From: Xuelin Shi <xuelin.shi@xxxxxxxxxxxxx> The RaidEngine is a new FSL hardware used for Raid5/6 acceration. This patch enables the RaidEngine functionality and provides hardware offloading capability for memcpy, xor and pq computation. It works with async_tx. Signed-off-by: Harninder Rai <harninder.rai@xxxxxxxxxxxxx> Signed-off-by: Naveen Burmi <naveenburmi@xxxxxxxxxxxxx> Signed-off-by: Xuelin Shi <xuelin.shi@xxxxxxxxxxxxx> --- changes for v4: - use upper/lower_32_bits(...) instead of direct shift. - change FSL_RAID dependency !ASYNC_TX_ENABLE_CHANNEL_SWITCH in Kconfig. changes for v3: - fix memory allocation flag GFP_xxx usage. - add re_jr_issue_pending call in cleanup. - remove unnecessary dma_run_dependencies(...). - use dma_cookie_complete(...) instead of direct updating cookie. drivers/dma/Kconfig | 11 + drivers/dma/Makefile | 1 + drivers/dma/fsl_raid.c | 875 +++++++++++++++++++++++++++++++++++++++++++++++++ drivers/dma/fsl_raid.h | 307 +++++++++++++++++ 4 files changed, 1194 insertions(+) create mode 100644 drivers/dma/fsl_raid.c create mode 100644 drivers/dma/fsl_raid.h diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig index 605b016..b85880c 100644 --- a/drivers/dma/Kconfig +++ b/drivers/dma/Kconfig @@ -100,6 +100,17 @@ config FSL_DMA EloPlus is on mpc85xx and mpc86xx and Pxxx parts, and the Elo3 is on some Txxx and Bxxx parts. +config FSL_RAID + tristate "Freescale RAID engine Support" + depends on FSL_SOC && !ASYNC_TX_ENABLE_CHANNEL_SWITCH + select DMA_ENGINE + select DMA_ENGINE_RAID + ---help--- + Enable support for Freescale RAID Engine. RAID Engine is + available on some QorIQ SoCs (like P5020). It has + the capability to offload memcpy, xor and pq computation + for raid5/6. + config MPC512X_DMA tristate "Freescale MPC512x built-in DMA engine support" depends on PPC_MPC512x || PPC_MPC831x diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile index a029d0f4..60b163b 100644 --- a/drivers/dma/Makefile +++ b/drivers/dma/Makefile @@ -44,3 +44,4 @@ obj-$(CONFIG_DMA_JZ4740) += dma-jz4740.o obj-$(CONFIG_TI_CPPI41) += cppi41.o obj-$(CONFIG_K3_DMA) += k3dma.o obj-$(CONFIG_MOXART_DMA) += moxart-dma.o +obj-$(CONFIG_FSL_RAID) += fsl_raid.o diff --git a/drivers/dma/fsl_raid.c b/drivers/dma/fsl_raid.c new file mode 100644 index 0000000..1dc5981 --- /dev/null +++ b/drivers/dma/fsl_raid.c @@ -0,0 +1,875 @@ +/* + * drivers/dma/fsl_raid.c + * + * Freescale RAID Engine device driver + * + * Author: + * Harninder Rai <harninder.rai@xxxxxxxxxxxxx> + * Naveen Burmi <naveenburmi@xxxxxxxxxxxxx> + * + * Rewrite: + * Xuelin Shi <xuelin.shi@xxxxxxxxxxxxx> + * + * Copyright (c) 2010-2014 Freescale Semiconductor, Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * * Neither the name of Freescale Semiconductor nor the + * names of its contributors may be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * ALTERNATIVELY, this software may be distributed under the terms of the + * GNU General Public License ("GPL") as published by the Free Software + * Foundation, either version 2 of that License or (at your option) any + * later version. + * + * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * Theory of operation: + * + * General capabilities: + * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q + * calculations required in RAID5 and RAID6 operations. RE driver + * registers with Linux's ASYNC layer as dma driver. RE hardware + * maintains strict ordering of the requests through chained + * command queueing. + * + * Data flow: + * Software RAID layer of Linux (MD layer) maintains RAID partitions, + * strips, stripes etc. It sends requests to the underlying AYSNC layer + * which further passes it to RE driver. ASYNC layer decides which request + * goes to which job ring of RE hardware. For every request processed by + * RAID Engine, driver gets an interrupt unless coalescing is set. The + * per job ring interrupt handler checks the status register for errors, + * clears the interrupt and leave the post interrupt processing to the irq + * thread. + */ +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/of_irq.h> +#include <linux/of_address.h> +#include <linux/of_platform.h> +#include <linux/dma-mapping.h> +#include <linux/dmapool.h> +#include <linux/dmaengine.h> +#include <linux/io.h> +#include <linux/spinlock.h> +#include <linux/slab.h> + +#include "dmaengine.h" +#include "fsl_raid.h" + +#define MAX_XOR_SRCS 16 +#define MAX_PQ_SRCS 16 +#define MAX_INITIAL_DESCS 256 +#define MAX_DESCS_LIMIT (4 * MAX_INITIAL_DESCS) +#define FRAME_FORMAT 0x1 +#define MAX_DATA_LENGTH (1024*1024) + +#define to_fsl_re_dma_desc(tx) container_of(tx, \ + struct fsl_re_dma_async_tx_desc, async_tx) + +/* Add descriptors into per jr software queue - submit_q */ +static dma_cookie_t re_jr_tx_submit(struct dma_async_tx_descriptor *tx) +{ + struct fsl_re_dma_async_tx_desc *desc; + struct re_jr *jr; + dma_cookie_t cookie; + unsigned long flags; + + desc = to_fsl_re_dma_desc(tx); + jr = container_of(tx->chan, struct re_jr, chan); + + spin_lock_irqsave(&jr->desc_lock, flags); + cookie = dma_cookie_assign(tx); + list_add_tail(&desc->node, &jr->submit_q); + spin_unlock_irqrestore(&jr->desc_lock, flags); + + return cookie; +} + +/* Copy descriptor from per jr software queue into hardware job ring */ +static void re_jr_issue_pending(struct dma_chan *chan) +{ + struct re_jr *jr; + int avail; + struct fsl_re_dma_async_tx_desc *desc, *_desc; + unsigned long flags; + + jr = container_of(chan, struct re_jr, chan); + + avail = RE_JR_INB_SLOT_AVAIL(in_be32(&jr->jrregs->inbring_slot_avail)); + if (!avail) + return; + + spin_lock_irqsave(&jr->desc_lock, flags); + list_for_each_entry_safe(desc, _desc, &jr->submit_q, node) { + if (!avail) + break; + + list_move_tail(&desc->node, &jr->active_q); + + memcpy(&jr->inb_ring_virt_addr[jr->inb_count], &desc->hwdesc, + sizeof(struct jr_hw_desc)); + + jr->inb_count = (jr->inb_count + 1) & RING_SIZE_MASK; + + /* add one job into job ring */ + out_be32(&jr->jrregs->inbring_add_job, RE_JR_INB_JOB_ADD(1)); + avail--; + } + spin_unlock_irqrestore(&jr->desc_lock, flags); +} + +static void re_jr_desc_done(struct fsl_re_dma_async_tx_desc *desc) +{ + dma_async_tx_callback callback; + void *callback_param; + + dma_cookie_complete(&desc->async_tx); + + callback = desc->async_tx.callback; + callback_param = desc->async_tx.callback_param; + if (callback) + callback(callback_param); + + dma_descriptor_unmap(&desc->async_tx); +} + +static void re_jr_dequeue(struct re_jr *jr) +{ + struct fsl_re_dma_async_tx_desc *desc, *_desc; + struct jr_hw_desc *hwdesc; + unsigned int count; + int found; + + count = RE_JR_OUB_SLOT_FULL(in_be32(&jr->jrregs->oubring_slot_full)); + while (count--) { + found = 0; + hwdesc = &jr->oub_ring_virt_addr[jr->oub_count]; + list_for_each_entry_safe(desc, _desc, &jr->active_q, node) { + /* compare the hw dma addr to find the completed */ + if (desc->hwdesc.lbea32 == hwdesc->lbea32 && + desc->hwdesc.addr_low == hwdesc->addr_low) { + found = 1; + break; + } + } + + BUG_ON(!found); + re_jr_desc_done(desc); + list_move_tail(&desc->node, &jr->ack_q); + + jr->oub_count = (jr->oub_count + 1) & RING_SIZE_MASK; + out_be32(&jr->jrregs->oubring_job_rmvd, RE_JR_OUB_JOB_RMVD(1)); + } +} + +static void re_jr_cleanup_descs(struct re_jr *jr) +{ + struct fsl_re_dma_async_tx_desc *desc, *_desc; + unsigned long flags; + + spin_lock_irqsave(&jr->desc_lock, flags); + re_jr_dequeue(jr); + list_for_each_entry_safe(desc, _desc, &jr->ack_q, node) { + if (async_tx_test_ack(&desc->async_tx)) + list_move_tail(&desc->node, &jr->free_q); + } + spin_unlock_irqrestore(&jr->desc_lock, flags); + + re_jr_issue_pending(&jr->chan); +} + +static irqreturn_t re_jr_isr_thread(int irq, void *data) +{ + struct re_jr *jr = (struct re_jr *)data; + + re_jr_cleanup_descs(jr); + + return IRQ_HANDLED; +} + +/* Per Job Ring interrupt handler */ +static irqreturn_t re_jr_isr(int irq, void *data) +{ + struct re_jr *jr = (struct re_jr *)data; + + u32 irqstate, status; + irqstate = in_be32(&jr->jrregs->jr_interrupt_status); + if (!irqstate) + return IRQ_NONE; + + /* + * There's no way in upper layer (read MD layer) to recover from + * error conditions except restart everything. In long term we + * need to do something more than just crashing + */ + if (irqstate & RE_JR_ERROR) { + status = in_be32(&jr->jrregs->jr_status); + dev_err(jr->dev, "jr error irqstate: %x, status: %x\n", + irqstate, status); + } + + /* Clear interrupt */ + out_be32(&jr->jrregs->jr_interrupt_status, RE_JR_CLEAR_INT); + return IRQ_WAKE_THREAD; +} + +static enum dma_status re_jr_tx_status(struct dma_chan *chan, + dma_cookie_t cookie, struct dma_tx_state *txstate) +{ + enum dma_status ret; + struct re_jr *jr = container_of(chan, struct re_jr, chan); + + ret = dma_cookie_status(chan, cookie, txstate); + + if (ret != DMA_COMPLETE) { + re_jr_cleanup_descs(jr); + ret = dma_cookie_status(chan, cookie, txstate); + } + + return ret; +} + +void fill_cfd_frame(struct cmpnd_frame *cf, u8 index, + size_t length, dma_addr_t addr, bool final) +{ + u32 efrl = length & CF_LENGTH_MASK; + efrl |= final << CF_FINAL_SHIFT; + cf[index].efrl32 = efrl; + cf[index].addr_high = upper_32_bits(addr); + cf[index].addr_low = lower_32_bits(addr); +} + +static struct fsl_re_dma_async_tx_desc *re_jr_init_desc(struct re_jr *jr, + struct fsl_re_dma_async_tx_desc *desc, void *cf, dma_addr_t paddr) +{ + desc->jr = jr; + desc->async_tx.tx_submit = re_jr_tx_submit; + dma_async_tx_descriptor_init(&desc->async_tx, &jr->chan); + INIT_LIST_HEAD(&desc->node); + + desc->hwdesc.fmt32 = FRAME_FORMAT << HWDESC_FMT_SHIFT; + desc->hwdesc.lbea32 = upper_32_bits(paddr); + desc->hwdesc.addr_low = lower_32_bits(paddr); + desc->cf_addr = cf; + desc->cf_paddr = paddr; + + desc->cdb_addr = (void *)(cf + RE_CF_DESC_SIZE); + desc->cdb_paddr = paddr + RE_CF_DESC_SIZE; + + return desc; +} + +static struct fsl_re_dma_async_tx_desc *re_jr_alloc_desc(struct re_jr *jr, + unsigned long flags) +{ + struct fsl_re_dma_async_tx_desc *desc = NULL; + void *cf; + dma_addr_t paddr; + unsigned long lock_flag; + + re_jr_cleanup_descs(jr); + + spin_lock_irqsave(&jr->desc_lock, lock_flag); + if (!list_empty(&jr->free_q)) { + /* take one desc from free_q */ + desc = list_first_entry(&jr->free_q, + struct fsl_re_dma_async_tx_desc, node); + list_del(&desc->node); + + desc->async_tx.flags = flags; + } + spin_unlock_irqrestore(&jr->desc_lock, lock_flag); + + if (!desc) { + desc = kzalloc(sizeof(*desc), GFP_NOWAIT); + cf = dma_pool_alloc(jr->re_dev->cf_desc_pool, GFP_NOWAIT, + &paddr); + if (!desc || !cf) { + kfree(desc); + return NULL; + } + + desc = re_jr_init_desc(jr, desc, cf, paddr); + desc->async_tx.flags = flags; + + spin_lock_irqsave(&jr->desc_lock, lock_flag); + jr->alloc_count++; + spin_unlock_irqrestore(&jr->desc_lock, lock_flag); + } + + return desc; +} + +static struct dma_async_tx_descriptor *re_jr_prep_genq( + struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, + unsigned int src_cnt, const unsigned char *scf, size_t len, + unsigned long flags) +{ + struct re_jr *jr; + struct fsl_re_dma_async_tx_desc *desc; + struct xor_cdb *xor; + struct cmpnd_frame *cf; + u32 cdb; + unsigned int i, j; + + if (len > MAX_DATA_LENGTH) { + pr_err("Length greater than %d not supported\n", + MAX_DATA_LENGTH); + return NULL; + } + + jr = container_of(chan, struct re_jr, chan); + desc = re_jr_alloc_desc(jr, flags); + if (desc <= 0) + return NULL; + + /* Filling xor CDB */ + cdb = RE_XOR_OPCODE << RE_CDB_OPCODE_SHIFT; + cdb |= (src_cnt - 1) << RE_CDB_NRCS_SHIFT; + cdb |= RE_BLOCK_SIZE << RE_CDB_BLKSIZE_SHIFT; + cdb |= INTERRUPT_ON_ERROR << RE_CDB_ERROR_SHIFT; + cdb |= DATA_DEPENDENCY << RE_CDB_DEPEND_SHIFT; + xor = desc->cdb_addr; + xor->cdb32 = cdb; + + if (scf != NULL) { + /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ + for (i = 0; i < src_cnt; i++) + xor->gfm[i] = scf[i]; + } else { + /* compute P, that is XOR all srcs */ + for (i = 0; i < src_cnt; i++) + xor->gfm[i] = 1; + } + + /* Filling frame 0 of compound frame descriptor with CDB */ + cf = desc->cf_addr; + fill_cfd_frame(cf, 0, sizeof(struct xor_cdb), desc->cdb_paddr, 0); + + /* Fill CFD's 1st frame with dest buffer */ + fill_cfd_frame(cf, 1, len, dest, 0); + + /* Fill CFD's rest of the frames with source buffers */ + for (i = 2, j = 0; j < src_cnt; i++, j++) + fill_cfd_frame(cf, i, len, src[j], 0); + + /* Setting the final bit in the last source buffer frame in CFD */ + cf[i - 1].efrl32 |= 1 << CF_FINAL_SHIFT; + + return &desc->async_tx; +} + +/* + * Prep function for P parity calculation.In RAID Engine terminology, + * XOR calculation is called GenQ calculation done through GenQ command + */ +static struct dma_async_tx_descriptor *re_jr_prep_dma_xor( + struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, + unsigned int src_cnt, size_t len, unsigned long flags) +{ + /* NULL let genq take all coef as 1 */ + return re_jr_prep_genq(chan, dest, src, src_cnt, NULL, len, flags); +} + +/* + * Prep function for P/Q parity calculation.In RAID Engine terminology, + * P/Q calculation is called GenQQ done through GenQQ command + */ +static struct dma_async_tx_descriptor *re_jr_prep_pq( + struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, + unsigned int src_cnt, const unsigned char *scf, size_t len, + unsigned long flags) +{ + struct re_jr *jr; + struct fsl_re_dma_async_tx_desc *desc; + struct pq_cdb *pq; + struct cmpnd_frame *cf; + u32 cdb; + u8 *p; + int gfmq_len, i, j; + + if (len > MAX_DATA_LENGTH) { + pr_err("Length greater than %d not supported\n", + MAX_DATA_LENGTH); + return NULL; + } + + /* + * RE requires at least 2 sources, if given only one source, we pass the + * second source same as the first one. + * With only one source, generating P is meaningless, only generate Q. + */ + if (src_cnt == 1) { + struct dma_async_tx_descriptor *tx; + dma_addr_t dma_src[2]; + unsigned char coef[2]; + + dma_src[0] = *src; + coef[0] = *scf; + dma_src[1] = *src; + coef[1] = 0; + tx = re_jr_prep_genq(chan, dest[1], dma_src, 2, coef, len, + flags); + if (tx) + desc = to_fsl_re_dma_desc(tx); + + return tx; + } + + /* + * During RAID6 array creation, Linux's MD layer gets P and Q + * calculated separately in two steps. But our RAID Engine has + * the capability to calculate both P and Q with a single command + * Hence to merge well with MD layer, we need to provide a hook + * here and call re_jq_prep_genq() function + */ + + if (flags & DMA_PREP_PQ_DISABLE_P) + return re_jr_prep_genq(chan, dest[1], src, src_cnt, + scf, len, flags); + + jr = container_of(chan, struct re_jr, chan); + desc = re_jr_alloc_desc(jr, flags); + if (desc <= 0) + return NULL; + + /* Filling GenQQ CDB */ + cdb = RE_PQ_OPCODE << RE_CDB_OPCODE_SHIFT; + cdb |= (src_cnt - 1) << RE_CDB_NRCS_SHIFT; + cdb |= RE_BLOCK_SIZE << RE_CDB_BLKSIZE_SHIFT; + cdb |= BUFFERABLE_OUTPUT << RE_CDB_BUFFER_SHIFT; + cdb |= DATA_DEPENDENCY << RE_CDB_DEPEND_SHIFT; + + pq = desc->cdb_addr; + pq->cdb32 = cdb; + + p = pq->gfm_q1; + /* Init gfm_q1[] */ + for (i = 0; i < src_cnt; i++) + p[i] = 1; + + /* Align gfm[] to 32bit */ + gfmq_len = ALIGN(src_cnt, 4); + + /* Init gfm_q2[] */ + p += gfmq_len; + for (i = 0; i < src_cnt; i++) + p[i] = scf[i]; + + /* Filling frame 0 of compound frame descriptor with CDB */ + cf = desc->cf_addr; + fill_cfd_frame(cf, 0, sizeof(struct pq_cdb), desc->cdb_paddr, 0); + + /* Fill CFD's 1st & 2nd frame with dest buffers */ + for (i = 1, j = 0; i < 3; i++, j++) + fill_cfd_frame(cf, i, len, dest[j], 0); + + /* Fill CFD's rest of the frames with source buffers */ + for (i = 3, j = 0; j < src_cnt; i++, j++) + fill_cfd_frame(cf, i, len, src[j], 0); + + /* Setting the final bit in the last source buffer frame in CFD */ + cf[i - 1].efrl32 |= 1 << CF_FINAL_SHIFT; + + return &desc->async_tx; +} + +/* + * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE + * command. Logic of this function will need to be modified once multipage + * support is added in Linux's MD/ASYNC Layer + */ +static struct dma_async_tx_descriptor *re_jr_prep_memcpy( + struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, + size_t len, unsigned long flags) +{ + struct re_jr *jr; + struct fsl_re_dma_async_tx_desc *desc; + size_t length; + struct cmpnd_frame *cf; + struct move_cdb *move; + u32 cdb; + + jr = container_of(chan, struct re_jr, chan); + + if (len > MAX_DATA_LENGTH) { + pr_err("Length greater than %d not supported\n", + MAX_DATA_LENGTH); + return NULL; + } + + desc = re_jr_alloc_desc(jr, flags); + if (desc <= 0) + return NULL; + + /* Filling move CDB */ + cdb = RE_MOVE_OPCODE << RE_CDB_OPCODE_SHIFT; + cdb |= RE_BLOCK_SIZE << RE_CDB_BLKSIZE_SHIFT; + cdb |= INTERRUPT_ON_ERROR << RE_CDB_ERROR_SHIFT; + cdb |= DATA_DEPENDENCY << RE_CDB_DEPEND_SHIFT; + + move = desc->cdb_addr; + move->cdb32 = cdb; + + /* Filling frame 0 of CFD with move CDB */ + cf = desc->cf_addr; + fill_cfd_frame(cf, 0, sizeof(struct move_cdb), desc->cdb_paddr, 0); + + length = min_t(size_t, len, MAX_DATA_LENGTH); + + /* Fill CFD's 1st frame with dest buffer */ + fill_cfd_frame(cf, 1, length, dest, 0); + + /* Fill CFD's 2nd frame with src buffer */ + fill_cfd_frame(cf, 2, length, src, 1); + + return &desc->async_tx; +} + +static int re_jr_alloc_chan_resources(struct dma_chan *chan) +{ + struct re_jr *jr = container_of(chan, struct re_jr, chan); + struct fsl_re_dma_async_tx_desc *desc; + void *cf; + dma_addr_t paddr; + + int i; + + for (i = 0; i < MAX_DESCS_LIMIT; i++) { + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + cf = dma_pool_alloc(jr->re_dev->cf_desc_pool, GFP_KERNEL, + &paddr); + if (!desc || !cf) { + kfree(desc); + break; + } + + INIT_LIST_HEAD(&desc->node); + re_jr_init_desc(jr, desc, cf, paddr); + + list_add_tail(&desc->node, &jr->free_q); + jr->alloc_count++; + } + return jr->alloc_count; +} + +static void re_jr_free_chan_resources(struct dma_chan *chan) +{ + struct re_jr *jr = container_of(chan, struct re_jr, chan); + struct fsl_re_dma_async_tx_desc *desc; + + while (jr->alloc_count--) { + desc = list_first_entry(&jr->free_q, + struct fsl_re_dma_async_tx_desc, + node); + + list_del(&desc->node); + dma_pool_free(jr->re_dev->cf_desc_pool, desc->cf_addr, + desc->cf_paddr); + kfree(desc); + } + + BUG_ON(!list_empty(&jr->free_q)); +} + +int re_jr_probe(struct platform_device *ofdev, + struct device_node *np, u8 q, u32 off) +{ + struct device *dev; + struct re_drv_private *repriv; + struct re_jr *jr; + struct dma_device *dma_dev; + u32 ptr; + u32 status; + int ret = 0, rc; + struct platform_device *jr_ofdev; + + dev = &ofdev->dev; + repriv = dev_get_drvdata(dev); + dma_dev = &repriv->dma_dev; + + jr = devm_kzalloc(dev, sizeof(*jr), GFP_KERNEL); + if (!jr) { + dev_err(dev, "No free memory for allocating JR struct\n"); + return -ENOMEM; + } + + /* create platform device for jr node */ + jr_ofdev = of_platform_device_create(np, NULL, dev); + if (jr_ofdev == NULL) { + dev_err(dev, "Not able to create ofdev for jr %d\n", q); + ret = -EINVAL; + goto err_free; + } + dev_set_drvdata(&jr_ofdev->dev, jr); + + /* read reg property from dts */ + rc = of_property_read_u32(np, "reg", &ptr); + if (rc) { + dev_err(dev, "Reg property not found in JR number %d\n", q); + ret = -ENODEV; + goto err_free; + } + + jr->jrregs = (struct jr_config_regs *)((u8 *)repriv->re_regs + + off + ptr); + + /* read irq property from dts */ + jr->irq = irq_of_parse_and_map(np, 0); + if (jr->irq == NO_IRQ) { + dev_err(dev, "No IRQ defined for JR %d\n", q); + ret = -ENODEV; + goto err_free; + } + + ret = devm_request_threaded_irq(&jr_ofdev->dev, jr->irq, re_jr_isr, + re_jr_isr_thread, 0, jr->name, jr); + + if (ret) { + dev_err(dev, "Unable to register JR interrupt for JR %d\n", q); + ret = -EINVAL; + goto err_free; + } + + snprintf(jr->name, sizeof(jr->name), "re_jr%02d", q); + + repriv->re_jrs[q] = jr; + jr->chan.device = dma_dev; + jr->chan.private = jr; + jr->dev = &jr_ofdev->dev; + jr->re_dev = repriv; + + spin_lock_init(&jr->desc_lock); + INIT_LIST_HEAD(&jr->ack_q); + INIT_LIST_HEAD(&jr->active_q); + INIT_LIST_HEAD(&jr->submit_q); + INIT_LIST_HEAD(&jr->free_q); + + list_add_tail(&jr->chan.device_node, &dma_dev->channels); + dma_dev->chancnt++; + + jr->inb_ring_virt_addr = dma_pool_alloc(jr->re_dev->hw_desc_pool, + GFP_KERNEL, &jr->inb_phys_addr); + + if (!jr->inb_ring_virt_addr) { + dev_err(dev, "No dma memory for inb_ring_virt_addr\n"); + ret = -ENOMEM; + goto err_free; + } + + jr->oub_ring_virt_addr = dma_pool_alloc(jr->re_dev->hw_desc_pool, + GFP_KERNEL, &jr->oub_phys_addr); + + if (!jr->oub_ring_virt_addr) { + dev_err(dev, "No dma memory for oub_ring_virt_addr\n"); + ret = -ENOMEM; + goto err_free_1; + } + + jr->inb_count = 0; + jr->oub_count = 0; + jr->alloc_count = 0; + + /* Program the Inbound/Outbound ring base addresses and size */ + out_be32(&jr->jrregs->inbring_base_h, + jr->inb_phys_addr & RE_JR_ADDRESS_BIT_MASK); + out_be32(&jr->jrregs->oubring_base_h, + jr->oub_phys_addr & RE_JR_ADDRESS_BIT_MASK); + out_be32(&jr->jrregs->inbring_base_l, + jr->inb_phys_addr >> RE_JR_ADDRESS_BIT_SHIFT); + out_be32(&jr->jrregs->oubring_base_l, + jr->oub_phys_addr >> RE_JR_ADDRESS_BIT_SHIFT); + out_be32(&jr->jrregs->inbring_size, RING_SIZE << RING_SIZE_SHIFT); + out_be32(&jr->jrregs->oubring_size, RING_SIZE << RING_SIZE_SHIFT); + + /* Read LIODN value from u-boot */ + status = in_be32(&jr->jrregs->jr_config_1) & RE_JR_REG_LIODN_MASK; + + /* Program the CFG reg */ + out_be32(&jr->jrregs->jr_config_1, + RE_JR_CFG1_CBSI | RE_JR_CFG1_CBS0 | status); + + /* Enable RE/JR */ + out_be32(&jr->jrregs->jr_command, RE_JR_ENABLE); + + return 0; + +err_free_1: + dma_pool_free(jr->re_dev->hw_desc_pool, jr->inb_ring_virt_addr, + jr->inb_phys_addr); +err_free: + return ret; +} + +/* Probe function for RAID Engine */ +static int raide_probe(struct platform_device *ofdev) +{ + struct re_drv_private *repriv; + struct device_node *np; + struct device_node *child; + u32 off; + u8 ridx = 0; + struct dma_device *dma_dev; + struct resource *res; + int rc; + struct device *dev = &ofdev->dev; + + dev_info(dev, "Freescale RAID Engine driver\n"); + + repriv = devm_kzalloc(dev, sizeof(*repriv), GFP_KERNEL); + if (!repriv) + return -ENOMEM; + + res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); + if (!res) + return -ENODEV; + + /* IOMAP the entire RAID Engine region */ + repriv->re_regs = devm_ioremap(dev, res->start, resource_size(res)); + if (!repriv->re_regs) + return -EBUSY; + + dev_set_drvdata(dev, repriv); + + /* Print the RE version */ + dev_info(dev, "Ver = %x\n", in_be32(&repriv->re_regs->re_version_id)); + + /* Program the RE mode */ + out_be32(&repriv->re_regs->global_config, RE_NON_DPAA_MODE); + dev_info(dev, "RE mode is %x\n", + in_be32(&repriv->re_regs->global_config)); + + /* Program Galois Field polynomial */ + out_be32(&repriv->re_regs->galois_field_config, RE_GFM_POLY); + dev_info(dev, "Galois Field Polynomial is %x\n", + in_be32(&repriv->re_regs->galois_field_config)); + + dma_dev = &repriv->dma_dev; + dma_dev->dev = dev; + INIT_LIST_HEAD(&dma_dev->channels); + dma_set_mask(dev, DMA_BIT_MASK(40)); + + dma_dev->device_alloc_chan_resources = re_jr_alloc_chan_resources; + dma_dev->device_tx_status = re_jr_tx_status; + dma_dev->device_issue_pending = re_jr_issue_pending; + + dma_dev->max_xor = MAX_XOR_SRCS; + dma_dev->device_prep_dma_xor = re_jr_prep_dma_xor; + dma_cap_set(DMA_XOR, dma_dev->cap_mask); + + dma_dev->max_pq = MAX_PQ_SRCS; + dma_dev->device_prep_dma_pq = re_jr_prep_pq; + dma_cap_set(DMA_PQ, dma_dev->cap_mask); + + dma_dev->device_prep_dma_memcpy = re_jr_prep_memcpy; + dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); + + dma_dev->device_free_chan_resources = re_jr_free_chan_resources; + + repriv->total_jrs = 0; + + repriv->cf_desc_pool = dmam_pool_create("re_cf_desc_pool", dev, + RE_CF_CDB_SIZE, + RE_CF_CDB_ALIGN, 0); + + if (!repriv->cf_desc_pool) { + pr_err("No memory for dma desc pool\n"); + return -ENOMEM; + } + + repriv->hw_desc_pool = dmam_pool_create("re_hw_desc_pool", dev, + sizeof(struct jr_hw_desc) * RING_SIZE, + FRAME_DESC_ALIGNMENT, 0); + if (!repriv->hw_desc_pool) { + pr_err("No memory for hw desc pool\n"); + return -ENOMEM; + } + + /* Parse Device tree to find out the total number of JQs present */ + for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { + rc = of_property_read_u32(np, "reg", &off); + if (rc) { + dev_err(dev, "Reg property not found in JQ node\n"); + return -ENODEV; + } + /* Find out the Job Rings present under each JQ */ + for_each_child_of_node(np, child) { + rc = of_device_is_compatible(child, + "fsl,raideng-v1.0-job-ring"); + if (rc) { + re_jr_probe(ofdev, child, ridx++, off); + repriv->total_jrs++; + } + } + } + + dma_async_device_register(dma_dev); + + return 0; +} + +static void release_jr(struct re_jr *jr) +{ + dma_pool_free(jr->re_dev->hw_desc_pool, jr->inb_ring_virt_addr, + jr->inb_phys_addr); + + dma_pool_free(jr->re_dev->hw_desc_pool, jr->oub_ring_virt_addr, + jr->oub_phys_addr); +} + +static int raide_remove(struct platform_device *ofdev) +{ + struct re_drv_private *repriv; + struct device *dev; + int i; + + dev = &ofdev->dev; + repriv = dev_get_drvdata(dev); + + /* Cleanup JR related memory areas */ + for (i = 0; i < repriv->total_jrs; i++) + release_jr(repriv->re_jrs[i]); + + /* Unregister the driver */ + dma_async_device_unregister(&repriv->dma_dev); + + return 0; +} + +static struct of_device_id raide_ids[] = { + { .compatible = "fsl,raideng-v1.0", }, + {} +}; + +static struct platform_driver raide_driver = { + .driver = { + .name = "fsl-raideng", + .owner = THIS_MODULE, + .of_match_table = raide_ids, + }, + .probe = raide_probe, + .remove = raide_remove, +}; + +module_platform_driver(raide_driver); + +MODULE_AUTHOR("Harninder Rai <harninder.rai@xxxxxxxxxxxxx>"); +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("Freescale RAID Engine Device Driver"); diff --git a/drivers/dma/fsl_raid.h b/drivers/dma/fsl_raid.h new file mode 100644 index 0000000..225dbf2 --- /dev/null +++ b/drivers/dma/fsl_raid.h @@ -0,0 +1,307 @@ +/* + * drivers/dma/fsl_raid.h + * + * Freescale RAID Engine device driver + * + * Author: + * Harninder Rai <harninder.rai@xxxxxxxxxxxxx> + * Naveen Burmi <naveenburmi@xxxxxxxxxxxxx> + * + * Rewrite: + * Xuelin Shi <xuelin.shi@xxxxxxxxxxxxx> + + * Copyright (c) 2010-2012 Freescale Semiconductor, Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * * Neither the name of Freescale Semiconductor nor the + * names of its contributors may be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * ALTERNATIVELY, this software may be distributed under the terms of the + * GNU General Public License ("GPL") as published by the Free Software + * Foundation, either version 2 of that License or (at your option) any + * later version. + * + * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ + +#define MAX_RE_JRS 4 + +#define RE_DPAA_MODE (1 << 30) +#define RE_NON_DPAA_MODE (1 << 31) +#define RE_GFM_POLY 0x1d000000 +#define RE_JR_INB_JOB_ADD(x) ((x) << 16) +#define RE_JR_OUB_JOB_RMVD(x) ((x) << 16) +#define RE_JR_CFG1_CBSI 0x08000000 +#define RE_JR_CFG1_CBS0 0x00080000 +#define RE_JR_OUB_SLOT_FULL_SHIFT 8 +#define RE_JR_OUB_SLOT_FULL(x) ((x) >> RE_JR_OUB_SLOT_FULL_SHIFT) +#define RE_JR_INB_SLOT_AVAIL_SHIFT 8 +#define RE_JR_INB_SLOT_AVAIL(x) ((x) >> RE_JR_INB_SLOT_AVAIL_SHIFT) +#define RE_PQ_OPCODE 0x1B +#define RE_XOR_OPCODE 0x1A +#define RE_MOVE_OPCODE 0x8 +#define FRAME_DESC_ALIGNMENT 16 +#define RE_BLOCK_SIZE 0x3 /* 4096 bytes */ +#define CACHEABLE_INPUT_OUTPUT 0x0 +#define BUFFERABLE_OUTPUT 0x0 +#define INTERRUPT_ON_ERROR 0x1 +#define DATA_DEPENDENCY 0x1 +#define ENABLE_DPI 0x0 +#define RING_SIZE 0x400 +#define RING_SIZE_MASK (RING_SIZE - 1) +#define RING_SIZE_SHIFT 8 +#define RE_JR_ADDRESS_BIT_SHIFT 4 +#define RE_JR_ADDRESS_BIT_MASK ((1 << RE_JR_ADDRESS_BIT_SHIFT) - 1) +#define RE_JR_ERROR 0x40000000 +#define RE_JR_INTERRUPT 0x80000000 +#define RE_JR_CLEAR_INT 0x80000000 +#define RE_JR_PAUSE 0x80000000 +#define RE_JR_ENABLE 0x80000000 + +#define RE_JR_REG_LIODN_MASK 0x00000FFF +#define RE_CF_CDB_ALIGN 64 + +#define RE_CDB_OPCODE_MASK 0xF8000000 +#define RE_CDB_OPCODE_SHIFT 27 +#define RE_CDB_EXCLEN_MASK 0x03000000 +#define RE_CDB_EXCLEN_SHIFT 24 +#define RE_CDB_EXCLQ1_MASK 0x00F00000 +#define RE_CDB_EXCLQ1_SHIFT 20 +#define RE_CDB_EXCLQ2_MASK 0x000F0000 +#define RE_CDB_EXCLQ2_SHIFT 16 +#define RE_CDB_BLKSIZE_MASK 0x0000C000 +#define RE_CDB_BLKSIZE_SHIFT 14 +#define RE_CDB_CACHE_MASK 0x00003000 +#define RE_CDB_CACHE_SHIFT 12 +#define RE_CDB_BUFFER_MASK 0x00000800 +#define RE_CDB_BUFFER_SHIFT 11 +#define RE_CDB_ERROR_MASK 0x00000400 +#define RE_CDB_ERROR_SHIFT 10 +#define RE_CDB_NRCS_MASK 0x0000003C +#define RE_CDB_NRCS_SHIFT 6 +#define RE_CDB_DEPEND_MASK 0x00000008 +#define RE_CDB_DEPEND_SHIFT 3 +#define RE_CDB_DPI_MASK 0x00000004 +#define RE_CDB_DPI_SHIFT 2 + +/* + * the largest cf block is 19*sizeof(struct cmpnd_frame), which is 304 bytes. + * here 19 = 1(cdb)+2(dest)+16(src), align to 64bytes, that is 320 bytes. + * the largest cdb block: struct pq_cdb which is 180 bytes, adding to cf block + * 320+180=500, align to 64bytes, that is 512 bytes. + */ +#define RE_CF_DESC_SIZE 320 +#define RE_CF_CDB_SIZE 512 + +struct re_ctrl { + /* General Configuration Registers */ + __be32 global_config; /* Global Configuration Register */ + u8 rsvd1[4]; + __be32 galois_field_config; /* Galois Field Configuration Register */ + u8 rsvd2[4]; + __be32 jq_wrr_config; /* WRR Configuration register */ + u8 rsvd3[4]; + __be32 crc_config; /* CRC Configuration register */ + u8 rsvd4[228]; + __be32 system_reset; /* System Reset Register */ + u8 rsvd5[252]; + __be32 global_status; /* Global Status Register */ + u8 rsvd6[832]; + __be32 re_liodn_base; /* LIODN Base Register */ + u8 rsvd7[1712]; + __be32 re_version_id; /* Version ID register of RE */ + __be32 re_version_id_2; /* Version ID 2 register of RE */ + u8 rsvd8[512]; + __be32 host_config; /* Host I/F Configuration Register */ +}; + +struct jr_config_regs { + /* Registers for JR interface */ + __be32 jr_config_0; /* Job Queue Configuration 0 Register */ + __be32 jr_config_1; /* Job Queue Configuration 1 Register */ + __be32 jr_interrupt_status; /* Job Queue Interrupt Status Register */ + u8 rsvd1[4]; + __be32 jr_command; /* Job Queue Command Register */ + u8 rsvd2[4]; + __be32 jr_status; /* Job Queue Status Register */ + u8 rsvd3[228]; + + /* Input Ring */ + __be32 inbring_base_h; /* Inbound Ring Base Address Register - High */ + __be32 inbring_base_l; /* Inbound Ring Base Address Register - Low */ + __be32 inbring_size; /* Inbound Ring Size Register */ + u8 rsvd4[4]; + __be32 inbring_slot_avail; /* Inbound Ring Slot Available Register */ + u8 rsvd5[4]; + __be32 inbring_add_job; /* Inbound Ring Add Job Register */ + u8 rsvd6[4]; + __be32 inbring_cnsmr_indx; /* Inbound Ring Consumer Index Register */ + u8 rsvd7[220]; + + /* Output Ring */ + __be32 oubring_base_h; /* Outbound Ring Base Address Register - High */ + __be32 oubring_base_l; /* Outbound Ring Base Address Register - Low */ + __be32 oubring_size; /* Outbound Ring Size Register */ + u8 rsvd8[4]; + __be32 oubring_job_rmvd; /* Outbound Ring Job Removed Register */ + u8 rsvd9[4]; + __be32 oubring_slot_full; /* Outbound Ring Slot Full Register */ + u8 rsvd10[4]; + __be32 oubring_prdcr_indx; /* Outbound Ring Producer Index */ +}; + +/* + * Command Descriptor Block (CDB) for unicast move command. + * In RAID Engine terms, memcpy is done through move command + */ +struct move_cdb { + __be32 cdb32; +}; + +/* Data protection/integrity related fields */ +#define DPI_APPS_MASK 0xC0000000 +#define DPI_APPS_SHIFT 30 +#define DPI_REF_MASK 0x30000000 +#define DPI_REF_SHIFT 28 +#define DPI_GUARD_MASK 0x0C000000 +#define DPI_GUARD_SHIFT 26 +#define DPI_ATTR_MASK 0x03000000 +#define DPI_ATTR_SHIFT 24 +#define DPI_META_MASK 0x0000FFFF + +struct dpi_related { + __be32 dpi32; + __be32 ref; +}; + +/* + * CDB for GenQ command. In RAID Engine terminology, XOR is + * done through this command + */ +struct xor_cdb { + __be32 cdb32; + u8 gfm[16]; + struct dpi_related dpi_dest_spec; + struct dpi_related dpi_src_spec[16]; +}; + +/* CDB for no-op command */ +struct noop_cdb { + __be32 cdb32; +}; + +/* + * CDB for GenQQ command. In RAID Engine terminology, P/Q is + * done through this command + */ +struct pq_cdb { + __be32 cdb32; + u8 gfm_q1[16]; + u8 gfm_q2[16]; + struct dpi_related dpi_dest_spec[2]; + struct dpi_related dpi_src_spec[16]; +}; + +/* Compound frame */ +#define CF_ADDR_HIGH_MASK 0x000000FF +#define CF_EXT_MASK 0x80000000 +#define CF_EXT_SHIFT 31 +#define CF_FINAL_MASK 0x40000000 +#define CF_FINAL_SHIFT 30 +#define CF_LENGTH_MASK 0x000FFFFF +#define CF_BPID_MASK 0x00FF0000 +#define CF_BPID_SHIFT 16 +#define CF_OFFSET_MASK 0x00001FFF + +struct cmpnd_frame { + __be32 addr_high; + __be32 addr_low; + __be32 efrl32; + __be32 rbro32; +}; + +/* Frame descriptor */ +#define HWDESC_LIODN_MASK 0x3F000000 +#define HWDESC_LIODN_SHIFT 24 +#define HWDESC_BPID_MASK 0x00FF0000 +#define HWDESC_BPID_SHIFT 16 +#define HWDESC_ELIODN_MASK 0x0000F000 +#define HWDESC_ELIODN_SHIFT 12 +#define HWDESC_FMT_SHIFT 29 +#define HWDESC_FMT_MASK (0x3 << HWDESC_FMT_SHIFT) + +struct jr_hw_desc { + __be32 lbea32; + __be32 addr_low; + __be32 fmt32; + __be32 status; +}; + +/* Raid Engine device private data */ +struct re_drv_private { + u8 total_jrs; + struct dma_device dma_dev; + struct re_ctrl *re_regs; + struct re_jr *re_jrs[MAX_RE_JRS]; + struct dma_pool *cf_desc_pool; + struct dma_pool *hw_desc_pool; +}; + +/* Per job ring data structure */ +struct re_jr { + char name[16]; + spinlock_t desc_lock; /* queue lock */ + struct list_head ack_q; /* wait to acked queue */ + struct list_head active_q; /* already issued on hw, not completed */ + struct list_head submit_q; + struct list_head free_q; /* alloc available queue */ + struct device *dev; + struct re_drv_private *re_dev; + struct dma_chan chan; + struct jr_config_regs *jrregs; + int irq; + u32 alloc_count; + + /* hw descriptor ring for inbound queue*/ + dma_addr_t inb_phys_addr; + struct jr_hw_desc *inb_ring_virt_addr; + u32 inb_count; + + /* hw descriptor ring for outbound queue */ + dma_addr_t oub_phys_addr; + struct jr_hw_desc *oub_ring_virt_addr; + u32 oub_count; +}; + +/* Async transaction descriptor */ +struct fsl_re_dma_async_tx_desc { + struct dma_async_tx_descriptor async_tx; + struct list_head node; + struct jr_hw_desc hwdesc; + struct re_jr *jr; + + /* hwdesc will point to cf_addr */ + void *cf_addr; + dma_addr_t cf_paddr; + + void *cdb_addr; + dma_addr_t cdb_paddr; + int status; +}; -- 1.8.3.2 -- To unsubscribe from this list: send the line "unsubscribe dmaengine" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html