers. I redesigned this function, using SSE intrinsics such as _mm_mul_pd, to obtain iter0. Nonetheless, iter0 is 4x slower than iter1: iter0 (with SSE intrinsics): $ gcc -O -march=core2 t.c && time ./a.out 257829745 real 0m7.912s user 0m7.908s sys 0m0.000s iter1 (w/o SSE intrinsics): $ gcc -O -march=core2 t.c && time ./a.out 257829745 real 0m2.075s user 0m2.076s sys 0m0.000s The size of a.out ist 7.1K in both cases. I use gcc version 4.4.5 and the CPU is an Intel Core 2 Duo. The code is below. iter0 and iter1 give the same numerical results. #include <pmmintrin.h> #include <stdio.h> #define sqr(x) ((x)*(x)) typedef union { __m128d m; double v[2]; // v[0] low, v[1] up } v2df; int iter0(v2df z, v2df c, int n, int bound) { v2df z2, z2r, z2r_addsub, z_; z2.m = _mm_mul_pd(z.m, z.m); // z_re^2, z_im^2 z2r.v[1] = z2.v[0]; z2r.v[0] = z2.v[1]; z2r_addsub.m = _mm_addsub_pd(z2r.m, z2.m); // z_re^2 + z_im^2, z_re^2 - z_im^2 if(z2r_addsub.v[1] > 4.0 || n == bound) return n; else { z_.v[1] = z2r_addsub.v[0]; z_.v[0] = 2.0 * z.v[1] * z.v[0]; z_.m = _mm_add_pd(z_.m, c.m); // z_re^2 - z_im^2 + c_re, 2 * z_re * z_im + c_im return iter0(z_, c, n+1, bound); } } int iter1(double z_re, double z_im, double c_re, double c_im, int n, int bound) { double zre2 = sqr(z_re); double zim2 = sqr(z_im); if(zre2 + zim2 > 4.0 || n == bound) return n; else return iter1(zre2 - zim2 + c_re, 2.0 * z_re * z_im + c_im, c_re, c_im, n+1, bound); } #define sse int main() { v2df z, c; long n = 0; z.v[1] = 0.0; z.v[0] = 0.0; for(c.v[1] = -2.0; c.v[1] < 1.0; c.v[1] += 3.0/1000.0) { for(c.v[0] = -1.0; c.v[0] < 1.0; c.v[0] += 2.0/1000.0) { #ifdef sse n += iter0(z, c, 0, 1000); #else n += iter1(0.0, 0.0, c.v[1], c.v[0], 0, 1000); #endif } } printf("%ld\n", n); return 0; } -- View this message in context: http://old.nabble.com/SSE-SIMD-enhanced-code-4x-slower-than-regular-code-tp33159404p33159404.html Sent from the gcc - Help mailing list archive at Nabble.com.