I've included published code by Paul Bourke that fails to compile. The error message is as attached in the .jpg file. I have upgraded though 3 versions of DevC++ - all that changed is the text of the error message. The offending lines are highlighted. Dev-C++ 4.9.9.2 XP, Win 2000, NT 4.0 Any help would be appreciated. Thanks in advance, Robert ----------------------------------------------------------------- #include <iostream> #include <cstdlib> #include <cstdio> #include <cmath> using namespace std; typedef struct { double real; double imag; } COMPLEX; // complex // FFT & 2DFFT code written by Paul Bourke July 1998 /*---------------------------------------------------------------------- --- Calculate the closest but lower power of two of a number twopm = 2**m <= n Return TRUE if 2**m == n */ int Powerof2( int n, int *m, int *twopm ) { if ( n <= 1 ) { *m = 0; *twopm = 1; return false; } *m = 1; *twopm = 2; do { (*m)++; (*twopm) *= 2; } while ( 2 * (*twopm) <= n ); if ( *twopm != n ) { return false; } else { return true; } } /*---------------------------------------------------------------------- --- This computes an in-place complex-to-complex FFT x and y are the real and imaginary arrays of 2^m points. dir = 1 gives forward transform dir = -1 gives reverse transform Formula: forward N-1 --- 1 \ - j k 2 pi n / N X(n) = --- > x(k) e = forward transform N / n=0..N-1 --- k=0 Formula: reverse N-1 --- \ j k 2 pi n / N X(n) = > x(k) e = forward transform / n=0..N-1 --- k=0 */ int FFT (int dir, int m, double *x, double *y) { long nn,i,i1,j,k,i2,l,l1,l2; double c1,c2,tx,ty,t1,t2,u1,u2,z; /* Calculate the number of points */ nn = 1; for (i=0;i<m;i++) nn *= 2; /* Do the bit reversal */ i2 = nn >> 1; j = 0; for (i=0;i<nn-1;i++) { if (i < j) { tx = x[i]; ty = y[i]; x[i] = x[j]; y[i] = y[j]; x[j] = tx; y[j] = ty; } k = i2; while (k <= j) { j -= k; k >>= 1; } j += k; } /* Compute the FFT */ c1 = -1.0; c2 = 0.0; l2 = 1; for (l=0;l<m;l++) { l1 = l2; l2 <<= 1; u1 = 1.0; u2 = 0.0; for (j=0;j<l1;j++) { for (i=j;i<nn;i+=l2) { i1 = i + l1; t1 = u1 * x[i1] - u2 * y[i1]; t2 = u1 * y[i1] + u2 * x[i1]; x[i1] = x[i] - t1; y[i1] = y[i] - t2; x[i] += t1; y[i] += t2; } z = u1 * c1 - u2 * c2; u2 = u1 * c2 + u2 * c1; u1 = z; } c2 = sqrt((1.0 - c1) / 2.0); if (dir == 1) c2 = -c2; c1 = sqrt((1.0 + c1) / 2.0); } /* Scaling for forward transform */ if (dir == 1) { for (i=0;i<nn;i++) { x[i] /= (double)nn; y[i] /= (double)nn; } } return true; } /*---------------------------------------------------------------------- --- Perform a 2D FFT inplace given a complex 2D array The direction dir, 1 for forward, -1 for reverse The size of the array (nx,ny) Return false if there are memory problems or the dimensions are not powers of 2 */ int FFT2D(COMPLEX **c, int nx, int ny, int dir) { int i = 0, j = 0; int m = 0, twopm = 0; double *real,*imag; /* Transform the rows */ real = (double *)malloc(nx * sizeof(double)); imag = (double *)malloc(nx * sizeof(double)); if (real == NULL || imag == NULL) { return false; } if (!Powerof2(nx,&m,&twopm) || twopm != nx) { return false; } for (j=0;j<ny;j++) { for (i=0;i<nx;i++) { real[i] = c[i][j].real; imag[i] = c[i][j].imag; } FFT (int dir, int m, double real, double imag); for (i=0;i<nx;i++) { c[i][j].real = real[i]; c[i][j].imag = imag[i]; } } free(real); free(imag); /* Transform the columns */ real = (double *)malloc(ny * sizeof(double)); imag = (double *)malloc(ny * sizeof(double)); if (real == NULL || imag == NULL) return false; if (!Powerof2(ny,&m,&twopm) || twopm != ny) return false; for (i=0;i<nx;i++) { for (j=0;j<ny;j++) { real[j] = c[i][j].real; imag[j] = c[i][j].imag; } FFT (int dir, int m, double real, double imag); for (j=0;j<ny;j++) { c[i][j].real = real[j]; c[i][j].imag = imag[j]; } } free(real); free(imag); return true; } int main () { { //use this section to hold DOS window at end of execution // must be located at end of main! printf("\n"); printf("\n*** execution has completed sucessfully ***\n"); // user_wait(); <<devcpperror.jpg>> return 0; } } Classification: UNCLASSIFIED Caveats: NONE
Attachment:
devcpperror.jpg
Description: devcpperror.jpg