#include<stdlib.h> #include<string.h> #include<complex.h> #include<errno.h> #include<time.h> #include<stdio.h> #define NX 4 #define NY 4 #define N 2*NX*NY //N is the size of 2 D DFT #include <math.h> #define num 2 #define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr void fft(float data[], unsigned long nn[], int ndim, int isign) { int idim; unsigned long i1,i2,i3,i2rev,i3rev,ip1,ip2,ip3,ifp1,ifp2; unsigned long ibit,k1,k2,n,nprev,nrem,ntot; float tempi,tempr; double theta,wi,wpi,wpr,wr,wtemp; //Double precision for trigonometric recur-rences. for (ntot=1,idim=1;idim<=ndim;idim++) //Compute total number of complex val-ues. ntot *= nn[idim]; nprev=1; for (idim=ndim;idim>=1;idim--) { // Main loop over the dimensions. n=nn[idim]; nrem=ntot/(n*nprev); ip1=nprev << 1; ip2=ip1*n; ip3=ip2*nrem; i2rev=1; for (i2=1;i2<=ip2;i2+=ip1) { //This is the bit-reversal section of the routine. if (i2 < i2rev) { for (i1=i2;i1<=i2+ip1-2;i1+=2) { for (i3=i1;i3<=ip3;i3+=ip2) { i3rev=i2rev+i3-i2; SWAP(data[i3],data[i3rev]); SWAP(data[i3+1],data[i3rev+1]); } } } ibit=ip2 >> 1; while (ibit >= ip1 && i2rev > ibit) { i2rev -= ibit; ibit >>= 1; } i2rev += ibit; } //Here begins the Danielson-Lanczos sec-tion of the routine. ifp1=ip1; while (ifp1 < ip2) { ifp2=ifp1 << 1; theta=isign*6.28318530717959/(ifp2/ip1); //Initialize for the trig. recur-rence. wtemp=sin(0.5*theta); wpr = -2.0*wtemp*wtemp; wpi=sin(theta); wr=1.0; wi=0.0; for (i3=1;i3<=ifp1;i3+=ip1) { for (i1=i3;i1<=i3+ip1-2;i1+=2) { for (i2=i1;i2<=ip3;i2+=ifp2) { k1=i2; //Danielson-Lanczos formula: k2=k1+ifp1; tempr=(float)wr*data[k2]-(float)wi*data[k2+1]; tempi=(float)wr*data[k2+1]+(float)wi*data[k2]; data[k2]=data[k1]-tempr; data[k2+1]=data[k1+1]-tempi; data[k1] += tempr; data[k1+1] += tempi; } } wr=(wtemp=wr)*wpr-wi*wpi+wr; //Trigonometric recurrence. wi=wi*wpr+wtemp*wpi+wi; } ifp1=ifp2; } nprev *= n; } } int main() { float rin[NX][NY],iin[NX][NY]; float in[2*NX*NY]; unsigned long nn[]={NX,NY}; int i=0,j=0,k=0; k = 0; for (i = 0; i< NX; i++) { for (j = 0; j< NY; j++) { rin[i][j] = (float) (2*i*i); iin[i][j] = 0; in[k] = rin[i][j]; k=k+1; in[k] = iin[i][j]; k= k+1; } } //for (i = 0; i< 32; i++) printf("%d\t%f\n",i,in[i]); fft(in,nn,2,1); //Executes the plan k = 0; for (i = 0; i< NX; i++) { for (j = 0; j< NY; j++) { rin[i][j] = in[k]; printf("real part is%f\n",in[k]); k=k+1; iin[i][j] = in[k]; printf("imaginary part is%f\n",in[k]); k=k+1; } } printf("finished fft\n"); return 0; } ________________________________________________________________________ Yahoo! Messenger - Communicate instantly..."Ping" your friends today! Download Messenger Now http://uk.messenger.yahoo.com/download/index.html