On Tue, Apr 23, 2024 at 02:32:55PM +0200, Amelie Delaunay wrote: > STM32 DMA3 driver supports the 3 hardware configurations of the STM32 DMA3 > controller: > - LPDMA (Low Power): 4 channels, no FIFO > - GPDMA (General Purpose): 16 channels, FIFO from 8 to 32 bytes > - HPDMA (High Performance): 16 channels, FIFO from 8 to 256 bytes > Hardware configuration of the channels is retrieved from the hardware > configuration registers. > The client can specify its channel requirements through device tree. > STM32 DMA3 channels can be individually reserved either because they are > secure, or dedicated to another CPU. > Indeed, channels availability depends on Resource Isolation Framework > (RIF) configuration. RIF grants access to buses with Compartiment ID > (CIF) filtering, secure and privilege level. It also assigns DMA channels > to one or several processors. > DMA channels used by Linux should be CID-filtered and statically assigned > to CID1 or shared with other CPUs but using semaphore. In case CID > filtering is not configured, dma-channel-mask property can be used to > specify available DMA channels to the kernel, otherwise such channels > will be marked as reserved and can't be used by Linux. > > Signed-off-by: Amelie Delaunay <amelie.delaunay@xxxxxxxxxxx> > --- > drivers/dma/stm32/Kconfig | 10 + > drivers/dma/stm32/Makefile | 1 + > drivers/dma/stm32/stm32-dma3.c | 1431 ++++++++++++++++++++++++++++++++ > 3 files changed, 1442 insertions(+) > create mode 100644 drivers/dma/stm32/stm32-dma3.c > > diff --git a/drivers/dma/stm32/Kconfig b/drivers/dma/stm32/Kconfig > index b72ae1a4502f..4d8d8063133b 100644 > --- a/drivers/dma/stm32/Kconfig > +++ b/drivers/dma/stm32/Kconfig > @@ -34,4 +34,14 @@ config STM32_MDMA > If you have a board based on STM32 SoC with such DMA controller > and want to use MDMA say Y here. > > +config STM32_DMA3 > + tristate "STMicroelectronics STM32 DMA3 support" > + select DMA_ENGINE > + select DMA_VIRTUAL_CHANNELS > + help > + Enable support for the on-chip DMA3 controller on STMicroelectronics > + STM32 platforms. > + If you have a board based on STM32 SoC with such DMA3 controller > + and want to use DMA3, say Y here. > + > endif > diff --git a/drivers/dma/stm32/Makefile b/drivers/dma/stm32/Makefile > index 663a3896a881..5082db4b4c1c 100644 > --- a/drivers/dma/stm32/Makefile > +++ b/drivers/dma/stm32/Makefile > @@ -2,3 +2,4 @@ > obj-$(CONFIG_STM32_DMA) += stm32-dma.o > obj-$(CONFIG_STM32_DMAMUX) += stm32-dmamux.o > obj-$(CONFIG_STM32_MDMA) += stm32-mdma.o > +obj-$(CONFIG_STM32_DMA3) += stm32-dma3.o > diff --git a/drivers/dma/stm32/stm32-dma3.c b/drivers/dma/stm32/stm32-dma3.c > new file mode 100644 > index 000000000000..b5493f497d06 > --- /dev/null > +++ b/drivers/dma/stm32/stm32-dma3.c > @@ -0,0 +1,1431 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * STM32 DMA3 controller driver > + * > + * Copyright (C) STMicroelectronics 2024 > + * Author(s): Amelie Delaunay <amelie.delaunay@xxxxxxxxxxx> > + */ > + > +#include <linux/bitfield.h> > +#include <linux/clk.h> > +#include <linux/dma-mapping.h> > +#include <linux/dmaengine.h> > +#include <linux/dmapool.h> > +#include <linux/init.h> > +#include <linux/iopoll.h> > +#include <linux/list.h> > +#include <linux/module.h> > +#include <linux/of_dma.h> > +#include <linux/platform_device.h> > +#include <linux/pm_runtime.h> > +#include <linux/reset.h> > +#include <linux/slab.h> > + > +#include "../virt-dma.h" > + > +#define STM32_DMA3_SECCFGR 0x00 > +#define STM32_DMA3_PRIVCFGR 0x04 > +#define STM32_DMA3_RCFGLOCKR 0x08 > +#define STM32_DMA3_MISR 0x0C > +#define STM32_DMA3_SMISR 0x10 > + > +#define STM32_DMA3_CLBAR(x) (0x50 + 0x80 * (x)) > +#define STM32_DMA3_CCIDCFGR(x) (0x54 + 0x80 * (x)) > +#define STM32_DMA3_CSEMCR(x) (0x58 + 0x80 * (x)) > +#define STM32_DMA3_CFCR(x) (0x5C + 0x80 * (x)) > +#define STM32_DMA3_CSR(x) (0x60 + 0x80 * (x)) > +#define STM32_DMA3_CCR(x) (0x64 + 0x80 * (x)) > +#define STM32_DMA3_CTR1(x) (0x90 + 0x80 * (x)) > +#define STM32_DMA3_CTR2(x) (0x94 + 0x80 * (x)) > +#define STM32_DMA3_CBR1(x) (0x98 + 0x80 * (x)) > +#define STM32_DMA3_CSAR(x) (0x9C + 0x80 * (x)) > +#define STM32_DMA3_CDAR(x) (0xA0 + 0x80 * (x)) > +#define STM32_DMA3_CLLR(x) (0xCC + 0x80 * (x)) > + > +#define STM32_DMA3_HWCFGR13 0xFC0 /* G_PER_CTRL(X) x=8..15 */ > +#define STM32_DMA3_HWCFGR12 0xFC4 /* G_PER_CTRL(X) x=0..7 */ > +#define STM32_DMA3_HWCFGR4 0xFE4 /* G_FIFO_SIZE(X) x=8..15 */ > +#define STM32_DMA3_HWCFGR3 0xFE8 /* G_FIFO_SIZE(X) x=0..7 */ > +#define STM32_DMA3_HWCFGR2 0xFEC /* G_MAX_REQ_ID */ > +#define STM32_DMA3_HWCFGR1 0xFF0 /* G_MASTER_PORTS, G_NUM_CHANNELS, G_Mx_DATA_WIDTH */ > +#define STM32_DMA3_VERR 0xFF4 > + > +/* SECCFGR DMA secure configuration register */ > +#define SECCFGR_SEC(x) BIT(x) > + > +/* MISR DMA non-secure/secure masked interrupt status register */ > +#define MISR_MIS(x) BIT(x) > + > +/* CxLBAR DMA channel x linked_list base address register */ > +#define CLBAR_LBA GENMASK(31, 16) > + > +/* CxCIDCFGR DMA channel x CID register */ > +#define CCIDCFGR_CFEN BIT(0) > +#define CCIDCFGR_SEM_EN BIT(1) > +#define CCIDCFGR_SCID GENMASK(5, 4) > +#define CCIDCFGR_SEM_WLIST_CID0 BIT(16) > +#define CCIDCFGR_SEM_WLIST_CID1 BIT(17) > +#define CCIDCFGR_SEM_WLIST_CID2 BIT(18) > + > +enum ccidcfgr_cid { > + CCIDCFGR_CID0, > + CCIDCFGR_CID1, > + CCIDCFGR_CID2, > +}; > + > +/* CxSEMCR DMA channel x semaphore control register */ > +#define CSEMCR_SEM_MUTEX BIT(0) > +#define CSEMCR_SEM_CCID GENMASK(5, 4) > + > +/* CxFCR DMA channel x flag clear register */ > +#define CFCR_TCF BIT(8) > +#define CFCR_HTF BIT(9) > +#define CFCR_DTEF BIT(10) > +#define CFCR_ULEF BIT(11) > +#define CFCR_USEF BIT(12) > +#define CFCR_SUSPF BIT(13) > + > +/* CxSR DMA channel x status register */ > +#define CSR_IDLEF BIT(0) > +#define CSR_TCF BIT(8) > +#define CSR_HTF BIT(9) > +#define CSR_DTEF BIT(10) > +#define CSR_ULEF BIT(11) > +#define CSR_USEF BIT(12) > +#define CSR_SUSPF BIT(13) > +#define CSR_ALL_F GENMASK(13, 8) > +#define CSR_FIFOL GENMASK(24, 16) > + > +/* CxCR DMA channel x control register */ > +#define CCR_EN BIT(0) > +#define CCR_RESET BIT(1) > +#define CCR_SUSP BIT(2) > +#define CCR_TCIE BIT(8) > +#define CCR_HTIE BIT(9) > +#define CCR_DTEIE BIT(10) > +#define CCR_ULEIE BIT(11) > +#define CCR_USEIE BIT(12) > +#define CCR_SUSPIE BIT(13) > +#define CCR_ALLIE GENMASK(13, 8) > +#define CCR_LSM BIT(16) > +#define CCR_LAP BIT(17) > +#define CCR_PRIO GENMASK(23, 22) > + > +enum ccr_prio { > + CCR_PRIO_LOW, > + CCR_PRIO_MID, > + CCR_PRIO_HIGH, > + CCR_PRIO_VERY_HIGH, > +}; > + > +/* CxTR1 DMA channel x transfer register 1 */ > +#define CTR1_SINC BIT(3) > +#define CTR1_SBL_1 GENMASK(9, 4) > +#define CTR1_DINC BIT(19) > +#define CTR1_DBL_1 GENMASK(25, 20) > +#define CTR1_SDW_LOG2 GENMASK(1, 0) > +#define CTR1_PAM GENMASK(12, 11) > +#define CTR1_SAP BIT(14) > +#define CTR1_DDW_LOG2 GENMASK(17, 16) > +#define CTR1_DAP BIT(30) > + > +enum ctr1_dw { > + CTR1_DW_BYTE, > + CTR1_DW_HWORD, > + CTR1_DW_WORD, > + CTR1_DW_DWORD, /* Depends on HWCFGR1.G_M0_DATA_WIDTH_ENC and .G_M1_DATA_WIDTH_ENC */ > +}; > + > +enum ctr1_pam { > + CTR1_PAM_0S_LT, /* if DDW > SDW, padded with 0s else left-truncated */ > + CTR1_PAM_SE_RT, /* if DDW > SDW, sign extended else right-truncated */ > + CTR1_PAM_PACK_UNPACK, /* FIFO queued */ > +}; > + > +/* CxTR2 DMA channel x transfer register 2 */ > +#define CTR2_REQSEL GENMASK(7, 0) > +#define CTR2_SWREQ BIT(9) > +#define CTR2_DREQ BIT(10) > +#define CTR2_BREQ BIT(11) > +#define CTR2_PFREQ BIT(12) > +#define CTR2_TCEM GENMASK(31, 30) > + > +enum ctr2_tcem { > + CTR2_TCEM_BLOCK, > + CTR2_TCEM_REPEAT_BLOCK, > + CTR2_TCEM_LLI, > + CTR2_TCEM_CHANNEL, > +}; > + > +/* CxBR1 DMA channel x block register 1 */ > +#define CBR1_BNDT GENMASK(15, 0) > + > +/* CxLLR DMA channel x linked-list address register */ > +#define CLLR_LA GENMASK(15, 2) > +#define CLLR_ULL BIT(16) > +#define CLLR_UDA BIT(27) > +#define CLLR_USA BIT(28) > +#define CLLR_UB1 BIT(29) > +#define CLLR_UT2 BIT(30) > +#define CLLR_UT1 BIT(31) > + > +/* HWCFGR13 DMA hardware configuration register 13 x=8..15 */ > +/* HWCFGR12 DMA hardware configuration register 12 x=0..7 */ > +#define G_PER_CTRL(x) (ULL(0x1) << (4 * (x))) > + > +/* HWCFGR4 DMA hardware configuration register 4 x=8..15 */ > +/* HWCFGR3 DMA hardware configuration register 3 x=0..7 */ > +#define G_FIFO_SIZE(x) (ULL(0x7) << (4 * (x))) > + > +#define get_chan_hwcfg(x, mask, reg) (((reg) & (mask)) >> (4 * (x))) > + > +/* HWCFGR2 DMA hardware configuration register 2 */ > +#define G_MAX_REQ_ID GENMASK(7, 0) > + > +/* HWCFGR1 DMA hardware configuration register 1 */ > +#define G_MASTER_PORTS GENMASK(2, 0) > +#define G_NUM_CHANNELS GENMASK(12, 8) > +#define G_M0_DATA_WIDTH_ENC GENMASK(25, 24) > +#define G_M1_DATA_WIDTH_ENC GENMASK(29, 28) > + > +enum stm32_dma3_master_ports { > + AXI64, /* 1x AXI: 64-bit port 0 */ > + AHB32, /* 1x AHB: 32-bit port 0 */ > + AHB32_AHB32, /* 2x AHB: 32-bit port 0 and 32-bit port 1 */ > + AXI64_AHB32, /* 1x AXI 64-bit port 0 and 1x AHB 32-bit port 1 */ > + AXI64_AXI64, /* 2x AXI: 64-bit port 0 and 64-bit port 1 */ > + AXI128_AHB32, /* 1x AXI 128-bit port 0 and 1x AHB 32-bit port 1 */ > +}; > + > +enum stm32_dma3_port_data_width { > + DW_32, /* 32-bit, for AHB */ > + DW_64, /* 64-bit, for AXI */ > + DW_128, /* 128-bit, for AXI */ > + DW_INVALID, > +}; > + > +/* VERR DMA version register */ > +#define VERR_MINREV GENMASK(3, 0) > +#define VERR_MAJREV GENMASK(7, 4) > + > +/* Device tree */ > +/* struct stm32_dma3_dt_conf */ > +/* .ch_conf */ > +#define STM32_DMA3_DT_PRIO GENMASK(1, 0) /* CCR_PRIO */ > +#define STM32_DMA3_DT_FIFO GENMASK(7, 4) > +/* .tr_conf */ > +#define STM32_DMA3_DT_SINC BIT(0) /* CTR1_SINC */ > +#define STM32_DMA3_DT_SAP BIT(1) /* CTR1_SAP */ > +#define STM32_DMA3_DT_DINC BIT(4) /* CTR1_DINC */ > +#define STM32_DMA3_DT_DAP BIT(5) /* CTR1_DAP */ > +#define STM32_DMA3_DT_BREQ BIT(8) /* CTR2_BREQ */ > +#define STM32_DMA3_DT_PFREQ BIT(9) /* CTR2_PFREQ */ > +#define STM32_DMA3_DT_TCEM GENMASK(13, 12) /* CTR2_TCEM */ > + > +#define STM32_DMA3_MAX_BLOCK_SIZE ALIGN_DOWN(CBR1_BNDT, 64) > +#define port_is_ahb(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \ > + ((_maxdw) != DW_INVALID) && ((_maxdw) == DW_32); }) > +#define port_is_axi(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \ > + ((_maxdw) != DW_INVALID) && ((_maxdw) != DW_32); }) > +#define get_chan_max_dw(maxdw, maxburst)((port_is_ahb(maxdw) || \ > + (maxburst) < DMA_SLAVE_BUSWIDTH_8_BYTES) ? \ > + DMA_SLAVE_BUSWIDTH_4_BYTES : DMA_SLAVE_BUSWIDTH_8_BYTES) > + > +/* Static linked-list data structure (depends on update bits UT1/UT2/UB1/USA/UDA/ULL) */ > +struct stm32_dma3_hwdesc { > + u32 ctr1; > + u32 ctr2; > + u32 cbr1; > + u32 csar; > + u32 cdar; > + u32 cllr; > +} __aligned(32); > + > +/* > + * CLLR_LA / sizeof(struct stm32_dma3_hwdesc) represents the number of hdwdesc that can be addressed > + * by the pointer to the next linked-list data structure. The __aligned forces the 32-byte > + * alignment. So use hardcoded 32. Multiplied by the max block size of each item, it represents > + * the sg size limitation. > + */ > +#define STM32_DMA3_MAX_SEG_SIZE ((CLLR_LA / 32) * STM32_DMA3_MAX_BLOCK_SIZE) > + > +/* > + * Linked-list items > + */ > +struct stm32_dma3_lli { > + struct stm32_dma3_hwdesc *hwdesc; > + dma_addr_t hwdesc_addr; > +}; > + > +struct stm32_dma3_swdesc { > + struct virt_dma_desc vdesc; > + u32 ccr; > + bool cyclic; > + u32 lli_size; > + struct stm32_dma3_lli lli[] __counted_by(lli_size); > +}; > + > +struct stm32_dma3_dt_conf { > + u32 ch_id; > + u32 req_line; > + u32 ch_conf; > + u32 tr_conf; > +}; > + > +struct stm32_dma3_chan { > + struct virt_dma_chan vchan; > + u32 id; > + int irq; > + u32 fifo_size; > + u32 max_burst; > + bool semaphore_mode; > + struct stm32_dma3_dt_conf dt_config; > + struct dma_slave_config dma_config; > + struct dma_pool *lli_pool; > + struct stm32_dma3_swdesc *swdesc; > + enum ctr2_tcem tcem; > + u32 dma_status; > +}; > + > +struct stm32_dma3_ddata { > + struct dma_device dma_dev; > + void __iomem *base; > + struct clk *clk; > + struct stm32_dma3_chan *chans; > + u32 dma_channels; > + u32 dma_requests; > + enum stm32_dma3_port_data_width ports_max_dw[2]; > +}; > + > +static inline struct stm32_dma3_ddata *to_stm32_dma3_ddata(struct stm32_dma3_chan *chan) > +{ > + return container_of(chan->vchan.chan.device, struct stm32_dma3_ddata, dma_dev); > +} > + > +static inline struct stm32_dma3_chan *to_stm32_dma3_chan(struct dma_chan *c) > +{ > + return container_of(c, struct stm32_dma3_chan, vchan.chan); > +} > + > +static inline struct stm32_dma3_swdesc *to_stm32_dma3_swdesc(struct virt_dma_desc *vdesc) > +{ > + return container_of(vdesc, struct stm32_dma3_swdesc, vdesc); > +} > + > +static struct device *chan2dev(struct stm32_dma3_chan *chan) > +{ > + return &chan->vchan.chan.dev->device; > +} > + > +static void stm32_dma3_chan_dump_reg(struct stm32_dma3_chan *chan) > +{ > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + struct device *dev = chan2dev(chan); > + u32 id = chan->id, offset; > + > + offset = STM32_DMA3_SECCFGR; > + dev_dbg(dev, "SECCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_PRIVCFGR; > + dev_dbg(dev, "PRIVCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CCIDCFGR(id); > + dev_dbg(dev, "C%dCIDCFGR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CSEMCR(id); > + dev_dbg(dev, "C%dSEMCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CSR(id); > + dev_dbg(dev, "C%dSR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CCR(id); > + dev_dbg(dev, "C%dCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CTR1(id); > + dev_dbg(dev, "C%dTR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CTR2(id); > + dev_dbg(dev, "C%dTR2(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CBR1(id); > + dev_dbg(dev, "C%dBR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CSAR(id); > + dev_dbg(dev, "C%dSAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CDAR(id); > + dev_dbg(dev, "C%dDAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CLLR(id); > + dev_dbg(dev, "C%dLLR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > + offset = STM32_DMA3_CLBAR(id); > + dev_dbg(dev, "C%dLBAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset)); > +} > + > +static void stm32_dma3_chan_dump_hwdesc(struct stm32_dma3_chan *chan, > + struct stm32_dma3_swdesc *swdesc) > +{ > + struct stm32_dma3_hwdesc *hwdesc; > + int i; > + > + for (i = 0; i < swdesc->lli_size; i++) { > + hwdesc = swdesc->lli[i].hwdesc; > + if (i) > + dev_dbg(chan2dev(chan), "V\n"); > + dev_dbg(chan2dev(chan), "[%d]@%pad\n", i, &swdesc->lli[i].hwdesc_addr); > + dev_dbg(chan2dev(chan), "| C%dTR1: %08x\n", chan->id, hwdesc->ctr1); > + dev_dbg(chan2dev(chan), "| C%dTR2: %08x\n", chan->id, hwdesc->ctr2); > + dev_dbg(chan2dev(chan), "| C%dBR1: %08x\n", chan->id, hwdesc->cbr1); > + dev_dbg(chan2dev(chan), "| C%dSAR: %08x\n", chan->id, hwdesc->csar); > + dev_dbg(chan2dev(chan), "| C%dDAR: %08x\n", chan->id, hwdesc->cdar); > + dev_dbg(chan2dev(chan), "| C%dLLR: %08x\n", chan->id, hwdesc->cllr); > + } > + > + if (swdesc->cyclic) { > + dev_dbg(chan2dev(chan), "|\n"); > + dev_dbg(chan2dev(chan), "-->[0]@%pad\n", &swdesc->lli[0].hwdesc_addr); > + } else { > + dev_dbg(chan2dev(chan), "X\n"); > + } > +} > + > +static struct stm32_dma3_swdesc *stm32_dma3_chan_desc_alloc(struct stm32_dma3_chan *chan, u32 count) > +{ > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + struct stm32_dma3_swdesc *swdesc; > + int i; > + > + /* > + * If the memory to be allocated for the number of hwdesc (6 u32 members but 32-bytes > + * aligned) is greater than the maximum address of CLLR_LA, then the last items can't be > + * addressed, so abort the allocation. > + */ > + if ((count * 32) > CLLR_LA) { > + dev_err(chan2dev(chan), "Transfer is too big (> %luB)\n", STM32_DMA3_MAX_SEG_SIZE); > + return NULL; > + } > + > + swdesc = kzalloc(struct_size(swdesc, lli, count), GFP_NOWAIT); > + if (!swdesc) > + return NULL; > + > + for (i = 0; i < count; i++) { > + swdesc->lli[i].hwdesc = dma_pool_zalloc(chan->lli_pool, GFP_NOWAIT, > + &swdesc->lli[i].hwdesc_addr); > + if (!swdesc->lli[i].hwdesc) > + goto err_pool_free; > + } > + swdesc->lli_size = count; > + swdesc->ccr = 0; > + > + /* Set LL base address */ > + writel_relaxed(swdesc->lli[0].hwdesc_addr & CLBAR_LBA, > + ddata->base + STM32_DMA3_CLBAR(chan->id)); > + > + /* Set LL allocated port */ > + swdesc->ccr &= ~CCR_LAP; > + > + return swdesc; > + > +err_pool_free: > + dev_err(chan2dev(chan), "Failed to alloc descriptors\n"); > + while (--i >= 0) > + dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr); > + kfree(swdesc); > + > + return NULL; > +} > + > +static void stm32_dma3_chan_desc_free(struct stm32_dma3_chan *chan, > + struct stm32_dma3_swdesc *swdesc) > +{ > + int i; > + > + for (i = 0; i < swdesc->lli_size; i++) > + dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr); > + > + kfree(swdesc); > +} > + > +static void stm32_dma3_chan_vdesc_free(struct virt_dma_desc *vdesc) > +{ > + struct stm32_dma3_swdesc *swdesc = to_stm32_dma3_swdesc(vdesc); > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(vdesc->tx.chan); > + > + stm32_dma3_chan_desc_free(chan, swdesc); > +} > + > +static void stm32_dma3_check_user_setting(struct stm32_dma3_chan *chan) > +{ > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + struct device *dev = chan2dev(chan); > + u32 ctr1 = readl_relaxed(ddata->base + STM32_DMA3_CTR1(chan->id)); > + u32 cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id)); > + u32 csar = readl_relaxed(ddata->base + STM32_DMA3_CSAR(chan->id)); > + u32 cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id)); > + u32 cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id)); > + u32 bndt = FIELD_GET(CBR1_BNDT, cbr1); > + u32 sdw = 1 << FIELD_GET(CTR1_SDW_LOG2, ctr1); > + u32 ddw = 1 << FIELD_GET(CTR1_DDW_LOG2, ctr1); > + u32 sap = FIELD_GET(CTR1_SAP, ctr1); > + u32 dap = FIELD_GET(CTR1_DAP, ctr1); > + > + if (!bndt && !FIELD_GET(CLLR_UB1, cllr)) > + dev_err(dev, "null source block size and no update of this value\n"); > + if (bndt % sdw) > + dev_err(dev, "source block size not multiple of src data width\n"); > + if (FIELD_GET(CTR1_PAM, ctr1) == CTR1_PAM_PACK_UNPACK && bndt % ddw) > + dev_err(dev, "(un)packing mode w/ src block size not multiple of dst data width\n"); > + if (csar % sdw) > + dev_err(dev, "unaligned source address not multiple of src data width\n"); > + if (cdar % ddw) > + dev_err(dev, "unaligned destination address not multiple of dst data width\n"); > + if (sdw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[sap])) > + dev_err(dev, "double-word source data width not supported on port %u\n", sap); > + if (ddw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[dap])) > + dev_err(dev, "double-word destination data width not supported on port %u\n", dap); > +} > + > +static void stm32_dma3_chan_prep_hwdesc(struct stm32_dma3_chan *chan, > + struct stm32_dma3_swdesc *swdesc, > + u32 curr, dma_addr_t src, dma_addr_t dst, u32 len, > + u32 ctr1, u32 ctr2, bool is_last, bool is_cyclic) > +{ > + struct stm32_dma3_hwdesc *hwdesc; > + dma_addr_t next_lli; > + u32 next = curr + 1; > + > + hwdesc = swdesc->lli[curr].hwdesc; > + hwdesc->ctr1 = ctr1; > + hwdesc->ctr2 = ctr2; > + hwdesc->cbr1 = FIELD_PREP(CBR1_BNDT, len); > + hwdesc->csar = src; > + hwdesc->cdar = dst; > + > + if (is_last) { > + if (is_cyclic) > + next_lli = swdesc->lli[0].hwdesc_addr; > + else > + next_lli = 0; > + } else { > + next_lli = swdesc->lli[next].hwdesc_addr; > + } > + > + hwdesc->cllr = 0; > + if (next_lli) { > + hwdesc->cllr |= CLLR_UT1 | CLLR_UT2 | CLLR_UB1; > + hwdesc->cllr |= CLLR_USA | CLLR_UDA | CLLR_ULL; > + hwdesc->cllr |= (next_lli & CLLR_LA); > + } > +} > + > +static enum dma_slave_buswidth stm32_dma3_get_max_dw(u32 chan_max_burst, > + enum stm32_dma3_port_data_width port_max_dw, > + u32 len, dma_addr_t addr) > +{ > + enum dma_slave_buswidth max_dw = get_chan_max_dw(port_max_dw, chan_max_burst); > + > + /* len and addr must be a multiple of dw */ > + return 1 << __ffs(len | addr | max_dw); > +} > + > +static u32 stm32_dma3_get_max_burst(u32 len, enum dma_slave_buswidth dw, u32 chan_max_burst) > +{ > + u32 max_burst = chan_max_burst ? chan_max_burst / dw : 1; > + > + /* len is a multiple of dw, so if len is < chan_max_burst, shorten burst */ > + if (len < chan_max_burst) > + max_burst = len / dw; > + > + /* > + * HW doesn't modify the burst if burst size <= half of the fifo size. > + * If len is not a multiple of burst size, last burst is shortened by HW. > + */ > + return max_burst; > +} > + > +static int stm32_dma3_chan_prep_hw(struct stm32_dma3_chan *chan, enum dma_transfer_direction dir, > + u32 *ccr, u32 *ctr1, u32 *ctr2, > + dma_addr_t src_addr, dma_addr_t dst_addr, u32 len) > +{ > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + struct dma_device dma_device = ddata->dma_dev; > + u32 sdw, ddw, sbl_max, dbl_max, tcem; > + u32 _ctr1 = 0, _ctr2 = 0; > + u32 ch_conf = chan->dt_config.ch_conf; > + u32 tr_conf = chan->dt_config.tr_conf; > + u32 sap = FIELD_GET(STM32_DMA3_DT_SAP, tr_conf), sap_max_dw; > + u32 dap = FIELD_GET(STM32_DMA3_DT_DAP, tr_conf), dap_max_dw; > + > + dev_dbg(chan2dev(chan), "%s from %pad to %pad\n", > + dmaengine_get_direction_text(dir), &src_addr, &dst_addr); > + > + sdw = chan->dma_config.src_addr_width ? : get_chan_max_dw(sap, chan->max_burst); > + ddw = chan->dma_config.dst_addr_width ? : get_chan_max_dw(dap, chan->max_burst); > + sbl_max = chan->dma_config.src_maxburst ? : 1; > + dbl_max = chan->dma_config.dst_maxburst ? : 1; > + > + /* Following conditions would raise User Setting Error interrupt */ > + if (!(dma_device.src_addr_widths & BIT(sdw)) || !(dma_device.dst_addr_widths & BIT(ddw))) { > + dev_err(chan2dev(chan), "Bus width (src=%u, dst=%u) not supported\n", sdw, ddw); > + return -EINVAL; > + } > + > + if (ddata->ports_max_dw[1] == DW_INVALID && (sap || dap)) { > + dev_err(chan2dev(chan), "Only one master port, port 1 is not supported\n"); > + return -EINVAL; > + } > + > + sap_max_dw = ddata->ports_max_dw[sap]; > + dap_max_dw = ddata->ports_max_dw[dap]; > + if ((port_is_ahb(sap_max_dw) && sdw == DMA_SLAVE_BUSWIDTH_8_BYTES) || > + (port_is_ahb(dap_max_dw) && ddw == DMA_SLAVE_BUSWIDTH_8_BYTES)) { > + dev_err(chan2dev(chan), > + "8 bytes buswidth (src=%u, dst=%u) not supported on port (sap=%u, dap=%u\n", > + sdw, ddw, sap, dap); > + return -EINVAL; > + } > + > + if (FIELD_GET(STM32_DMA3_DT_SINC, tr_conf)) > + _ctr1 |= CTR1_SINC; > + if (sap) > + _ctr1 |= CTR1_SAP; > + if (FIELD_GET(STM32_DMA3_DT_DINC, tr_conf)) > + _ctr1 |= CTR1_DINC; > + if (dap) > + _ctr1 |= CTR1_DAP; > + > + _ctr2 |= FIELD_PREP(CTR2_REQSEL, chan->dt_config.req_line) & ~CTR2_SWREQ; > + if (FIELD_GET(STM32_DMA3_DT_BREQ, tr_conf)) > + _ctr2 |= CTR2_BREQ; > + if (dir == DMA_DEV_TO_MEM && FIELD_GET(STM32_DMA3_DT_PFREQ, tr_conf)) > + _ctr2 |= CTR2_PFREQ; > + tcem = FIELD_GET(STM32_DMA3_DT_TCEM, tr_conf); > + _ctr2 |= FIELD_PREP(CTR2_TCEM, tcem); > + > + /* Store TCEM to know on which event TC flag occurred */ > + chan->tcem = tcem; > + /* Store direction for residue computation */ > + chan->dma_config.direction = dir; > + > + switch (dir) { > + case DMA_MEM_TO_DEV: > + /* Set destination (device) data width and burst */ > + ddw = min_t(u32, ddw, stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, > + len, dst_addr)); > + dbl_max = min_t(u32, dbl_max, stm32_dma3_get_max_burst(len, ddw, chan->max_burst)); > + > + /* Set source (memory) data width and burst */ > + sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr); > + sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst); > + > + _ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw)); > + _ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1); > + _ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw)); > + _ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1); > + > + if (ddw != sdw) { > + _ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK); > + /* Should never reach this case as ddw is clamped down */ > + if (len & (ddw - 1)) { > + dev_err(chan2dev(chan), > + "Packing mode is enabled and len is not multiple of ddw"); > + return -EINVAL; > + } > + } > + > + /* dst = dev */ > + _ctr2 |= CTR2_DREQ; > + > + break; > + > + case DMA_DEV_TO_MEM: > + /* Set source (device) data width and burst */ > + sdw = min_t(u32, sdw, stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, > + len, src_addr)); > + sbl_max = min_t(u32, sbl_max, stm32_dma3_get_max_burst(len, sdw, chan->max_burst)); > + > + /* Set destination (memory) data width and burst */ > + ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr); > + dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst); > + > + _ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw)); > + _ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1); > + _ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw)); > + _ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1); > + > + if (ddw != sdw) { > + _ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK); > + /* Should never reach this case as ddw is clamped down */ > + if (len & (ddw - 1)) { > + dev_err(chan2dev(chan), > + "Packing mode is enabled and len is not multiple of ddw\n"); > + return -EINVAL; > + } > + } > + > + /* dst = mem */ > + _ctr2 &= ~CTR2_DREQ; > + > + break; > + > + default: > + dev_err(chan2dev(chan), "Direction %s not supported\n", > + dmaengine_get_direction_text(dir)); > + return -EINVAL; > + } > + > + *ccr |= FIELD_PREP(CCR_PRIO, FIELD_GET(STM32_DMA3_DT_PRIO, ch_conf)); > + *ctr1 = _ctr1; > + *ctr2 = _ctr2; > + > + dev_dbg(chan2dev(chan), "%s: sdw=%u bytes sbl=%u beats ddw=%u bytes dbl=%u beats\n", > + __func__, sdw, sbl_max, ddw, dbl_max); > + > + return 0; > +} > + > +static void stm32_dma3_chan_start(struct stm32_dma3_chan *chan) > +{ > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + struct virt_dma_desc *vdesc; > + struct stm32_dma3_hwdesc *hwdesc; > + u32 id = chan->id; > + u32 csr, ccr; > + > + vdesc = vchan_next_desc(&chan->vchan); > + if (!vdesc) { > + chan->swdesc = NULL; > + return; > + } > + list_del(&vdesc->node); > + > + chan->swdesc = to_stm32_dma3_swdesc(vdesc); > + hwdesc = chan->swdesc->lli[0].hwdesc; > + > + stm32_dma3_chan_dump_hwdesc(chan, chan->swdesc); > + > + writel_relaxed(chan->swdesc->ccr, ddata->base + STM32_DMA3_CCR(id)); > + writel_relaxed(hwdesc->ctr1, ddata->base + STM32_DMA3_CTR1(id)); > + writel_relaxed(hwdesc->ctr2, ddata->base + STM32_DMA3_CTR2(id)); > + writel_relaxed(hwdesc->cbr1, ddata->base + STM32_DMA3_CBR1(id)); > + writel_relaxed(hwdesc->csar, ddata->base + STM32_DMA3_CSAR(id)); > + writel_relaxed(hwdesc->cdar, ddata->base + STM32_DMA3_CDAR(id)); > + writel_relaxed(hwdesc->cllr, ddata->base + STM32_DMA3_CLLR(id)); > + > + /* Clear any pending interrupts */ > + csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(id)); > + if (csr & CSR_ALL_F) > + writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(id)); > + > + stm32_dma3_chan_dump_reg(chan); > + > + ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(id)); > + writel_relaxed(ccr | CCR_EN, ddata->base + STM32_DMA3_CCR(id)); This one should use writel instead of writel_relaxed because it need dma_wmb() as barrier for preious write complete. Frank > + > + chan->dma_status = DMA_IN_PROGRESS; > + > + dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); > +} > + > +static int stm32_dma3_chan_suspend(struct stm32_dma3_chan *chan, bool susp) > +{ > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + u32 csr, ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN; > + int ret = 0; > + > + if (susp) > + ccr |= CCR_SUSP; > + else > + ccr &= ~CCR_SUSP; > + > + writel_relaxed(ccr, ddata->base + STM32_DMA3_CCR(chan->id)); > + > + if (susp) { > + ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr, > + csr & CSR_SUSPF, 1, 10); > + if (!ret) > + writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id)); > + > + stm32_dma3_chan_dump_reg(chan); > + } > + > + return ret; > +} > + > +static void stm32_dma3_chan_reset(struct stm32_dma3_chan *chan) > +{ > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + u32 ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN; > + > + writel_relaxed(ccr |= CCR_RESET, ddata->base + STM32_DMA3_CCR(chan->id)); > +} > + > +static int stm32_dma3_chan_stop(struct stm32_dma3_chan *chan) > +{ > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + u32 ccr; > + int ret = 0; > + > + chan->dma_status = DMA_COMPLETE; > + > + /* Disable interrupts */ > + ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)); > + writel_relaxed(ccr & ~(CCR_ALLIE | CCR_EN), ddata->base + STM32_DMA3_CCR(chan->id)); > + > + if (!(ccr & CCR_SUSP) && (ccr & CCR_EN)) { > + /* Suspend the channel */ > + ret = stm32_dma3_chan_suspend(chan, true); > + if (ret) > + dev_warn(chan2dev(chan), "%s: timeout, data might be lost\n", __func__); > + } > + > + /* > + * Reset the channel: this causes the reset of the FIFO and the reset of the channel > + * internal state, the reset of CCR_EN and CCR_SUSP bits. > + */ > + stm32_dma3_chan_reset(chan); > + > + return ret; > +} > + > +static void stm32_dma3_chan_complete(struct stm32_dma3_chan *chan) > +{ > + if (!chan->swdesc) > + return; > + > + vchan_cookie_complete(&chan->swdesc->vdesc); > + chan->swdesc = NULL; > + stm32_dma3_chan_start(chan); > +} > + > +static irqreturn_t stm32_dma3_chan_irq(int irq, void *devid) > +{ > + struct stm32_dma3_chan *chan = devid; > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + u32 misr, csr, ccr; > + > + spin_lock(&chan->vchan.lock); > + > + misr = readl_relaxed(ddata->base + STM32_DMA3_MISR); > + if (!(misr & MISR_MIS(chan->id))) { > + spin_unlock(&chan->vchan.lock); > + return IRQ_NONE; > + } > + > + csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id)); > + ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & CCR_ALLIE; > + > + if (csr & CSR_TCF && ccr & CCR_TCIE) { > + if (chan->swdesc->cyclic) > + vchan_cyclic_callback(&chan->swdesc->vdesc); > + else > + stm32_dma3_chan_complete(chan); > + } > + > + if (csr & CSR_USEF && ccr & CCR_USEIE) { > + dev_err(chan2dev(chan), "User setting error\n"); > + chan->dma_status = DMA_ERROR; > + /* CCR.EN automatically cleared by HW */ > + stm32_dma3_check_user_setting(chan); > + stm32_dma3_chan_reset(chan); > + } > + > + if (csr & CSR_ULEF && ccr & CCR_ULEIE) { > + dev_err(chan2dev(chan), "Update link transfer error\n"); > + chan->dma_status = DMA_ERROR; > + /* CCR.EN automatically cleared by HW */ > + stm32_dma3_chan_reset(chan); > + } > + > + if (csr & CSR_DTEF && ccr & CCR_DTEIE) { > + dev_err(chan2dev(chan), "Data transfer error\n"); > + chan->dma_status = DMA_ERROR; > + /* CCR.EN automatically cleared by HW */ > + stm32_dma3_chan_reset(chan); > + } > + > + /* > + * Half Transfer Interrupt may be disabled but Half Transfer Flag can be set, > + * ensure HTF flag to be cleared, with other flags. > + */ > + csr &= (ccr | CCR_HTIE); > + > + if (csr) > + writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(chan->id)); > + > + spin_unlock(&chan->vchan.lock); > + > + return IRQ_HANDLED; > +} > + > +static int stm32_dma3_alloc_chan_resources(struct dma_chan *c) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + u32 id = chan->id, csemcr, ccid; > + int ret; > + > + ret = pm_runtime_resume_and_get(ddata->dma_dev.dev); > + if (ret < 0) > + return ret; It doesn't prefer runtime pm get at alloc dma chan, many client driver doesn't actual user dma when allocate dma chan. Ideally, resume get when issue_pending. Please refer pl330.c. You may add runtime pm later after enablement patch. Frank > + > + /* Ensure the channel is free */ > + if (chan->semaphore_mode && > + readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)) & CSEMCR_SEM_MUTEX) { > + ret = -EBUSY; > + goto err_put_sync; > + } > + > + chan->lli_pool = dmam_pool_create(dev_name(&c->dev->device), c->device->dev, > + sizeof(struct stm32_dma3_hwdesc), > + __alignof__(struct stm32_dma3_hwdesc), 0); > + if (!chan->lli_pool) { > + dev_err(chan2dev(chan), "Failed to create LLI pool\n"); > + ret = -ENOMEM; > + goto err_put_sync; > + } > + > + /* Take the channel semaphore */ > + if (chan->semaphore_mode) { > + writel_relaxed(CSEMCR_SEM_MUTEX, ddata->base + STM32_DMA3_CSEMCR(id)); > + csemcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(id)); > + ccid = FIELD_GET(CSEMCR_SEM_CCID, csemcr); > + /* Check that the channel is well taken */ > + if (ccid != CCIDCFGR_CID1) { > + dev_err(chan2dev(chan), "Not under CID1 control (in-use by CID%d)\n", ccid); > + ret = -EPERM; > + goto err_pool_destroy; > + } > + dev_dbg(chan2dev(chan), "Under CID1 control (semcr=0x%08x)\n", csemcr); > + } > + > + return 0; > + > +err_pool_destroy: > + dmam_pool_destroy(chan->lli_pool); > + chan->lli_pool = NULL; > + > +err_put_sync: > + pm_runtime_put_sync(ddata->dma_dev.dev); > + > + return ret; > +} > + > +static void stm32_dma3_free_chan_resources(struct dma_chan *c) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + unsigned long flags; > + > + /* Ensure channel is in idle state */ > + spin_lock_irqsave(&chan->vchan.lock, flags); > + stm32_dma3_chan_stop(chan); > + chan->swdesc = NULL; > + spin_unlock_irqrestore(&chan->vchan.lock, flags); > + > + vchan_free_chan_resources(to_virt_chan(c)); > + > + dmam_pool_destroy(chan->lli_pool); > + chan->lli_pool = NULL; > + > + /* Release the channel semaphore */ > + if (chan->semaphore_mode) > + writel_relaxed(0, ddata->base + STM32_DMA3_CSEMCR(chan->id)); > + > + pm_runtime_put_sync(ddata->dma_dev.dev); > + > + /* Reset configuration */ > + memset(&chan->dt_config, 0, sizeof(chan->dt_config)); > + memset(&chan->dma_config, 0, sizeof(chan->dma_config)); > +} > + > +static struct dma_async_tx_descriptor *stm32_dma3_prep_slave_sg(struct dma_chan *c, > + struct scatterlist *sgl, > + unsigned int sg_len, > + enum dma_transfer_direction dir, > + unsigned long flags, void *context) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + struct stm32_dma3_swdesc *swdesc; > + struct scatterlist *sg; > + size_t len; > + dma_addr_t sg_addr, dev_addr, src, dst; > + u32 i, j, count, ctr1, ctr2; > + int ret; > + > + count = sg_len; > + for_each_sg(sgl, sg, sg_len, i) { > + len = sg_dma_len(sg); > + if (len > STM32_DMA3_MAX_BLOCK_SIZE) > + count += DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE) - 1; > + } > + > + swdesc = stm32_dma3_chan_desc_alloc(chan, count); > + if (!swdesc) > + return NULL; > + > + /* sg_len and i correspond to the initial sgl; count and j correspond to the hwdesc LL */ > + j = 0; > + for_each_sg(sgl, sg, sg_len, i) { > + sg_addr = sg_dma_address(sg); > + dev_addr = (dir == DMA_MEM_TO_DEV) ? chan->dma_config.dst_addr : > + chan->dma_config.src_addr; > + len = sg_dma_len(sg); > + > + do { > + size_t chunk = min_t(size_t, len, STM32_DMA3_MAX_BLOCK_SIZE); > + > + if (dir == DMA_MEM_TO_DEV) { > + src = sg_addr; > + dst = dev_addr; > + > + ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2, > + src, dst, chunk); > + > + if (FIELD_GET(CTR1_DINC, ctr1)) > + dev_addr += chunk; > + } else { /* (dir == DMA_DEV_TO_MEM || dir == DMA_MEM_TO_MEM) */ > + src = dev_addr; > + dst = sg_addr; > + > + ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2, > + src, dst, chunk); > + > + if (FIELD_GET(CTR1_SINC, ctr1)) > + dev_addr += chunk; > + } > + > + if (ret) > + goto err_desc_free; > + > + stm32_dma3_chan_prep_hwdesc(chan, swdesc, j, src, dst, chunk, > + ctr1, ctr2, j == (count - 1), false); > + > + sg_addr += chunk; > + len -= chunk; > + j++; > + } while (len); > + } > + > + /* Enable Error interrupts */ > + swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE; > + /* Enable Transfer state interrupts */ > + swdesc->ccr |= CCR_TCIE; > + > + swdesc->cyclic = false; > + > + return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags); > + > +err_desc_free: > + stm32_dma3_chan_desc_free(chan, swdesc); > + > + return NULL; > +} > + > +static void stm32_dma3_caps(struct dma_chan *c, struct dma_slave_caps *caps) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + > + if (!chan->fifo_size) { > + caps->max_burst = 0; > + caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); > + caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); > + } else { > + /* Burst transfer should not exceed half of the fifo size */ > + caps->max_burst = chan->max_burst; > + if (caps->max_burst < DMA_SLAVE_BUSWIDTH_8_BYTES) { > + caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); > + caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); > + } > + } > +} > + > +static int stm32_dma3_config(struct dma_chan *c, struct dma_slave_config *config) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + > + memcpy(&chan->dma_config, config, sizeof(*config)); > + > + return 0; > +} > + > +static int stm32_dma3_terminate_all(struct dma_chan *c) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + unsigned long flags; > + LIST_HEAD(head); > + > + spin_lock_irqsave(&chan->vchan.lock, flags); > + > + if (chan->swdesc) { > + vchan_terminate_vdesc(&chan->swdesc->vdesc); > + chan->swdesc = NULL; > + } > + > + stm32_dma3_chan_stop(chan); > + > + vchan_get_all_descriptors(&chan->vchan, &head); > + > + spin_unlock_irqrestore(&chan->vchan.lock, flags); > + vchan_dma_desc_free_list(&chan->vchan, &head); > + > + dev_dbg(chan2dev(chan), "vchan %pK: terminated\n", &chan->vchan); > + > + return 0; > +} > + > +static void stm32_dma3_synchronize(struct dma_chan *c) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + > + vchan_synchronize(&chan->vchan); > +} > + > +static void stm32_dma3_issue_pending(struct dma_chan *c) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + unsigned long flags; > + > + spin_lock_irqsave(&chan->vchan.lock, flags); > + > + if (vchan_issue_pending(&chan->vchan) && !chan->swdesc) { > + dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); > + stm32_dma3_chan_start(chan); > + } > + > + spin_unlock_irqrestore(&chan->vchan.lock, flags); > +} > + > +static bool stm32_dma3_filter_fn(struct dma_chan *c, void *fn_param) > +{ > + struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c); > + struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan); > + struct stm32_dma3_dt_conf *conf = fn_param; > + u32 mask, semcr; > + int ret; > + > + dev_dbg(c->device->dev, "%s(%s): req_line=%d ch_conf=%08x tr_conf=%08x\n", > + __func__, dma_chan_name(c), conf->req_line, conf->ch_conf, conf->tr_conf); > + > + if (!of_property_read_u32(c->device->dev->of_node, "dma-channel-mask", &mask)) > + if (!(mask & BIT(chan->id))) > + return false; > + > + ret = pm_runtime_resume_and_get(ddata->dma_dev.dev); > + if (ret < 0) > + return false; > + semcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)); > + pm_runtime_put_sync(ddata->dma_dev.dev); > + > + /* Check if chan is free */ > + if (semcr & CSEMCR_SEM_MUTEX) > + return false; > + > + /* Check if chan fifo fits well */ > + if (FIELD_GET(STM32_DMA3_DT_FIFO, conf->ch_conf) != chan->fifo_size) > + return false; > + > + return true; > +} > + > +static struct dma_chan *stm32_dma3_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) > +{ > + struct stm32_dma3_ddata *ddata = ofdma->of_dma_data; > + dma_cap_mask_t mask = ddata->dma_dev.cap_mask; > + struct stm32_dma3_dt_conf conf; > + struct stm32_dma3_chan *chan; > + struct dma_chan *c; > + > + if (dma_spec->args_count < 3) { > + dev_err(ddata->dma_dev.dev, "Invalid args count\n"); > + return NULL; > + } > + > + conf.req_line = dma_spec->args[0]; > + conf.ch_conf = dma_spec->args[1]; > + conf.tr_conf = dma_spec->args[2]; > + > + if (conf.req_line >= ddata->dma_requests) { > + dev_err(ddata->dma_dev.dev, "Invalid request line\n"); > + return NULL; > + } > + > + /* Request dma channel among the generic dma controller list */ > + c = dma_request_channel(mask, stm32_dma3_filter_fn, &conf); > + if (!c) { > + dev_err(ddata->dma_dev.dev, "No suitable channel found\n"); > + return NULL; > + } > + > + chan = to_stm32_dma3_chan(c); > + chan->dt_config = conf; > + > + return c; > +} > + > +static u32 stm32_dma3_check_rif(struct stm32_dma3_ddata *ddata) > +{ > + u32 chan_reserved, mask = 0, i, ccidcfgr, invalid_cid = 0; > + > + /* Reserve Secure channels */ > + chan_reserved = readl_relaxed(ddata->base + STM32_DMA3_SECCFGR); > + > + /* > + * CID filtering must be configured to ensure that the DMA3 channel will inherit the CID of > + * the processor which is configuring and using the given channel. > + * In case CID filtering is not configured, dma-channel-mask property can be used to > + * specify available DMA channels to the kernel. > + */ > + of_property_read_u32(ddata->dma_dev.dev->of_node, "dma-channel-mask", &mask); > + > + /* Reserve !CID-filtered not in dma-channel-mask, static CID != CID1, CID1 not allowed */ > + for (i = 0; i < ddata->dma_channels; i++) { > + ccidcfgr = readl_relaxed(ddata->base + STM32_DMA3_CCIDCFGR(i)); > + > + if (!(ccidcfgr & CCIDCFGR_CFEN)) { /* !CID-filtered */ > + invalid_cid |= BIT(i); > + if (!(mask & BIT(i))) /* Not in dma-channel-mask */ > + chan_reserved |= BIT(i); > + } else { /* CID-filtered */ > + if (!(ccidcfgr & CCIDCFGR_SEM_EN)) { /* Static CID mode */ > + if (FIELD_GET(CCIDCFGR_SCID, ccidcfgr) != CCIDCFGR_CID1) > + chan_reserved |= BIT(i); > + } else { /* Semaphore mode */ > + if (!FIELD_GET(CCIDCFGR_SEM_WLIST_CID1, ccidcfgr)) > + chan_reserved |= BIT(i); > + ddata->chans[i].semaphore_mode = true; > + } > + } > + dev_dbg(ddata->dma_dev.dev, "chan%d: %s mode, %s\n", i, > + !(ccidcfgr & CCIDCFGR_CFEN) ? "!CID-filtered" : > + ddata->chans[i].semaphore_mode ? "Semaphore" : "Static CID", > + (chan_reserved & BIT(i)) ? "denied" : > + mask & BIT(i) ? "force allowed" : "allowed"); > + } > + > + if (invalid_cid) > + dev_warn(ddata->dma_dev.dev, "chan%*pbl have invalid CID configuration\n", > + ddata->dma_channels, &invalid_cid); > + > + return chan_reserved; > +} > + > +static const struct of_device_id stm32_dma3_of_match[] = { > + { .compatible = "st,stm32-dma3", }, > + { /* sentinel */}, > +}; > +MODULE_DEVICE_TABLE(of, stm32_dma3_of_match); > + > +static int stm32_dma3_probe(struct platform_device *pdev) > +{ > + struct device_node *np = pdev->dev.of_node; > + struct stm32_dma3_ddata *ddata; > + struct reset_control *reset; > + struct stm32_dma3_chan *chan; > + struct dma_device *dma_dev; > + u32 master_ports, chan_reserved, i, verr; > + u64 hwcfgr; > + int ret; > + > + ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL); > + if (!ddata) > + return -ENOMEM; > + platform_set_drvdata(pdev, ddata); > + > + dma_dev = &ddata->dma_dev; > + > + ddata->base = devm_platform_ioremap_resource(pdev, 0); > + if (IS_ERR(ddata->base)) > + return PTR_ERR(ddata->base); > + > + ddata->clk = devm_clk_get(&pdev->dev, NULL); > + if (IS_ERR(ddata->clk)) > + return dev_err_probe(&pdev->dev, PTR_ERR(ddata->clk), "Failed to get clk\n"); > + > + reset = devm_reset_control_get_optional(&pdev->dev, NULL); > + if (IS_ERR(reset)) > + return dev_err_probe(&pdev->dev, PTR_ERR(reset), "Failed to get reset\n"); > + > + ret = clk_prepare_enable(ddata->clk); > + if (ret) > + return dev_err_probe(&pdev->dev, ret, "Failed to enable clk\n"); > + > + reset_control_reset(reset); > + > + INIT_LIST_HEAD(&dma_dev->channels); > + > + dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); > + dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); > + dma_dev->dev = &pdev->dev; > + /* > + * This controller supports up to 8-byte buswidth depending on the port used and the > + * channel, and can only access address at even boundaries, multiple of the buswidth. > + */ > + dma_dev->copy_align = DMAENGINE_ALIGN_8_BYTES; > + dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | > + BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | > + BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | > + BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); > + dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | > + BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | > + BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | > + BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); > + dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_MEM_TO_MEM); > + > + dma_dev->descriptor_reuse = true; > + dma_dev->max_sg_burst = STM32_DMA3_MAX_SEG_SIZE; > + dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; > + dma_dev->device_alloc_chan_resources = stm32_dma3_alloc_chan_resources; > + dma_dev->device_free_chan_resources = stm32_dma3_free_chan_resources; > + dma_dev->device_prep_slave_sg = stm32_dma3_prep_slave_sg; > + dma_dev->device_caps = stm32_dma3_caps; > + dma_dev->device_config = stm32_dma3_config; > + dma_dev->device_terminate_all = stm32_dma3_terminate_all; > + dma_dev->device_synchronize = stm32_dma3_synchronize; > + dma_dev->device_tx_status = dma_cookie_status; > + dma_dev->device_issue_pending = stm32_dma3_issue_pending; > + > + /* if dma_channels is not modified, get it from hwcfgr1 */ > + if (of_property_read_u32(np, "dma-channels", &ddata->dma_channels)) { > + hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1); > + ddata->dma_channels = FIELD_GET(G_NUM_CHANNELS, hwcfgr); > + } > + > + /* if dma_requests is not modified, get it from hwcfgr2 */ > + if (of_property_read_u32(np, "dma-requests", &ddata->dma_requests)) { > + hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR2); > + ddata->dma_requests = FIELD_GET(G_MAX_REQ_ID, hwcfgr) + 1; > + } > + > + /* G_MASTER_PORTS, G_M0_DATA_WIDTH_ENC, G_M1_DATA_WIDTH_ENC in HWCFGR1 */ > + hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1); > + master_ports = FIELD_GET(G_MASTER_PORTS, hwcfgr); > + > + ddata->ports_max_dw[0] = FIELD_GET(G_M0_DATA_WIDTH_ENC, hwcfgr); > + if (master_ports == AXI64 || master_ports == AHB32) /* Single master port */ > + ddata->ports_max_dw[1] = DW_INVALID; > + else /* Dual master ports */ > + ddata->ports_max_dw[1] = FIELD_GET(G_M1_DATA_WIDTH_ENC, hwcfgr); > + > + ddata->chans = devm_kcalloc(&pdev->dev, ddata->dma_channels, sizeof(*ddata->chans), > + GFP_KERNEL); > + if (!ddata->chans) { > + ret = -ENOMEM; > + goto err_clk_disable; > + } > + > + chan_reserved = stm32_dma3_check_rif(ddata); > + > + if (chan_reserved == GENMASK(ddata->dma_channels - 1, 0)) { > + ret = -ENODEV; > + dev_err_probe(&pdev->dev, ret, "No channel available, abort registration\n"); > + goto err_clk_disable; > + } > + > + /* G_FIFO_SIZE x=0..7 in HWCFGR3 and G_FIFO_SIZE x=8..15 in HWCFGR4 */ > + hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR3); > + hwcfgr |= ((u64)readl_relaxed(ddata->base + STM32_DMA3_HWCFGR4)) << 32; > + > + for (i = 0; i < ddata->dma_channels; i++) { > + if (chan_reserved & BIT(i)) > + continue; > + > + chan = &ddata->chans[i]; > + chan->id = i; > + chan->fifo_size = get_chan_hwcfg(i, G_FIFO_SIZE(i), hwcfgr); > + /* If chan->fifo_size > 0 then half of the fifo size, else no burst when no FIFO */ > + chan->max_burst = (chan->fifo_size) ? (1 << (chan->fifo_size + 1)) / 2 : 0; > + chan->vchan.desc_free = stm32_dma3_chan_vdesc_free; > + > + vchan_init(&chan->vchan, dma_dev); > + } > + > + ret = dmaenginem_async_device_register(dma_dev); > + if (ret) > + goto err_clk_disable; > + > + for (i = 0; i < ddata->dma_channels; i++) { > + if (chan_reserved & BIT(i)) > + continue; > + > + ret = platform_get_irq(pdev, i); > + if (ret < 0) > + goto err_clk_disable; > + > + chan = &ddata->chans[i]; > + chan->irq = ret; > + > + ret = devm_request_irq(&pdev->dev, chan->irq, stm32_dma3_chan_irq, 0, > + dev_name(chan2dev(chan)), chan); > + if (ret) { > + dev_err_probe(&pdev->dev, ret, "Failed to request channel %s IRQ\n", > + dev_name(chan2dev(chan))); > + goto err_clk_disable; > + } > + } > + > + ret = of_dma_controller_register(np, stm32_dma3_of_xlate, ddata); > + if (ret) { > + dev_err_probe(&pdev->dev, ret, "Failed to register controller\n"); > + goto err_clk_disable; > + } > + > + verr = readl_relaxed(ddata->base + STM32_DMA3_VERR); > + > + pm_runtime_set_active(&pdev->dev); > + pm_runtime_enable(&pdev->dev); > + pm_runtime_get_noresume(&pdev->dev); > + pm_runtime_put(&pdev->dev); > + > + dev_info(&pdev->dev, "STM32 DMA3 registered rev:%lu.%lu\n", > + FIELD_GET(VERR_MAJREV, verr), FIELD_GET(VERR_MINREV, verr)); > + > + return 0; > + > +err_clk_disable: > + clk_disable_unprepare(ddata->clk); > + > + return ret; > +} > + > +static void stm32_dma3_remove(struct platform_device *pdev) > +{ > + pm_runtime_disable(&pdev->dev); > +} > + > +static int stm32_dma3_runtime_suspend(struct device *dev) > +{ > + struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev); > + > + clk_disable_unprepare(ddata->clk); > + > + return 0; > +} > + > +static int stm32_dma3_runtime_resume(struct device *dev) > +{ > + struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev); > + int ret; > + > + ret = clk_prepare_enable(ddata->clk); > + if (ret) > + dev_err(dev, "Failed to enable clk: %d\n", ret); > + > + return ret; > +} > + > +static const struct dev_pm_ops stm32_dma3_pm_ops = { > + SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) > + RUNTIME_PM_OPS(stm32_dma3_runtime_suspend, stm32_dma3_runtime_resume, NULL) > +}; > + > +static struct platform_driver stm32_dma3_driver = { > + .probe = stm32_dma3_probe, > + .remove_new = stm32_dma3_remove, > + .driver = { > + .name = "stm32-dma3", > + .of_match_table = stm32_dma3_of_match, > + .pm = pm_ptr(&stm32_dma3_pm_ops), > + }, > +}; > + > +static int __init stm32_dma3_init(void) > +{ > + return platform_driver_register(&stm32_dma3_driver); > +} > + > +subsys_initcall(stm32_dma3_init); > + > +MODULE_DESCRIPTION("STM32 DMA3 controller driver"); > +MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@xxxxxxxxxxx>"); > +MODULE_LICENSE("GPL"); > -- > 2.25.1 >