https://bugzilla.redhat.com/show_bug.cgi?id=1976640 Bug ID: 1976640 Summary: Review Request: python-lfpykit - Electrostatic models for multicompartment neuron models Product: Fedora Version: rawhide Hardware: All OS: Linux Status: NEW Component: Package Review Severity: medium Priority: medium Assignee: nobody@xxxxxxxxxxxxxxxxx Reporter: sanjay.ankur@xxxxxxxxx QA Contact: extras-qa@xxxxxxxxxxxxxxxxx CC: package-review@xxxxxxxxxxxxxxxxxxxxxxx Target Milestone: --- Classification: Fedora Spec URL: https://ankursinha.fedorapeople.org/python-lfpykit/python-lfpykit.spec SRPM URL: https://ankursinha.fedorapeople.org/python-lfpykit/python-lfpykit-0.3-1.fc34.src.rpm Description: This Python module contain freestanding implementations of electrostatic forward models incorporated in LFPy (https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io). The aim of the LFPykit module is to provide electrostatic models in a manner that facilitates forward-model predictions of extracellular potentials and related measures from multicompartment neuron models, but without explicit dependencies on neural simulation software such as NEURON (https://neuron.yale.edu, https://github.com/neuronsimulator/nrn), Arbor (https://arbor.readthedocs.io, https://github.com/arbor-sim/arbor), or even LFPy. The LFPykit module can then be more easily incorporated with these simulators, or in various projects that utilize them such as LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy). BMTK (https://alleninstitute.github.io/bmtk/, https://github.com/AllenInstitute/bmtk), etc. Its main functionality is providing class methods that return two-dimensional linear transformation matrices M between transmembrane currents I of multicompartment neuron models and some measurement Y given by Y=MI. The presently incorporated volume conductor models have been incorporated in LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy), as described in various papers and books: - Linden H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT (2014) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front. Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041 - Hagen E, Næss S, Ness TV and Einevoll GT (2018) Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Front. Neuroinform. 12:92. doi: 10.3389/fninf.2018.00092 - Ness, T. V., Chintaluri, C., Potworowski, J., Leski, S., Glabska, H., Wójcik, D. K., et al. (2015). Modelling and analysis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics 13:403–426. doi: 10.1007/s12021-015-9265-6 - Nunez and Srinivasan, Oxford University Press, 2006 - Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT and Wójcik DK (2017). Corrected Four-sphere Head Model for EEG Signals. Front. Hum. Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490 Fedora Account System Username: ankursinha -- You are receiving this mail because: You are on the CC list for the bug. You are always notified about changes to this product and component _______________________________________________ package-review mailing list -- package-review@xxxxxxxxxxxxxxxxxxxxxxx To unsubscribe send an email to package-review-leave@xxxxxxxxxxxxxxxxxxxxxxx Fedora Code of Conduct: https://docs.fedoraproject.org/en-US/project/code-of-conduct/ List Guidelines: https://fedoraproject.org/wiki/Mailing_list_guidelines List Archives: https://lists.fedoraproject.org/archives/list/package-review@xxxxxxxxxxxxxxxxxxxxxxx Do not reply to spam on the list, report it: https://pagure.io/fedora-infrastructure