Hi Christian, I love your patch! Perhaps something to improve: [auto build test WARNING on drm/drm-next] [also build test WARNING on v4.15-rc3 next-20171215] [if your patch is applied to the wrong git tree, please drop us a note to help improve the system] url: https://github.com/0day-ci/linux/commits/Samuel-Li/drm-prime-forward-begin_cpu_access-callback-to-drivers/20171216-125056 base: git://people.freedesktop.org/~airlied/linux.git drm-next config: i386-randconfig-a0-201750 (attached as .config) compiler: gcc-4.9 (Debian 4.9.4-2) 4.9.4 reproduce: # save the attached .config to linux build tree make ARCH=i386 All warnings (new ones prefixed by >>): In file included from drivers/gpu/drm/drm_drv.c:36:0: >> include/drm/drm_drv.h:494:14: warning: 'enum dma_data_direction' declared inside parameter list enum dma_data_direction direction); ^ >> include/drm/drm_drv.h:494:14: warning: its scope is only this definition or declaration, which is probably not what you want vim +494 include/drm/drm_drv.h 59 60 /** 61 * struct drm_driver - DRM driver structure 62 * 63 * This structure represent the common code for a family of cards. There will 64 * one drm_device for each card present in this family. It contains lots of 65 * vfunc entries, and a pile of those probably should be moved to more 66 * appropriate places like &drm_mode_config_funcs or into a new operations 67 * structure for GEM drivers. 68 */ 69 struct drm_driver { 70 /** 71 * @load: 72 * 73 * Backward-compatible driver callback to complete 74 * initialization steps after the driver is registered. For 75 * this reason, may suffer from race conditions and its use is 76 * deprecated for new drivers. It is therefore only supported 77 * for existing drivers not yet converted to the new scheme. 78 * See drm_dev_init() and drm_dev_register() for proper and 79 * race-free way to set up a &struct drm_device. 80 * 81 * This is deprecated, do not use! 82 * 83 * Returns: 84 * 85 * Zero on success, non-zero value on failure. 86 */ 87 int (*load) (struct drm_device *, unsigned long flags); 88 89 /** 90 * @open: 91 * 92 * Driver callback when a new &struct drm_file is opened. Useful for 93 * setting up driver-private data structures like buffer allocators, 94 * execution contexts or similar things. Such driver-private resources 95 * must be released again in @postclose. 96 * 97 * Since the display/modeset side of DRM can only be owned by exactly 98 * one &struct drm_file (see &drm_file.is_master and &drm_device.master) 99 * there should never be a need to set up any modeset related resources 100 * in this callback. Doing so would be a driver design bug. 101 * 102 * Returns: 103 * 104 * 0 on success, a negative error code on failure, which will be 105 * promoted to userspace as the result of the open() system call. 106 */ 107 int (*open) (struct drm_device *, struct drm_file *); 108 109 /** 110 * @postclose: 111 * 112 * One of the driver callbacks when a new &struct drm_file is closed. 113 * Useful for tearing down driver-private data structures allocated in 114 * @open like buffer allocators, execution contexts or similar things. 115 * 116 * Since the display/modeset side of DRM can only be owned by exactly 117 * one &struct drm_file (see &drm_file.is_master and &drm_device.master) 118 * there should never be a need to tear down any modeset related 119 * resources in this callback. Doing so would be a driver design bug. 120 */ 121 void (*postclose) (struct drm_device *, struct drm_file *); 122 123 /** 124 * @lastclose: 125 * 126 * Called when the last &struct drm_file has been closed and there's 127 * currently no userspace client for the &struct drm_device. 128 * 129 * Modern drivers should only use this to force-restore the fbdev 130 * framebuffer using drm_fb_helper_restore_fbdev_mode_unlocked(). 131 * Anything else would indicate there's something seriously wrong. 132 * Modern drivers can also use this to execute delayed power switching 133 * state changes, e.g. in conjunction with the :ref:`vga_switcheroo` 134 * infrastructure. 135 * 136 * This is called after @postclose hook has been called. 137 * 138 * NOTE: 139 * 140 * All legacy drivers use this callback to de-initialize the hardware. 141 * This is purely because of the shadow-attach model, where the DRM 142 * kernel driver does not really own the hardware. Instead ownershipe is 143 * handled with the help of userspace through an inheritedly racy dance 144 * to set/unset the VT into raw mode. 145 * 146 * Legacy drivers initialize the hardware in the @firstopen callback, 147 * which isn't even called for modern drivers. 148 */ 149 void (*lastclose) (struct drm_device *); 150 151 /** 152 * @unload: 153 * 154 * Reverse the effects of the driver load callback. Ideally, 155 * the clean up performed by the driver should happen in the 156 * reverse order of the initialization. Similarly to the load 157 * hook, this handler is deprecated and its usage should be 158 * dropped in favor of an open-coded teardown function at the 159 * driver layer. See drm_dev_unregister() and drm_dev_put() 160 * for the proper way to remove a &struct drm_device. 161 * 162 * The unload() hook is called right after unregistering 163 * the device. 164 * 165 */ 166 void (*unload) (struct drm_device *); 167 168 /** 169 * @release: 170 * 171 * Optional callback for destroying device data after the final 172 * reference is released, i.e. the device is being destroyed. Drivers 173 * using this callback are responsible for calling drm_dev_fini() 174 * to finalize the device and then freeing the struct themselves. 175 */ 176 void (*release) (struct drm_device *); 177 178 /** 179 * @get_vblank_counter: 180 * 181 * Driver callback for fetching a raw hardware vblank counter for the 182 * CRTC specified with the pipe argument. If a device doesn't have a 183 * hardware counter, the driver can simply leave the hook as NULL. 184 * The DRM core will account for missed vblank events while interrupts 185 * where disabled based on system timestamps. 186 * 187 * Wraparound handling and loss of events due to modesetting is dealt 188 * with in the DRM core code, as long as drivers call 189 * drm_crtc_vblank_off() and drm_crtc_vblank_on() when disabling or 190 * enabling a CRTC. 191 * 192 * This is deprecated and should not be used by new drivers. 193 * Use &drm_crtc_funcs.get_vblank_counter instead. 194 * 195 * Returns: 196 * 197 * Raw vblank counter value. 198 */ 199 u32 (*get_vblank_counter) (struct drm_device *dev, unsigned int pipe); 200 201 /** 202 * @enable_vblank: 203 * 204 * Enable vblank interrupts for the CRTC specified with the pipe 205 * argument. 206 * 207 * This is deprecated and should not be used by new drivers. 208 * Use &drm_crtc_funcs.enable_vblank instead. 209 * 210 * Returns: 211 * 212 * Zero on success, appropriate errno if the given @crtc's vblank 213 * interrupt cannot be enabled. 214 */ 215 int (*enable_vblank) (struct drm_device *dev, unsigned int pipe); 216 217 /** 218 * @disable_vblank: 219 * 220 * Disable vblank interrupts for the CRTC specified with the pipe 221 * argument. 222 * 223 * This is deprecated and should not be used by new drivers. 224 * Use &drm_crtc_funcs.disable_vblank instead. 225 */ 226 void (*disable_vblank) (struct drm_device *dev, unsigned int pipe); 227 228 /** 229 * @get_scanout_position: 230 * 231 * Called by vblank timestamping code. 232 * 233 * Returns the current display scanout position from a crtc, and an 234 * optional accurate ktime_get() timestamp of when position was 235 * measured. Note that this is a helper callback which is only used if a 236 * driver uses drm_calc_vbltimestamp_from_scanoutpos() for the 237 * @get_vblank_timestamp callback. 238 * 239 * Parameters: 240 * 241 * dev: 242 * DRM device. 243 * pipe: 244 * Id of the crtc to query. 245 * in_vblank_irq: 246 * True when called from drm_crtc_handle_vblank(). Some drivers 247 * need to apply some workarounds for gpu-specific vblank irq quirks 248 * if flag is set. 249 * vpos: 250 * Target location for current vertical scanout position. 251 * hpos: 252 * Target location for current horizontal scanout position. 253 * stime: 254 * Target location for timestamp taken immediately before 255 * scanout position query. Can be NULL to skip timestamp. 256 * etime: 257 * Target location for timestamp taken immediately after 258 * scanout position query. Can be NULL to skip timestamp. 259 * mode: 260 * Current display timings. 261 * 262 * Returns vpos as a positive number while in active scanout area. 263 * Returns vpos as a negative number inside vblank, counting the number 264 * of scanlines to go until end of vblank, e.g., -1 means "one scanline 265 * until start of active scanout / end of vblank." 266 * 267 * Returns: 268 * 269 * True on success, false if a reliable scanout position counter could 270 * not be read out. 271 * 272 * FIXME: 273 * 274 * Since this is a helper to implement @get_vblank_timestamp, we should 275 * move it to &struct drm_crtc_helper_funcs, like all the other 276 * helper-internal hooks. 277 */ 278 bool (*get_scanout_position) (struct drm_device *dev, unsigned int pipe, 279 bool in_vblank_irq, int *vpos, int *hpos, 280 ktime_t *stime, ktime_t *etime, 281 const struct drm_display_mode *mode); 282 283 /** 284 * @get_vblank_timestamp: 285 * 286 * Called by drm_get_last_vbltimestamp(). Should return a precise 287 * timestamp when the most recent VBLANK interval ended or will end. 288 * 289 * Specifically, the timestamp in @vblank_time should correspond as 290 * closely as possible to the time when the first video scanline of 291 * the video frame after the end of VBLANK will start scanning out, 292 * the time immediately after end of the VBLANK interval. If the 293 * @crtc is currently inside VBLANK, this will be a time in the future. 294 * If the @crtc is currently scanning out a frame, this will be the 295 * past start time of the current scanout. This is meant to adhere 296 * to the OpenML OML_sync_control extension specification. 297 * 298 * Paramters: 299 * 300 * dev: 301 * dev DRM device handle. 302 * pipe: 303 * crtc for which timestamp should be returned. 304 * max_error: 305 * Maximum allowable timestamp error in nanoseconds. 306 * Implementation should strive to provide timestamp 307 * with an error of at most max_error nanoseconds. 308 * Returns true upper bound on error for timestamp. 309 * vblank_time: 310 * Target location for returned vblank timestamp. 311 * in_vblank_irq: 312 * True when called from drm_crtc_handle_vblank(). Some drivers 313 * need to apply some workarounds for gpu-specific vblank irq quirks 314 * if flag is set. 315 * 316 * Returns: 317 * 318 * True on success, false on failure, which means the core should 319 * fallback to a simple timestamp taken in drm_crtc_handle_vblank(). 320 * 321 * FIXME: 322 * 323 * We should move this hook to &struct drm_crtc_funcs like all the other 324 * vblank hooks. 325 */ 326 bool (*get_vblank_timestamp) (struct drm_device *dev, unsigned int pipe, 327 int *max_error, 328 ktime_t *vblank_time, 329 bool in_vblank_irq); 330 331 /** 332 * @irq_handler: 333 * 334 * Interrupt handler called when using drm_irq_install(). Not used by 335 * drivers which implement their own interrupt handling. 336 */ 337 irqreturn_t(*irq_handler) (int irq, void *arg); 338 339 /** 340 * @irq_preinstall: 341 * 342 * Optional callback used by drm_irq_install() which is called before 343 * the interrupt handler is registered. This should be used to clear out 344 * any pending interrupts (from e.g. firmware based drives) and reset 345 * the interrupt handling registers. 346 */ 347 void (*irq_preinstall) (struct drm_device *dev); 348 349 /** 350 * @irq_postinstall: 351 * 352 * Optional callback used by drm_irq_install() which is called after 353 * the interrupt handler is registered. This should be used to enable 354 * interrupt generation in the hardware. 355 */ 356 int (*irq_postinstall) (struct drm_device *dev); 357 358 /** 359 * @irq_uninstall: 360 * 361 * Optional callback used by drm_irq_uninstall() which is called before 362 * the interrupt handler is unregistered. This should be used to disable 363 * interrupt generation in the hardware. 364 */ 365 void (*irq_uninstall) (struct drm_device *dev); 366 367 /** 368 * @master_create: 369 * 370 * Called whenever a new master is created. Only used by vmwgfx. 371 */ 372 int (*master_create)(struct drm_device *dev, struct drm_master *master); 373 374 /** 375 * @master_destroy: 376 * 377 * Called whenever a master is destroyed. Only used by vmwgfx. 378 */ 379 void (*master_destroy)(struct drm_device *dev, struct drm_master *master); 380 381 /** 382 * @master_set: 383 * 384 * Called whenever the minor master is set. Only used by vmwgfx. 385 */ 386 int (*master_set)(struct drm_device *dev, struct drm_file *file_priv, 387 bool from_open); 388 /** 389 * @master_drop: 390 * 391 * Called whenever the minor master is dropped. Only used by vmwgfx. 392 */ 393 void (*master_drop)(struct drm_device *dev, struct drm_file *file_priv); 394 395 /** 396 * @debugfs_init: 397 * 398 * Allows drivers to create driver-specific debugfs files. 399 */ 400 int (*debugfs_init)(struct drm_minor *minor); 401 402 /** 403 * @gem_free_object: deconstructor for drm_gem_objects 404 * 405 * This is deprecated and should not be used by new drivers. Use 406 * @gem_free_object_unlocked instead. 407 */ 408 void (*gem_free_object) (struct drm_gem_object *obj); 409 410 /** 411 * @gem_free_object_unlocked: deconstructor for drm_gem_objects 412 * 413 * This is for drivers which are not encumbered with &drm_device.struct_mutex 414 * legacy locking schemes. Use this hook instead of @gem_free_object. 415 */ 416 void (*gem_free_object_unlocked) (struct drm_gem_object *obj); 417 418 /** 419 * @gem_open_object: 420 * 421 * Driver hook called upon gem handle creation 422 */ 423 int (*gem_open_object) (struct drm_gem_object *, struct drm_file *); 424 425 /** 426 * @gem_close_object: 427 * 428 * Driver hook called upon gem handle release 429 */ 430 void (*gem_close_object) (struct drm_gem_object *, struct drm_file *); 431 432 /** 433 * @gem_print_info: 434 * 435 * If driver subclasses struct &drm_gem_object, it can implement this 436 * optional hook for printing additional driver specific info. 437 * 438 * drm_printf_indent() should be used in the callback passing it the 439 * indent argument. 440 * 441 * This callback is called from drm_gem_print_info(). 442 */ 443 void (*gem_print_info)(struct drm_printer *p, unsigned int indent, 444 const struct drm_gem_object *obj); 445 446 /** 447 * @gem_create_object: constructor for gem objects 448 * 449 * Hook for allocating the GEM object struct, for use by core 450 * helpers. 451 */ 452 struct drm_gem_object *(*gem_create_object)(struct drm_device *dev, 453 size_t size); 454 455 /* prime: */ 456 /** 457 * @prime_handle_to_fd: 458 * 459 * export handle -> fd (see drm_gem_prime_handle_to_fd() helper) 460 */ 461 int (*prime_handle_to_fd)(struct drm_device *dev, struct drm_file *file_priv, 462 uint32_t handle, uint32_t flags, int *prime_fd); 463 /** 464 * @prime_fd_to_handle: 465 * 466 * import fd -> handle (see drm_gem_prime_fd_to_handle() helper) 467 */ 468 int (*prime_fd_to_handle)(struct drm_device *dev, struct drm_file *file_priv, 469 int prime_fd, uint32_t *handle); 470 /** 471 * @gem_prime_export: 472 * 473 * export GEM -> dmabuf 474 */ 475 struct dma_buf * (*gem_prime_export)(struct drm_device *dev, 476 struct drm_gem_object *obj, int flags); 477 /** 478 * @gem_prime_import: 479 * 480 * import dmabuf -> GEM 481 */ 482 struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev, 483 struct dma_buf *dma_buf); 484 int (*gem_prime_pin)(struct drm_gem_object *obj); 485 void (*gem_prime_unpin)(struct drm_gem_object *obj); 486 struct reservation_object * (*gem_prime_res_obj)( 487 struct drm_gem_object *obj); 488 struct sg_table *(*gem_prime_get_sg_table)(struct drm_gem_object *obj); 489 struct drm_gem_object *(*gem_prime_import_sg_table)( 490 struct drm_device *dev, 491 struct dma_buf_attachment *attach, 492 struct sg_table *sgt); 493 int (*gem_prime_begin_cpu_access)(struct drm_gem_object *obj, > 494 enum dma_data_direction direction); 495 void *(*gem_prime_vmap)(struct drm_gem_object *obj); 496 void (*gem_prime_vunmap)(struct drm_gem_object *obj, void *vaddr); 497 int (*gem_prime_mmap)(struct drm_gem_object *obj, 498 struct vm_area_struct *vma); 499 500 /** 501 * @dumb_create: 502 * 503 * This creates a new dumb buffer in the driver's backing storage manager (GEM, 504 * TTM or something else entirely) and returns the resulting buffer handle. This 505 * handle can then be wrapped up into a framebuffer modeset object. 506 * 507 * Note that userspace is not allowed to use such objects for render 508 * acceleration - drivers must create their own private ioctls for such a use 509 * case. 510 * 511 * Width, height and depth are specified in the &drm_mode_create_dumb 512 * argument. The callback needs to fill the handle, pitch and size for 513 * the created buffer. 514 * 515 * Called by the user via ioctl. 516 * 517 * Returns: 518 * 519 * Zero on success, negative errno on failure. 520 */ 521 int (*dumb_create)(struct drm_file *file_priv, 522 struct drm_device *dev, 523 struct drm_mode_create_dumb *args); 524 /** 525 * @dumb_map_offset: 526 * 527 * Allocate an offset in the drm device node's address space to be able to 528 * memory map a dumb buffer. GEM-based drivers must use 529 * drm_gem_create_mmap_offset() to implement this. 530 * 531 * Called by the user via ioctl. 532 * 533 * Returns: 534 * 535 * Zero on success, negative errno on failure. 536 */ 537 int (*dumb_map_offset)(struct drm_file *file_priv, 538 struct drm_device *dev, uint32_t handle, 539 uint64_t *offset); 540 /** 541 * @dumb_destroy: 542 * 543 * This destroys the userspace handle for the given dumb backing storage buffer. 544 * Since buffer objects must be reference counted in the kernel a buffer object 545 * won't be immediately freed if a framebuffer modeset object still uses it. 546 * 547 * Called by the user via ioctl. 548 * 549 * Returns: 550 * 551 * Zero on success, negative errno on failure. 552 */ 553 int (*dumb_destroy)(struct drm_file *file_priv, 554 struct drm_device *dev, 555 uint32_t handle); 556 557 /** 558 * @gem_vm_ops: Driver private ops for this object 559 */ 560 const struct vm_operations_struct *gem_vm_ops; 561 562 /** @major: driver major number */ 563 int major; 564 /** @minor: driver minor number */ 565 int minor; 566 /** @patchlevel: driver patch level */ 567 int patchlevel; 568 /** @name: driver name */ 569 char *name; 570 /** @desc: driver description */ 571 char *desc; 572 /** @date: driver date */ 573 char *date; 574 575 /** @driver_features: driver features */ 576 u32 driver_features; 577 578 /** 579 * @ioctls: 580 * 581 * Array of driver-private IOCTL description entries. See the chapter on 582 * :ref:`IOCTL support in the userland interfaces 583 * chapter<drm_driver_ioctl>` for the full details. 584 */ 585 586 const struct drm_ioctl_desc *ioctls; 587 /** @num_ioctls: Number of entries in @ioctls. */ 588 int num_ioctls; 589 590 /** 591 * @fops: 592 * 593 * File operations for the DRM device node. See the discussion in 594 * :ref:`file operations<drm_driver_fops>` for in-depth coverage and 595 * some examples. 596 */ 597 const struct file_operations *fops; 598 599 /* Everything below here is for legacy driver, never use! */ 600 /* private: */ 601 602 /* List of devices hanging off this driver with stealth attach. */ 603 struct list_head legacy_dev_list; 604 int (*firstopen) (struct drm_device *); 605 void (*preclose) (struct drm_device *, struct drm_file *file_priv); 606 int (*dma_ioctl) (struct drm_device *dev, void *data, struct drm_file *file_priv); 607 int (*dma_quiescent) (struct drm_device *); 608 int (*context_dtor) (struct drm_device *dev, int context); 609 int dev_priv_size; 610 }; 611 --- 0-DAY kernel test infrastructure Open Source Technology Center https://lists.01.org/pipermail/kbuild-all Intel Corporation
Attachment:
.config.gz
Description: application/gzip
_______________________________________________ dri-devel mailing list dri-devel@xxxxxxxxxxxxxxxxxxxxx https://lists.freedesktop.org/mailman/listinfo/dri-devel