[PATCH v5 7/7] libnvdimm: Add blk-mq pmem driver

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Adding a DMA supported blk-mq driver for pmem. This provides signficant CPU
utilization reduction.  By default the pmem driver will be using blk-mq with
DMA through the dmaengine API. DMA can be turned off with use_dma=0 kernel
parameter. Additional kernel parameters are provided:

queue_depth: The queue depth for blk-mq. Typically in relation to what the
             DMA engine can provide per queue/channel. This needs to take
	     into account of num_sg as well for some DMA engines. i.e.
	     num_sg * queue_depth < total descriptors available per queue or
	     channel.

q_per_node: Hardware queues per node. Typically the number of channels the
            DMA engine can provide per socket.
num_sg: Number of scatterlist we can handle per I/O request.

Numbers below are measured against pmem simulated via DRAM using
memmap=NN!SS.  DMA engine used is the ioatdma on Intel Skylake Xeon
platform.  Keep in mind the performance for persistent memory
will differ.
Fio 2.21 was used.

64k: 1 task queuedepth=1
CPU Read:  7631 MB/s  99.7% CPU    DMA Read: 2415 MB/s  54% CPU
CPU Write: 3552 MB/s  100% CPU     DMA Write 2173 MB/s  54% CPU

64k: 16 tasks queuedepth=16
CPU Read: 36800 MB/s  1593% CPU    DMA Read:  29100 MB/s  607% CPU
CPU Write 20900 MB/s  1589% CPU    DMA Write: 23400 MB/s  585% CPU

2M: 1 task queuedepth=1
CPU Read:  6013 MB/s  99.3% CPU    DMA Read:  7986 MB/s  59.3% CPU
CPU Write: 3579 MB/s  100% CPU     DMA Write: 5211 MB/s  58.3% CPU

2M: 16 tasks queuedepth=16
CPU Read:  18100 MB/s 1588% CPU    DMA Read:  21300 MB/s 180.9% CPU
CPU Write: 14100 MB/s 1594% CPU    DMA Write: 20400 MB/s 446.9% CPU

Signed-off-by: Dave Jiang <dave.jiang@xxxxxxxxx>
Reviewed-by: Ross Zwisler <ross.zwisler@xxxxxxxxxxxxxxx>

Signed-off-by: Dave Jiang <dave.jiang@xxxxxxxxx>
---
 drivers/nvdimm/Kconfig   |   23 +
 drivers/nvdimm/Makefile  |    3 
 drivers/nvdimm/pmem.h    |    3 
 drivers/nvdimm/pmem_mq.c |  853 ++++++++++++++++++++++++++++++++++++++++++++++
 4 files changed, 882 insertions(+)
 create mode 100644 drivers/nvdimm/pmem_mq.c

diff --git a/drivers/nvdimm/Kconfig b/drivers/nvdimm/Kconfig
index 5bdd499..c88c2bb 100644
--- a/drivers/nvdimm/Kconfig
+++ b/drivers/nvdimm/Kconfig
@@ -36,6 +36,29 @@ config BLK_DEV_PMEM
 
 	  Say Y if you want to use an NVDIMM
 
+config BLK_DEV_PMEM_MQ
+	tristate "PMEM: Persistent memory block device multi-queue support"
+	depends on m
+	default LIBNVDIMM
+	select DAX
+	select ND_BTT if BTT
+	select ND_PFN if NVDIMM_PFN
+	select DMA_ENGINE
+	help
+	  Memory ranges for PMEM are described by either an NFIT
+	  (NVDIMM Firmware Interface Table, see CONFIG_NFIT_ACPI), a
+	  non-standard OEM-specific E820 memory type (type-12, see
+	  CONFIG_X86_PMEM_LEGACY), or it is manually specified by the
+	  'memmap=nn[KMG]!ss[KMG]' kernel command line (see
+	  Documentation/admin-guide/kernel-parameters.rst).  This driver
+	  converts these persistent memory ranges into block devices that are
+	  capable of DAX (direct-access) file system mappings.  See
+	  Documentation/nvdimm/nvdimm.txt for more details. This driver
+	  utilizes block layer multi-queue in order to support using DMA
+	  engines to help offload the data copying.
+
+	  Say Y if you want to use an NVDIMM
+
 config ND_BLK
 	tristate "BLK: Block data window (aperture) device support"
 	default LIBNVDIMM
diff --git a/drivers/nvdimm/Makefile b/drivers/nvdimm/Makefile
index 909554c..8bfd107 100644
--- a/drivers/nvdimm/Makefile
+++ b/drivers/nvdimm/Makefile
@@ -1,11 +1,14 @@
 obj-$(CONFIG_LIBNVDIMM) += libnvdimm.o
 obj-$(CONFIG_BLK_DEV_PMEM) += nd_pmem.o
+obj-$(CONFIG_BLK_DEV_PMEM_MQ) += nd_pmem_mq.o
 obj-$(CONFIG_ND_BTT) += nd_btt.o
 obj-$(CONFIG_ND_BLK) += nd_blk.o
 obj-$(CONFIG_X86_PMEM_LEGACY) += nd_e820.o
 
 nd_pmem-y := pmem.o
 
+nd_pmem_mq-y := pmem_mq.o
+
 nd_btt-y := btt.o
 
 nd_blk-y := blk.o
diff --git a/drivers/nvdimm/pmem.h b/drivers/nvdimm/pmem.h
index 5434321..bbbe982 100644
--- a/drivers/nvdimm/pmem.h
+++ b/drivers/nvdimm/pmem.h
@@ -4,6 +4,7 @@
 #include <linux/types.h>
 #include <linux/pfn_t.h>
 #include <linux/fs.h>
+#include <linux/blk-mq.h>
 
 #ifdef CONFIG_ARCH_HAS_PMEM_API
 #define ARCH_MEMREMAP_PMEM MEMREMAP_WB
@@ -35,6 +36,8 @@ struct pmem_device {
 	struct badblocks	bb;
 	struct dax_device	*dax_dev;
 	struct gendisk		*disk;
+	struct blk_mq_tag_set	tag_set;
+	struct request_queue	*q;
 };
 
 long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
diff --git a/drivers/nvdimm/pmem_mq.c b/drivers/nvdimm/pmem_mq.c
new file mode 100644
index 0000000..db2fc2a
--- /dev/null
+++ b/drivers/nvdimm/pmem_mq.c
@@ -0,0 +1,853 @@
+/*
+ * Persistent Memory Block Multi-Queue Driver
+ * - This driver is largely adapted from Ross's pmem block driver.
+ * Copyright (c) 2014-2017, Intel Corporation.
+ * Copyright (c) 2015, Christoph Hellwig <hch@xxxxxx>.
+ * Copyright (c) 2015, Boaz Harrosh <boaz@xxxxxxxxxxxxx>.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ */
+
+#include <asm/cacheflush.h>
+#include <linux/blkdev.h>
+#include <linux/hdreg.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/badblocks.h>
+#include <linux/memremap.h>
+#include <linux/vmalloc.h>
+#include <linux/blk-mq.h>
+#include <linux/pfn_t.h>
+#include <linux/slab.h>
+#include <linux/uio.h>
+#include <linux/dax.h>
+#include <linux/nd.h>
+#include <linux/blk-mq.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/nodemask.h>
+#include "pmem.h"
+#include "pfn.h"
+#include "nd.h"
+
+static int use_dma = 1;
+module_param(use_dma, int, 0444);
+MODULE_PARM_DESC(use_dma, "Turn on/off DMA usage");
+
+static int queue_depth = 128;
+module_param(queue_depth, int, 0444);
+MODULE_PARM_DESC(queue_depth, "I/O Queue Depth for multi queue mode");
+
+/* typically maps to number of DMA channels/devices per socket */
+static int q_per_node = 8;
+module_param(q_per_node, int, 0444);
+MODULE_PARM_DESC(q_per_node, "Hardware queues per node");
+
+static int num_sg = 128;
+module_param(num_sg, int, 0444);
+MODULE_PARM_DESC(num_sg, "Number of scatterlist entries per request");
+
+struct pmem_cmd {
+	struct request *rq;
+	struct dma_chan *chan;
+	int sg_nents;
+	struct scatterlist sg[];
+};
+
+static struct device *to_dev(struct pmem_device *pmem)
+{
+	/*
+	 * nvdimm bus services need a 'dev' parameter, and we record the device
+	 * at init in bb.dev.
+	 */
+	return pmem->bb.dev;
+}
+
+static struct nd_region *to_region(struct pmem_device *pmem)
+{
+	return to_nd_region(to_dev(pmem)->parent);
+}
+
+static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
+		phys_addr_t offset, unsigned int len)
+{
+	struct device *dev = to_dev(pmem);
+	sector_t sector;
+	long cleared;
+	blk_status_t rc = BLK_STS_OK;
+
+	sector = (offset - pmem->data_offset) / 512;
+
+	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
+	if (cleared < len)
+		rc = BLK_STS_IOERR;
+	if (cleared > 0 && cleared / 512) {
+		cleared /= 512;
+		dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
+				(unsigned long long) sector, cleared,
+				cleared > 1 ? "s" : "");
+		badblocks_clear(&pmem->bb, sector, cleared);
+		if (pmem->bb_state)
+			sysfs_notify_dirent(pmem->bb_state);
+	}
+
+	arch_invalidate_pmem(pmem->virt_addr + offset, len);
+
+	return rc;
+}
+
+static void write_pmem(void *pmem_addr, struct page *page,
+		unsigned int off, unsigned int len)
+{
+	void *mem = kmap_atomic(page);
+
+	memcpy_flushcache(pmem_addr, mem + off, len);
+	kunmap_atomic(mem);
+}
+
+static blk_status_t read_pmem(struct page *page, unsigned int off,
+		void *pmem_addr, unsigned int len)
+{
+	int rc;
+	void *mem = kmap_atomic(page);
+
+	rc = memcpy_mcsafe(mem + off, pmem_addr, len);
+	kunmap_atomic(mem);
+	if (rc)
+		return BLK_STS_IOERR;
+	return BLK_STS_OK;
+}
+
+static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
+			unsigned int len, unsigned int off, bool is_write,
+			sector_t sector)
+{
+	blk_status_t rc = BLK_STS_OK;
+	bool bad_pmem = false;
+	phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
+	void *pmem_addr = pmem->virt_addr + pmem_off;
+
+	if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
+		bad_pmem = true;
+
+	if (!is_write) {
+		if (unlikely(bad_pmem))
+			rc = BLK_STS_IOERR;
+		else {
+			rc = read_pmem(page, off, pmem_addr, len);
+			flush_dcache_page(page);
+		}
+	} else {
+		/*
+		 * Note that we write the data both before and after
+		 * clearing poison.  The write before clear poison
+		 * handles situations where the latest written data is
+		 * preserved and the clear poison operation simply marks
+		 * the address range as valid without changing the data.
+		 * In this case application software can assume that an
+		 * interrupted write will either return the new good
+		 * data or an error.
+		 *
+		 * However, if pmem_clear_poison() leaves the data in an
+		 * indeterminate state we need to perform the write
+		 * after clear poison.
+		 */
+		flush_dcache_page(page);
+		write_pmem(pmem_addr, page, off, len);
+		if (unlikely(bad_pmem)) {
+			rc = pmem_clear_poison(pmem, pmem_off, len);
+			write_pmem(pmem_addr, page, off, len);
+		}
+	}
+
+	return rc;
+}
+
+/* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
+#ifndef REQ_FLUSH
+#define REQ_FLUSH REQ_PREFLUSH
+#endif
+
+static int pmem_rw_page(struct block_device *bdev, sector_t sector,
+		       struct page *page, bool is_write)
+{
+	struct pmem_device *pmem = bdev->bd_queue->queuedata;
+	blk_status_t rc;
+
+	rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
+
+	/*
+	 * The ->rw_page interface is subtle and tricky.  The core
+	 * retries on any error, so we can only invoke page_endio() in
+	 * the successful completion case.  Otherwise, we'll see crashes
+	 * caused by double completion.
+	 */
+	if (rc == 0)
+		page_endio(page, is_write, 0);
+
+	return blk_status_to_errno(rc);
+}
+
+/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
+__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
+		long nr_pages, void **kaddr, pfn_t *pfn)
+{
+	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
+
+	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
+					PFN_PHYS(nr_pages))))
+		return -EIO;
+	*kaddr = pmem->virt_addr + offset;
+	*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
+
+	/*
+	 * If badblocks are present, limit known good range to the
+	 * requested range.
+	 */
+	if (unlikely(pmem->bb.count))
+		return nr_pages;
+	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
+}
+
+static const struct block_device_operations pmem_fops = {
+	.owner =		THIS_MODULE,
+	.rw_page =		pmem_rw_page,
+	.revalidate_disk =	nvdimm_revalidate_disk,
+};
+
+static long pmem_dax_direct_access(struct dax_device *dax_dev,
+		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
+{
+	struct pmem_device *pmem = dax_get_private(dax_dev);
+
+	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
+}
+
+static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
+		void *addr, size_t bytes, struct iov_iter *i)
+{
+	return copy_from_iter_flushcache(addr, bytes, i);
+}
+
+static void pmem_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff,
+		void *addr, size_t size)
+{
+	arch_wb_cache_pmem(addr, size);
+}
+
+static const struct dax_operations pmem_dax_ops = {
+	.direct_access = pmem_dax_direct_access,
+	.copy_from_iter = pmem_copy_from_iter,
+	.flush = pmem_dax_flush,
+};
+
+static const struct attribute_group *pmem_attribute_groups[] = {
+	&dax_attribute_group,
+	NULL,
+};
+
+static void pmem_release_queue(void *data)
+{
+	struct pmem_device *pmem = data;
+
+	blk_cleanup_queue(pmem->q);
+	blk_mq_free_tag_set(&pmem->tag_set);
+}
+
+static void pmem_freeze_queue(void *q)
+{
+	blk_freeze_queue_start(q);
+}
+
+static void pmem_release_disk(void *__pmem)
+{
+	struct pmem_device *pmem = __pmem;
+
+	kill_dax(pmem->dax_dev);
+	put_dax(pmem->dax_dev);
+	del_gendisk(pmem->disk);
+	put_disk(pmem->disk);
+}
+
+static void nd_pmem_dma_callback(void *data,
+		const struct dmaengine_result *res)
+{
+	struct pmem_cmd *cmd = data;
+	struct request *req = cmd->rq;
+	struct request_queue *q = req->q;
+	struct pmem_device *pmem = q->queuedata;
+	struct nd_region *nd_region = to_region(pmem);
+	struct device *dev = to_dev(pmem);
+	blk_status_t blk_status = BLK_STS_OK;
+
+	if (res) {
+		switch (res->result) {
+		case DMA_TRANS_READ_FAILED:
+		case DMA_TRANS_WRITE_FAILED:
+		case DMA_TRANS_ABORTED:
+			dev_dbg(dev, "bio failed\n");
+			blk_status = BLK_STS_IOERR;
+			break;
+		case DMA_TRANS_NOERROR:
+		default:
+			break;
+		}
+	}
+
+	if (req_op(req) == REQ_OP_WRITE && req->cmd_flags & REQ_FUA)
+		nvdimm_flush(nd_region);
+
+	blk_mq_end_request(cmd->rq, blk_status);
+}
+
+static int pmem_check_bad_pmem(struct pmem_cmd *cmd, bool is_write)
+{
+	struct request *req = cmd->rq;
+	struct request_queue *q = req->q;
+	struct pmem_device *pmem = q->queuedata;
+	struct bio_vec bvec;
+	struct req_iterator iter;
+
+	rq_for_each_segment(bvec, req, iter) {
+		sector_t sector = iter.iter.bi_sector;
+		unsigned int len = bvec.bv_len;
+		unsigned int off = bvec.bv_offset;
+
+		if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
+			if (is_write) {
+				struct page *page = bvec.bv_page;
+				phys_addr_t pmem_off = sector * 512 +
+					pmem->data_offset;
+				void *pmem_addr = pmem->virt_addr + pmem_off;
+
+		/*
+		 * Note that we write the data both before and after
+		 * clearing poison.  The write before clear poison
+		 * handles situations where the latest written data is
+		 * preserved and the clear poison operation simply marks
+		 * the address range as valid without changing the data.
+		 * In this case application software can assume that an
+		 * interrupted write will either return the new good
+		 * data or an error.
+		 *
+		 * However, if pmem_clear_poison() leaves the data in an
+		 * indeterminate state we need to perform the write
+		 * after clear poison.
+		 */
+				flush_dcache_page(page);
+				write_pmem(pmem_addr, page, off, len);
+				pmem_clear_poison(pmem, pmem_off, len);
+				write_pmem(pmem_addr, page, off, len);
+			} else
+				return -EIO;
+		}
+	}
+
+	return 0;
+}
+
+static blk_status_t pmem_handle_cmd_dma(struct pmem_cmd *cmd, bool is_write)
+{
+	struct request *req = cmd->rq;
+	struct request_queue *q = req->q;
+	struct pmem_device *pmem = q->queuedata;
+	struct device *dev = to_dev(pmem);
+	phys_addr_t pmem_off = blk_rq_pos(req) * 512 + pmem->data_offset;
+	void *pmem_addr = pmem->virt_addr + pmem_off;
+	size_t len;
+	struct dma_device *dma = cmd->chan->device;
+	struct dmaengine_unmap_data *unmap;
+	dma_cookie_t cookie;
+	struct dma_async_tx_descriptor *txd;
+	struct page *page;
+	unsigned int off;
+	int rc;
+	blk_status_t blk_status = BLK_STS_OK;
+	enum dma_data_direction dir;
+	dma_addr_t dma_addr;
+
+	rc = pmem_check_bad_pmem(cmd, is_write);
+	if (rc < 0) {
+		blk_status = BLK_STS_IOERR;
+		goto err;
+	}
+
+	unmap = dmaengine_get_unmap_data(dma->dev, 2, GFP_NOWAIT);
+	if (!unmap) {
+		dev_dbg(dev, "failed to get dma unmap data\n");
+		blk_status = BLK_STS_IOERR;
+		goto err;
+	}
+
+	/*
+	 * If reading from pmem, writing to scatterlist,
+	 * and if writing to pmem, reading from scatterlist.
+	 */
+	dir = is_write ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
+	cmd->sg_nents = blk_rq_map_sg(req->q, req, cmd->sg);
+	if (cmd->sg_nents < 1) {
+		blk_status = BLK_STS_IOERR;
+		goto err;
+	}
+
+	WARN_ON_ONCE(cmd->sg_nents > num_sg);
+
+	rc = dma_map_sg(dma->dev, cmd->sg, cmd->sg_nents, dir);
+	if (rc < 1) {
+		dev_dbg(dma->dev, "DMA scatterlist mapping error\n");
+		blk_status = BLK_STS_IOERR;
+		goto err;
+	}
+
+	unmap->unmap_sg.sg = cmd->sg;
+	unmap->sg_nents = cmd->sg_nents;
+	if (is_write)
+		unmap->from_sg = 1;
+	else
+		unmap->to_sg = 1;
+
+	len = blk_rq_payload_bytes(req);
+	page = virt_to_page(pmem_addr);
+	off = offset_in_page(pmem_addr);
+	dir = is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+	dma_addr = dma_map_page(dma->dev, page, off, len, dir);
+	if (dma_mapping_error(dma->dev, unmap->addr[0])) {
+		dev_dbg(dma->dev, "DMA buffer mapping error\n");
+		blk_status = BLK_STS_IOERR;
+		goto err_unmap_sg;
+	}
+
+	unmap->unmap_sg.buf_phys = dma_addr;
+	unmap->len = len;
+	if (is_write)
+		unmap->to_cnt = 1;
+	else
+		unmap->from_cnt = 1;
+
+	txd = dmaengine_prep_dma_memcpy_sg(cmd->chan,
+				cmd->sg, cmd->sg_nents, dma_addr,
+				!is_write, DMA_PREP_INTERRUPT);
+	if (!txd) {
+		dev_dbg(dma->dev, "dma prep failed\n");
+		blk_status = BLK_STS_IOERR;
+		goto err_unmap_buffer;
+	}
+
+	txd->callback_result = nd_pmem_dma_callback;
+	txd->callback_param = cmd;
+	dma_set_unmap(txd, unmap);
+	cookie = dmaengine_submit(txd);
+	if (dma_submit_error(cookie)) {
+		dev_dbg(dma->dev, "dma submit error\n");
+		blk_status = BLK_STS_IOERR;
+		goto err_set_unmap;
+	}
+
+	dmaengine_unmap_put(unmap);
+	dma_async_issue_pending(cmd->chan);
+	return BLK_STS_OK;
+
+err_set_unmap:
+	dmaengine_unmap_put(unmap);
+err_unmap_buffer:
+	dma_unmap_page(dev, dma_addr, len, dir);
+err_unmap_sg:
+	if (dir == DMA_TO_DEVICE)
+		dir = DMA_FROM_DEVICE;
+	else
+		dir = DMA_TO_DEVICE;
+	dma_unmap_sg(dev, cmd->sg, cmd->sg_nents, dir);
+	dmaengine_unmap_put(unmap);
+err:
+	blk_mq_end_request(cmd->rq, blk_status);
+	return blk_status;
+}
+
+static blk_status_t pmem_handle_cmd(struct pmem_cmd *cmd, bool is_write)
+{
+	struct request *req = cmd->rq;
+	struct request_queue *q = req->q;
+	struct pmem_device *pmem = q->queuedata;
+	struct nd_region *nd_region = to_region(pmem);
+	struct bio_vec bvec;
+	struct req_iterator iter;
+	blk_status_t blk_status = BLK_STS_OK;
+
+	rq_for_each_segment(bvec, req, iter) {
+		blk_status = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
+				bvec.bv_offset, is_write,
+				iter.iter.bi_sector);
+		if (blk_status != BLK_STS_OK)
+			break;
+	}
+
+	if (is_write && req->cmd_flags & REQ_FUA)
+		nvdimm_flush(nd_region);
+
+	blk_mq_end_request(cmd->rq, blk_status);
+
+	return blk_status;
+}
+
+typedef blk_status_t (*pmem_do_io)(struct pmem_cmd *cmd, bool is_write);
+
+static blk_status_t pmem_queue_rq(struct blk_mq_hw_ctx *hctx,
+		const struct blk_mq_queue_data *bd)
+{
+	struct pmem_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
+	struct request *req = cmd->rq = bd->rq;
+	struct request_queue *q = req->q;
+	struct pmem_device *pmem = q->queuedata;
+	struct nd_region *nd_region = to_region(pmem);
+	blk_status_t blk_status = BLK_STS_OK;
+	pmem_do_io do_io;
+
+	blk_mq_start_request(req);
+
+	if (use_dma)
+		cmd->chan = dma_find_channel(DMA_MEMCPY_SG);
+
+	if (cmd->chan)
+		do_io = pmem_handle_cmd_dma;
+	else
+		do_io = pmem_handle_cmd;
+
+	switch (req_op(req)) {
+	case REQ_FLUSH:
+		nvdimm_flush(nd_region);
+		blk_mq_end_request(cmd->rq, BLK_STS_OK);
+		break;
+	case REQ_OP_READ:
+		blk_status = do_io(cmd, false);
+		break;
+	case REQ_OP_WRITE:
+		blk_status = do_io(cmd, true);
+		break;
+	default:
+		blk_status = BLK_STS_NOTSUPP;
+		break;
+	}
+
+	if (blk_status != BLK_STS_OK)
+		blk_mq_end_request(cmd->rq, blk_status);
+
+	return blk_status;
+}
+
+static const struct blk_mq_ops pmem_mq_ops = {
+	.queue_rq	= pmem_queue_rq,
+};
+
+static int pmem_attach_disk(struct device *dev,
+		struct nd_namespace_common *ndns)
+{
+	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
+	struct nd_region *nd_region = to_nd_region(dev->parent);
+	struct vmem_altmap __altmap, *altmap = NULL;
+	int nid = dev_to_node(dev), fua, wbc;
+	struct resource *res = &nsio->res;
+	struct nd_pfn *nd_pfn = NULL;
+	struct dax_device *dax_dev;
+	struct nd_pfn_sb *pfn_sb;
+	struct pmem_device *pmem;
+	struct resource pfn_res;
+	struct device *gendev;
+	struct gendisk *disk;
+	void *addr;
+	int rc;
+	struct dma_chan *chan = NULL;
+
+	/* while nsio_rw_bytes is active, parse a pfn info block if present */
+	if (is_nd_pfn(dev)) {
+		nd_pfn = to_nd_pfn(dev);
+		altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
+		if (IS_ERR(altmap))
+			return PTR_ERR(altmap);
+	}
+
+	/* we're attaching a block device, disable raw namespace access */
+	devm_nsio_disable(dev, nsio);
+
+	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
+	if (!pmem)
+		return -ENOMEM;
+
+	dev_set_drvdata(dev, pmem);
+	pmem->phys_addr = res->start;
+	pmem->size = resource_size(res);
+	fua = nvdimm_has_flush(nd_region);
+	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
+		dev_warn(dev, "unable to guarantee persistence of writes\n");
+		fua = 0;
+	}
+	wbc = nvdimm_has_cache(nd_region);
+
+	if (!devm_request_mem_region(dev, res->start, resource_size(res),
+				dev_name(&ndns->dev))) {
+		dev_warn(dev, "could not reserve region %pR\n", res);
+		return -EBUSY;
+	}
+
+	if (use_dma) {
+		chan = dma_find_channel(DMA_MEMCPY_SG);
+		if (!chan) {
+			use_dma = 0;
+			dev_warn(dev, "Forced back to CPU, no DMA\n");
+		}
+	}
+
+	pmem->tag_set.ops = &pmem_mq_ops;
+	pmem->tag_set.nr_hw_queues = num_possible_nodes() * q_per_node;
+	pmem->tag_set.queue_depth = queue_depth;
+	pmem->tag_set.numa_node = dev_to_node(dev);
+	pmem->tag_set.cmd_size = sizeof(struct pmem_cmd) +
+		sizeof(struct scatterlist) * num_sg;
+	pmem->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
+	pmem->tag_set.driver_data = pmem;
+
+	rc = blk_mq_alloc_tag_set(&pmem->tag_set);
+	if (rc < 0)
+		return rc;
+
+	pmem->q = blk_mq_init_queue(&pmem->tag_set);
+	if (IS_ERR(pmem->q)) {
+		blk_mq_free_tag_set(&pmem->tag_set);
+		return -ENOMEM;
+	}
+
+	if (devm_add_action_or_reset(dev, pmem_release_queue, pmem)) {
+		pmem_release_queue(pmem);
+		return -ENOMEM;
+	}
+
+	pmem->pfn_flags = PFN_DEV;
+	if (is_nd_pfn(dev)) {
+		addr = devm_memremap_pages(dev, &pfn_res,
+				&pmem->q->q_usage_counter, altmap);
+		pfn_sb = nd_pfn->pfn_sb;
+		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
+		pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
+		pmem->pfn_flags |= PFN_MAP;
+		res = &pfn_res; /* for badblocks populate */
+		res->start += pmem->data_offset;
+	} else if (pmem_should_map_pages(dev)) {
+		addr = devm_memremap_pages(dev, &nsio->res,
+				&pmem->q->q_usage_counter, NULL);
+		pmem->pfn_flags |= PFN_MAP;
+	} else
+		addr = devm_memremap(dev, pmem->phys_addr,
+				pmem->size, ARCH_MEMREMAP_PMEM);
+
+	/*
+	 * At release time the queue must be frozen before
+	 * devm_memremap_pages is unwound
+	 */
+	if (devm_add_action_or_reset(dev, pmem_freeze_queue, pmem->q))
+		return -ENOMEM;
+
+	if (IS_ERR(addr))
+		return PTR_ERR(addr);
+	pmem->virt_addr = addr;
+
+	blk_queue_write_cache(pmem->q, wbc, fua);
+	blk_queue_physical_block_size(pmem->q, PAGE_SIZE);
+	blk_queue_logical_block_size(pmem->q, pmem_sector_size(ndns));
+	if (use_dma) {
+		u64 xfercap = dma_get_desc_xfercap(chan);
+
+		/* set it to some sane size if DMA driver didn't export */
+		if (xfercap == 0)
+			xfercap = SZ_1M;
+
+		dev_dbg(dev, "xfercap: %#llx\n", xfercap);
+		/* max xfer size is per_descriptor_cap * num_of_sg */
+		blk_queue_max_hw_sectors(pmem->q, num_sg * xfercap / 512);
+		blk_queue_max_segments(pmem->q, num_sg);
+	}
+		blk_queue_max_hw_sectors(pmem->q, UINT_MAX);
+	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->q);
+	queue_flag_set_unlocked(QUEUE_FLAG_DAX, pmem->q);
+	pmem->q->queuedata = pmem;
+
+	disk = alloc_disk_node(0, nid);
+	if (!disk)
+		return -ENOMEM;
+	pmem->disk = disk;
+
+	disk->fops		= &pmem_fops;
+	disk->queue		= pmem->q;
+	disk->flags		= GENHD_FL_EXT_DEVT;
+	nvdimm_namespace_disk_name(ndns, disk->disk_name);
+	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
+			/ 512);
+	if (devm_init_badblocks(dev, &pmem->bb))
+		return -ENOMEM;
+	nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
+	disk->bb = &pmem->bb;
+
+	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
+	if (!dax_dev) {
+		put_disk(disk);
+		return -ENOMEM;
+	}
+	dax_write_cache(dax_dev, wbc);
+	pmem->dax_dev = dax_dev;
+
+	gendev = disk_to_dev(disk);
+	gendev->groups = pmem_attribute_groups;
+
+	device_add_disk(dev, disk);
+	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
+		return -ENOMEM;
+
+	revalidate_disk(disk);
+
+	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
+					  "badblocks");
+	if (!pmem->bb_state)
+		dev_warn(dev, "'badblocks' notification disabled\n");
+
+	return 0;
+}
+
+static int nd_pmem_probe(struct device *dev)
+{
+	struct nd_namespace_common *ndns;
+
+	ndns = nvdimm_namespace_common_probe(dev);
+	if (IS_ERR(ndns))
+		return PTR_ERR(ndns);
+
+	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
+		return -ENXIO;
+
+	if (is_nd_btt(dev))
+		return nvdimm_namespace_attach_btt(ndns);
+
+	if (is_nd_pfn(dev))
+		return pmem_attach_disk(dev, ndns);
+
+	/* if we find a valid info-block we'll come back as that personality */
+	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
+			|| nd_dax_probe(dev, ndns) == 0)
+		return -ENXIO;
+
+	/* ...otherwise we're just a raw pmem device */
+	return pmem_attach_disk(dev, ndns);
+}
+
+static int nd_pmem_remove(struct device *dev)
+{
+	struct pmem_device *pmem = dev_get_drvdata(dev);
+
+	if (is_nd_btt(dev))
+		nvdimm_namespace_detach_btt(to_nd_btt(dev));
+	else {
+		/*
+		 * Note, this assumes device_lock() context to not race
+		 * nd_pmem_notify()
+		 */
+		sysfs_put(pmem->bb_state);
+		pmem->bb_state = NULL;
+	}
+	nvdimm_flush(to_nd_region(dev->parent));
+
+	return 0;
+}
+
+static void nd_pmem_shutdown(struct device *dev)
+{
+	nvdimm_flush(to_nd_region(dev->parent));
+}
+
+static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
+{
+	struct nd_region *nd_region;
+	resource_size_t offset = 0, end_trunc = 0;
+	struct nd_namespace_common *ndns;
+	struct nd_namespace_io *nsio;
+	struct resource res;
+	struct badblocks *bb;
+	struct kernfs_node *bb_state;
+
+	if (event != NVDIMM_REVALIDATE_POISON)
+		return;
+
+	if (is_nd_btt(dev)) {
+		struct nd_btt *nd_btt = to_nd_btt(dev);
+
+		ndns = nd_btt->ndns;
+		nd_region = to_nd_region(ndns->dev.parent);
+		nsio = to_nd_namespace_io(&ndns->dev);
+		bb = &nsio->bb;
+		bb_state = NULL;
+	} else {
+		struct pmem_device *pmem = dev_get_drvdata(dev);
+
+		nd_region = to_region(pmem);
+		bb = &pmem->bb;
+		bb_state = pmem->bb_state;
+
+		if (is_nd_pfn(dev)) {
+			struct nd_pfn *nd_pfn = to_nd_pfn(dev);
+			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
+
+			ndns = nd_pfn->ndns;
+			offset = pmem->data_offset +
+					__le32_to_cpu(pfn_sb->start_pad);
+			end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
+		} else {
+			ndns = to_ndns(dev);
+		}
+
+		nsio = to_nd_namespace_io(&ndns->dev);
+	}
+
+	res.start = nsio->res.start + offset;
+	res.end = nsio->res.end - end_trunc;
+	nvdimm_badblocks_populate(nd_region, bb, &res);
+	if (bb_state)
+		sysfs_notify_dirent(bb_state);
+}
+
+static struct nd_device_driver nd_pmem_driver = {
+	.probe = nd_pmem_probe,
+	.remove = nd_pmem_remove,
+	.notify = nd_pmem_notify,
+	.shutdown = nd_pmem_shutdown,
+	.drv = {
+		.name = "nd_pmem",
+	},
+	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
+};
+
+static int __init pmem_init(void)
+{
+	if (use_dma)
+		dmaengine_get();
+
+	return nd_driver_register(&nd_pmem_driver);
+}
+module_init(pmem_init);
+
+static void pmem_exit(void)
+{
+	if (use_dma)
+		dmaengine_put();
+
+	driver_unregister(&nd_pmem_driver.drv);
+}
+module_exit(pmem_exit);
+
+MODULE_SOFTDEP("pre: dmaengine");
+MODULE_AUTHOR("Dave Jiang <dave.jiang@xxxxxxxxx>");
+MODULE_LICENSE("GPL v2");

--
To unsubscribe from this list: send the line "unsubscribe dmaengine" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html



[Index of Archives]     [Linux Kernel]     [Linux ARM (vger)]     [Linux ARM MSM]     [Linux Omap]     [Linux Arm]     [Linux Tegra]     [Fedora ARM]     [Linux for Samsung SOC]     [eCos]     [Linux PCI]     [Linux Fastboot]     [Gcc Help]     [Git]     [DCCP]     [IETF Announce]     [Security]     [Linux MIPS]     [Yosemite Campsites]

  Powered by Linux