This is the old DMA_SG interface that was removed in commit c678fa66341c ("dmaengine: remove DMA_SG as it is dead code in kernel"). It has been renamed to DMA_MEMCPY_SG to better match the MEMSET and MEMSET_SG naming convention. It should only be used for mem2mem copies, either main system memory or CPU-addressable device memory (like video memory on a PCI graphics card). Bringing back this interface was prompted by the need to use the Xilinx CDMA device for mem2mem SG transfers. The current CDMA binding for device_prep_dma_memcpy_sg was partially borrowed from xlnx kernel tree, and expanded with extended address space support when linking descriptor segments and checking for incorrect zero transfer size. Signed-off-by: Adrian Larumbe <adrian.martinezlarumbe@xxxxxxxxxx> --- .../driver-api/dmaengine/provider.rst | 11 ++ drivers/dma/dmaengine.c | 7 + drivers/dma/xilinx/xilinx_dma.c | 122 ++++++++++++++++++ include/linux/dmaengine.h | 20 +++ 4 files changed, 160 insertions(+) diff --git a/Documentation/driver-api/dmaengine/provider.rst b/Documentation/driver-api/dmaengine/provider.rst index ddb0a81a796c..9f0efe9e9952 100644 --- a/Documentation/driver-api/dmaengine/provider.rst +++ b/Documentation/driver-api/dmaengine/provider.rst @@ -162,6 +162,17 @@ Currently, the types available are: - The device is able to do memory to memory copies +- - DMA_MEMCPY_SG + + - The device supports memory to memory scatter-gather transfers. + + - Even though a plain memcpy can look like a particular case of a + scatter-gather transfer, with a single chunk to transfer, it's a + distinct transaction type in the mem2mem transfer case. This is + because some very simple devices might be able to do contiguous + single-chunk memory copies, but have no support for more + complex SG transfers. + - DMA_XOR - The device is able to perform XOR operations on memory areas diff --git a/drivers/dma/dmaengine.c b/drivers/dma/dmaengine.c index af3ee288bc11..c4e3334b04cf 100644 --- a/drivers/dma/dmaengine.c +++ b/drivers/dma/dmaengine.c @@ -1160,6 +1160,13 @@ int dma_async_device_register(struct dma_device *device) return -EIO; } + if (dma_has_cap(DMA_MEMCPY_SG, device->cap_mask) && !device->device_prep_dma_memcpy_sg) { + dev_err(device->dev, + "Device claims capability %s, but op is not defined\n", + "DMA_MEMCPY_SG"); + return -EIO; + } + if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) { dev_err(device->dev, "Device claims capability %s, but op is not defined\n", diff --git a/drivers/dma/xilinx/xilinx_dma.c b/drivers/dma/xilinx/xilinx_dma.c index 75c0b8e904e5..0e2bf75d42d3 100644 --- a/drivers/dma/xilinx/xilinx_dma.c +++ b/drivers/dma/xilinx/xilinx_dma.c @@ -2108,6 +2108,126 @@ xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst, return NULL; } +/** + * xilinx_cdma_prep_memcpy_sg - prepare descriptors for a memcpy_sg transaction + * @dchan: DMA channel + * @dst_sg: Destination scatter list + * @dst_sg_len: Number of entries in destination scatter list + * @src_sg: Source scatter list + * @src_sg_len: Number of entries in source scatter list + * @flags: transfer ack flags + * + * Return: Async transaction descriptor on success and NULL on failure + */ +static struct dma_async_tx_descriptor *xilinx_cdma_prep_memcpy_sg( + struct dma_chan *dchan, struct scatterlist *dst_sg, + unsigned int dst_sg_len, struct scatterlist *src_sg, + unsigned int src_sg_len, unsigned long flags) +{ + struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); + struct xilinx_dma_tx_descriptor *desc; + struct xilinx_cdma_tx_segment *segment, *prev = NULL; + struct xilinx_cdma_desc_hw *hw; + size_t len, dst_avail, src_avail; + dma_addr_t dma_dst, dma_src; + + if (unlikely(dst_sg_len == 0 || src_sg_len == 0)) + return NULL; + + if (unlikely(!dst_sg || !src_sg)) + return NULL; + + desc = xilinx_dma_alloc_tx_descriptor(chan); + if (!desc) + return NULL; + + dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); + desc->async_tx.tx_submit = xilinx_dma_tx_submit; + + dst_avail = sg_dma_len(dst_sg); + src_avail = sg_dma_len(src_sg); + /* + * loop until there is either no more source or no more destination + * scatterlist entry + */ + while (true) { + len = min_t(size_t, src_avail, dst_avail); + len = min_t(size_t, len, chan->xdev->max_buffer_len); + if (len == 0) + goto fetch; + + /* Allocate the link descriptor from DMA pool */ + segment = xilinx_cdma_alloc_tx_segment(chan); + if (!segment) + goto error; + + dma_dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - + dst_avail; + dma_src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - + src_avail; + hw = &segment->hw; + hw->control = len; + hw->src_addr = dma_src; + hw->dest_addr = dma_dst; + if (chan->ext_addr) { + hw->src_addr_msb = upper_32_bits(dma_src); + hw->dest_addr_msb = upper_32_bits(dma_dst); + } + + if (prev) { + prev->hw.next_desc = segment->phys; + if (chan->ext_addr) + prev->hw.next_desc_msb = + upper_32_bits(segment->phys); + } + + prev = segment; + dst_avail -= len; + src_avail -= len; + list_add_tail(&segment->node, &desc->segments); + +fetch: + /* Fetch the next dst scatterlist entry */ + if (dst_avail == 0) { + if (dst_sg_len == 0) + break; + dst_sg = sg_next(dst_sg); + if (dst_sg == NULL) + break; + dst_sg_len--; + dst_avail = sg_dma_len(dst_sg); + } + /* Fetch the next src scatterlist entry */ + if (src_avail == 0) { + if (src_sg_len == 0) + break; + src_sg = sg_next(src_sg); + if (src_sg == NULL) + break; + src_sg_len--; + src_avail = sg_dma_len(src_sg); + } + } + + if (list_empty(&desc->segments)) { + dev_err(chan->xdev->dev, + "%s: Zero-size SG transfer requested\n", __func__); + goto error; + } + + /* Link the last hardware descriptor with the first. */ + segment = list_first_entry(&desc->segments, + struct xilinx_cdma_tx_segment, node); + desc->async_tx.phys = segment->phys; + prev->hw.next_desc = segment->phys; + + return &desc->async_tx; + +error: + xilinx_dma_free_tx_descriptor(chan, desc); + return NULL; +} + /** * xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction * @dchan: DMA channel @@ -3094,7 +3214,9 @@ static int xilinx_dma_probe(struct platform_device *pdev) DMA_RESIDUE_GRANULARITY_SEGMENT; } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask); + dma_cap_set(DMA_MEMCPY_SG, xdev->common.cap_mask); xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy; + xdev->common.device_prep_dma_memcpy_sg = xilinx_cdma_prep_memcpy_sg; /* Residue calculation is supported by only AXI DMA and CDMA */ xdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; diff --git a/include/linux/dmaengine.h b/include/linux/dmaengine.h index 004736b6a9c8..7c342f77d8eb 100644 --- a/include/linux/dmaengine.h +++ b/include/linux/dmaengine.h @@ -50,6 +50,7 @@ enum dma_status { */ enum dma_transaction_type { DMA_MEMCPY, + DMA_MEMCPY_SG, DMA_XOR, DMA_PQ, DMA_XOR_VAL, @@ -891,6 +892,11 @@ struct dma_device { struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags); + struct dma_async_tx_descriptor *(*device_prep_dma_memcpy_sg)( + struct dma_chan *chan, + struct scatterlist *dst_sg, unsigned int dst_nents, + struct scatterlist *src_sg, unsigned int src_nents, + unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_xor)( struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags); @@ -1053,6 +1059,20 @@ static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( len, flags); } +static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy_sg( + struct dma_chan *chan, + struct scatterlist *dst_sg, unsigned int dst_nents, + struct scatterlist *src_sg, unsigned int src_nents, + unsigned long flags) +{ + if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy_sg) + return NULL; + + return chan->device->device_prep_dma_memcpy_sg(chan, dst_sg, dst_nents, + src_sg, src_nents, + flags); +} + static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, enum dma_desc_metadata_mode mode) { -- 2.17.1