Mmmm, another one! I've been looking forward to this.... :) I've really only looked at the documentation; I'm currently playing with the built code and will look at the source later. On Thu, Dec 13, 2012 at 08:19:16PM +0000, Joe Thornber wrote: > --- > Documentation/device-mapper/dm-cache.txt | 209 +++ > drivers/md/Kconfig | 22 + > drivers/md/Makefile | 6 + > drivers/md/dm-cache-metadata.c | 1135 ++++++++++++ > drivers/md/dm-cache-metadata.h | 170 ++ > drivers/md/dm-cache-policy-cleaner.c | 482 +++++ > drivers/md/dm-cache-policy-internal.h | 120 ++ > drivers/md/dm-cache-policy-mq.c | 1254 +++++++++++++ > drivers/md/dm-cache-policy.c | 147 ++ > drivers/md/dm-cache-policy.h | 220 +++ > drivers/md/dm-cache-target.c | 2443 +++++++++++++++++++++++++ > drivers/md/persistent-data/dm-block-manager.c | 1 + > 12 files changed, 6209 insertions(+) > create mode 100644 Documentation/device-mapper/dm-cache.txt > create mode 100644 drivers/md/dm-cache-metadata.c > create mode 100644 drivers/md/dm-cache-metadata.h > create mode 100644 drivers/md/dm-cache-policy-cleaner.c > create mode 100644 drivers/md/dm-cache-policy-internal.h > create mode 100644 drivers/md/dm-cache-policy-mq.c > create mode 100644 drivers/md/dm-cache-policy.c > create mode 100644 drivers/md/dm-cache-policy.h > create mode 100644 drivers/md/dm-cache-target.c > > diff --git a/Documentation/device-mapper/dm-cache.txt b/Documentation/device-mapper/dm-cache.txt > new file mode 100644 > index 0000000..9abcd93 > --- /dev/null > +++ b/Documentation/device-mapper/dm-cache.txt > @@ -0,0 +1,209 @@ > +* Introduction > + > +dm-cache is a device mapper target written by Joe Thornber, Heinz > +Maueslhagen, and Mike Snitzer. Is this "Mauelshagen"? > +It aims to improve performance of a block device (eg, a spindle) by > +dynamically migrating some of its data to a faster, smaller device > +(eg, an SSD). > + > +There are various caching solutions out there, for example bcache, we > +feel there is a need for a purely device-mapper solution that allows > +us to insert this caching at different levels of the dm stack. For > +instance above the data device for a thin-provisioning pool. Caching > +solutions that are integrated more closely with the virtual memory > +system should give better performance. > + > +The target reuses the metadata library used in the thin-provisioning > +library. > + > +The decision of what and when to migrate data is left to a plug-in > +policy module. Several of these have been written as we experiment, > +and we hope other people will contribute others for specific io > +scenarios (eg. a vm image server). > + > +* Glossary > + > +- Migration - Movement of a logical block from one device to the other. > +- Promotion - Migration from slow device to fast device. > +- Demotion - Migration from fast device to slow device. If a block is promoted to the fast device, is it always the case that the block still resides on the slow device? The existence of WT mode implies this, but on the other hand you do say "move" here. Or is this more like tiered storage where promoting a block moves it to the fast device and it's no longer on the slow device? Put another way -- if I use my SSD as a writethrough cache for a disk and one day the SSD loses its brains, can I expect to still have a reasonably up to date copy on the disk? > +* Design > + > +** Sub devices > + > +The target is constructed by passing three devices to it (along with > +other params detailed later): > + > +- An origin device (the big, slow one). > + > +- A cache device (the small, fast one). > + > +- A small metadata device. How do I calculate how big the metadata device has to be? > + Device that records which blocks are in the cache. Which are dirty, > + and extra hints for use by the policy object. > + > + This information could be put on the cache device, but having it > + separate allows the volume manager to configure it differently. eg, > + as a mirror for extra robustness. > + > + > +** Fixed block size > + > +The origin is divided up into blocks of a fixed size. This block size > +is configurable when you first create the cache. Typically we've been > +using block sizes of 256k - 1024k. > + > +Having a fixed block size simplifies the target a lot. But it is > +something of a compromise. For instance a small part of a block may > +be getting hit a lot (eg, /etc/passwd), yet the whole block will be > +promoted to the cache. So large block sizes are bad, because they > +waste cache space. And small block sizes are bad because they > +increase the amount of metadata (both in core and on disk). > + > +** Writeback/writethrough > + > +The cache has these two modes. > + > +If writeback is selected then writes to blocks that are cached will > +only go to the cache, and the block will be marked dirty in the > +metadata. > + > +If writethrough mode is selected then a write to a cached block will > +not complete until has hit both the origin and cache device. Clean > +blocks should remain clean. > + > +A simple cleaner policy is provided, which will clean all dirty blocks > +in a cache. Useful for decommissioning a cache. > + > +** Migration throttling > + > +Migrating data between the origin and cache device uses bandwidth. > +The user can set a throttle to prevent more than a certain amount of > +migrations occuring at any one time. Currently we're not taking any > +account of normal io traffic going to the devs. More work needs to be > +done here to avoid migrating during those peak io moments. > + > +** Updating on disk metadata > + > +On disk metadata is committed everytime a REQ_SYNC or REQ_FUA bio is > +written. If no such requests are made then commits will occur every > +second. This means the cache behaves like a physical disk that has a > +write cache (the same is true of the thin-provisioning target). If > +power is lost you may lose some recent writes. The metadata should > +always be consistent in spite of a crash. > + > +The 'dirty' state for a cache block changes far too frequently for us > +to keep updating it on the fly. So we treat it as a hint. In normal > +operation it will be written when the dm device is suspended. If the > +system crashes all cache blocks will be assumed dirty when restarted. > + > +** per block policy hints > + > +Policy plug-ins can store a chunk of data per cache block. It's up to > +the policy how big this chunk is (please keep it small). Like the > +dirty flags this data is lost if there's a crash so a safe fallback > +value should always be possible. > + > +For instance the 'mq' policy, which is currently the default policy, > +uses this facility to store the hit count of the cache blocks. If > +there's a crash this information will be lost, which means the cache > +may be less efficient until those hit counts are regenerated. > + > +Policy hints effect performance, not correctness. > + > +** Policy messaging > + > +Policies will have different tunables, specific to each one. So we > +need a generic way of getting and setting these. One way would be > +through a sysfs interface; much as we do with a block device's queue > +parameters. Another is to use the device-mapper message facility. > +We're using that latter method currently, though don't feel strongly > +one way or the other. Is there any documentation for the message formats? Or the policy parameters? --D > + > +** discard bitset resolution > + > +We can avoid copying data during migration if we know the block has > +been discarded. A prime example of this is when mkfs discards the > +whole block device. We store a bitset tracking the discard state of > +blocks. However, we allow this bitset to have a different block size > +from the cache blocks. This is because we need to track the discard > +state for all of the origin device (compare with the dirty bitset > +which is just for the smaller cache device). > + > +** Target interface > + > + cache <metadata dev> > + <cache dev> > + <origin dev> > + <block size> > + <#feature args> [<feature arg>]* > + <policy> > + <#policy args> > + [policy args]* > + > + metadata dev : fast device holding the persistent metadata > + cache dev : fast device holding cached data blocks > + origin dev : slow device holding original data blocks > + block size : cache unit size in sectors > + policy : the replacement policy to use > + > + #feature args : number of feature arguments passed > + feature args : 'writeback' or 'writethrough' (one or the other). > + > + #policy args : an even number of arguments corresponding to > + key/value pairs passed to the policy. > + policy args : key/value pairs (eg, 'migration_threshold 1024000') > + > +A policy called 'default' is always registered. This is an alias for > +the policy we currently think is giving best all round performance. > + > +* Example usage > + > +The test suite can be found here: > + > +https://github.com/jthornber/thinp-test-suite > + > +0 41943040 cache /dev/mapper/metadata /dev/mapper/ssd /dev/mapper/origin 512 1 writeback default 0 > + > +* Policy interface > + > +- Try to keep transactionality out of it. The core is careful to > + avoid asking about anything that is migrating. This is a pain, but > + makes it easier to write the policies. > + > +- Mappings are loaded into the policy at construction time. > + > +- Every bio that is mapped by the target is referred to the policy, it > + can give a simple HIT or MISS or issue a migration. > + > +- Currently there's no way for the policy to issue background work, > + eg, start writing back dirty blocks that are soon going to be evicted. > + > +- Because we map bios, rather than requests it's easy for the policy > + to get fooled by many small bios. For this reason the core target > + issues periodic ticks to the policy. It's suggested that the policy > + doesn't update states (eg, hit counts) for a block more than once > + for each tick. [The core ticks by watching bios complete, and so > + trying to see when the io scheduler has let the ios run] > + > + > + void (*destroy)(struct dm_cache_policy *p); > + void (*map)(struct dm_cache_policy *p, dm_block_t origin_block, int data_dir, > + bool can_migrate, bool cheap_copy, struct bio *bio, > + struct policy_result *result); > + > + int (*load_mapping)(struct dm_cache_policy *p, dm_block_t oblock, dm_block_t cblock); > + > + /* must succeed */ > + void (*remove_mapping)(struct dm_cache_policy *p, dm_block_t oblock); > + void (*force_mapping)(struct dm_cache_policy *p, dm_block_t current_oblock, > + dm_block_t new_oblock); q> + > + dm_block_t (*residency)(struct dm_cache_policy *p); > + void (*set_seq_io_threshold)(struct dm_cache_policy *p, > + unsigned int seq_io_thresh); > + > + void (*tick)(struct dm_cache_policy *p); > + > diff --git a/drivers/md/Kconfig b/drivers/md/Kconfig > index 91a02ee..7974c8b 100644 > --- a/drivers/md/Kconfig > +++ b/drivers/md/Kconfig > @@ -268,6 +268,28 @@ config DM_DEBUG_BLOCK_STACK_TRACING > > If unsure, say N. > > +config DM_CACHE > + tristate "Cache target (EXPERIMENTAL)" > + depends on BLK_DEV_DM && EXPERIMENTAL > + select DM_PERSISTENT_DATA > + select DM_PRISON > + ---help--- > + Use an SSD to speed up a slower device. > + > +config DM_CACHE_MQ > + tristate "MQ Cache Policy (EXPERIMENTAL)" > + depends on DM_CACHE > + default y > + ---help--- > + Under development > + > +config DM_CACHE_CLEANER > + tristate "Cleaner Cache Policy (EXPERIMENTAL)" > + depends on DM_CACHE > + default y > + ---help--- > + Under development > + > config DM_MIRROR > tristate "Mirror target" > depends on BLK_DEV_DM > diff --git a/drivers/md/Makefile b/drivers/md/Makefile > index 94dce8b..b9964d0 100644 > --- a/drivers/md/Makefile > +++ b/drivers/md/Makefile > @@ -11,6 +11,9 @@ dm-mirror-y += dm-raid1.o > dm-log-userspace-y \ > += dm-log-userspace-base.o dm-log-userspace-transfer.o > dm-thin-pool-y += dm-thin.o dm-thin-metadata.o > +dm-cache-y += dm-cache-target.o dm-cache-metadata.o dm-cache-policy.o > +dm-cache-mq-y += dm-cache-policy-mq.o > +dm-cache-cleaner-y += dm-cache-policy-cleaner.o > md-mod-y += md.o bitmap.o > raid456-y += raid5.o > > @@ -43,6 +46,9 @@ obj-$(CONFIG_DM_LOG_USERSPACE) += dm-log-userspace.o > obj-$(CONFIG_DM_ZERO) += dm-zero.o > obj-$(CONFIG_DM_RAID) += dm-raid.o > obj-$(CONFIG_DM_THIN_PROVISIONING) += dm-thin-pool.o > +obj-$(CONFIG_DM_CACHE) += dm-cache.o > +obj-$(CONFIG_DM_CACHE_MQ) += dm-cache-mq.o > +obj-$(CONFIG_DM_CACHE_CLEANER) += dm-cache-cleaner.o > obj-$(CONFIG_DM_VERITY) += dm-verity.o > > ifeq ($(CONFIG_DM_UEVENT),y) > diff --git a/drivers/md/dm-cache-metadata.c b/drivers/md/dm-cache-metadata.c > new file mode 100644 > index 0000000..b5f459c > --- /dev/null > +++ b/drivers/md/dm-cache-metadata.c > @@ -0,0 +1,1135 @@ > +/* > + * Copyright (C) 2012 Red Hat, Inc. > + * > + * This file is released under the GPL. > + */ > + > +#include "dm-cache-metadata.h" > + > +#include "persistent-data/dm-array.h" > +#include "persistent-data/dm-bitset.h" > +#include "persistent-data/dm-space-map.h" > +#include "persistent-data/dm-space-map-disk.h" > +#include "persistent-data/dm-transaction-manager.h" > + > +#include <linux/device-mapper.h> > + > +/*----------------------------------------------------------------*/ > + > +//#define debug(x...) pr_alert(x) > +#define debug(x...) ; > + > +#define DM_MSG_PREFIX "cache metadata" > + > +#define CACHE_SUPERBLOCK_MAGIC 06142003 > +#define CACHE_SUPERBLOCK_LOCATION 0 > +#define CACHE_VERSION 1 > +#define CACHE_METADATA_CACHE_SIZE 64 > + > +/* > + * 3 for btree insert + > + * 2 for btree lookup used within space map > + */ > +#define CACHE_MAX_CONCURRENT_LOCKS 5 > +#define SPACE_MAP_ROOT_SIZE 128 > + > +enum superblock_flag_bits { > + /* for spotting crashes that would invalidate the dirty bitset */ > + CLEAN_SHUTDOWN, > +}; > + > +/* > + * Each mapping from cache block -> origin block carries a set of flags. > + */ > +enum mapping_bits { > + /* > + * A valid mapping. Because we're using an array we clear this > + * flag for an non existant mapping. > + */ > + M_VALID = 1, > + > + /* > + * The data on the cache is different from that on the origin. > + */ > + M_DIRTY = 2 > +}; > + > +struct cache_disk_superblock { > + __le32 csum; > + __le32 flags; > + __le64 blocknr; > + > + __u8 uuid[16]; > + __le64 magic; > + __le32 version; > + > + __u8 policy_name[CACHE_POLICY_NAME_SIZE]; > + > + __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; > + __le64 mapping_root; > + __le64 hint_root; > + > + __le64 discard_root; > + __le64 discard_block_size; > + __le64 discard_nr_blocks; > + > + __le32 data_block_size; > + __le32 metadata_block_size; > + __le32 cache_blocks; > + > + __le32 compat_flags; > + __le32 compat_ro_flags; > + __le32 incompat_flags; > + > + __le32 read_hits; > + __le32 read_misses; > + __le32 write_hits; > + __le32 write_misses; > +} __packed; > + > +struct dm_cache_metadata { > + struct block_device *bdev; > + struct dm_block_manager *bm; > + struct dm_space_map *metadata_sm; > + struct dm_transaction_manager *tm; > + > + struct dm_array_info info; > + struct dm_array_info hint_info; > + struct dm_bitset_info discard_info; > + > + struct rw_semaphore root_lock; > + dm_block_t root; > + dm_block_t hint_root; > + dm_block_t discard_root; > + > + sector_t discard_block_size; > + dm_dblock_t discard_nr_blocks; > + > + sector_t data_block_size; > + dm_cblock_t cache_blocks; > + bool changed:1; > + bool clean_when_opened:1; > + > + char policy_name[CACHE_POLICY_NAME_SIZE]; > + struct dm_cache_statistics stats; > +}; > + > +/*------------------------------------------------------------------- > + * superblock validator > + *-----------------------------------------------------------------*/ > + > +#define SUPERBLOCK_CSUM_XOR 9031977 > + > +static void sb_prepare_for_write(struct dm_block_validator *v, > + struct dm_block *b, > + size_t block_size) > +{ > + struct cache_disk_superblock *disk_super = dm_block_data(b); > + > + disk_super->blocknr = cpu_to_le64(dm_block_location(b)); > + disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, > + block_size - sizeof(__le32), > + SUPERBLOCK_CSUM_XOR)); > +} > + > +static int sb_check(struct dm_block_validator *v, > + struct dm_block *b, > + size_t block_size) > +{ > + struct cache_disk_superblock *disk_super = dm_block_data(b); > + __le32 csum_le; > + > + if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { > + DMERR("sb_check failed: blocknr %llu: " > + "wanted %llu", le64_to_cpu(disk_super->blocknr), > + (unsigned long long)dm_block_location(b)); > + return -ENOTBLK; > + } > + > + if (le64_to_cpu(disk_super->magic) != CACHE_SUPERBLOCK_MAGIC) { > + DMERR("sb_check failed: magic %llu: " > + "wanted %llu", le64_to_cpu(disk_super->magic), > + (unsigned long long)CACHE_SUPERBLOCK_MAGIC); > + return -EILSEQ; > + } > + > + csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, > + block_size - sizeof(__le32), > + SUPERBLOCK_CSUM_XOR)); > + if (csum_le != disk_super->csum) { > + DMERR("sb_check failed: csum %u: wanted %u", > + le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); > + return -EILSEQ; > + } > + > + return 0; > +} > + > +static struct dm_block_validator sb_validator = { > + .name = "superblock", > + .prepare_for_write = sb_prepare_for_write, > + .check = sb_check > +}; > + > +/*----------------------------------------------------------------*/ > + > +static int superblock_read_lock(struct dm_cache_metadata *cmd, > + struct dm_block **sblock) > +{ > + return dm_bm_read_lock(cmd->bm, CACHE_SUPERBLOCK_LOCATION, > + &sb_validator, sblock); > +} > + > +static int superblock_lock_zero(struct dm_cache_metadata *cmd, > + struct dm_block **sblock) > +{ > + return dm_bm_write_lock_zero(cmd->bm, CACHE_SUPERBLOCK_LOCATION, > + &sb_validator, sblock); > +} > + > +static int superblock_lock(struct dm_cache_metadata *cmd, > + struct dm_block **sblock) > +{ > + return dm_bm_write_lock(cmd->bm, CACHE_SUPERBLOCK_LOCATION, > + &sb_validator, sblock); > +} > + > +/*----------------------------------------------------------------*/ > + > +static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) > +{ > + int r; > + unsigned i; > + struct dm_block *b; > + __le64 *data_le, zero = cpu_to_le64(0); > + unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); > + > + /* > + * We can't use a validator here - it may be all zeroes. > + */ > + r = dm_bm_read_lock(bm, CACHE_SUPERBLOCK_LOCATION, NULL, &b); > + if (r) > + return r; > + > + data_le = dm_block_data(b); > + *result = 1; > + for (i = 0; i < block_size; i++) { > + if (data_le[i] != zero) { > + *result = 0; > + break; > + } > + } > + > + return dm_bm_unlock(b); > +} > + > +static void __setup_mapping_info(struct dm_cache_metadata *cmd) > +{ > + struct dm_btree_value_type vt; > + > + vt.context = NULL; > + vt.size = sizeof(__le64); > + vt.inc = NULL; > + vt.dec = NULL; > + vt.equal = NULL; > + dm_setup_array_info(&cmd->info, cmd->tm, &vt); > + > + vt.size = sizeof(__le32); > + dm_setup_array_info(&cmd->hint_info, cmd->tm, &vt); > +} > + > +static int __write_initial_superblock(struct dm_cache_metadata *cmd) > +{ > + int r; > + struct dm_block *sblock; > + size_t metadata_len; > + struct cache_disk_superblock *disk_super; > + sector_t bdev_size = i_size_read(cmd->bdev->bd_inode) >> SECTOR_SHIFT; > + > + /* FIXME: see if we can lose the max sectors limit */ > + if (bdev_size > CACHE_METADATA_MAX_SECTORS) > + bdev_size = CACHE_METADATA_MAX_SECTORS; > + > + r = dm_sm_root_size(cmd->metadata_sm, &metadata_len); > + if (r < 0) > + return r; > + > + r = dm_tm_pre_commit(cmd->tm); > + if (r < 0) > + return r; > + > + r = superblock_lock_zero(cmd, &sblock); > + if (r) > + return r; > + > + disk_super = dm_block_data(sblock); > + disk_super->flags = 0; > + memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); > + disk_super->magic = cpu_to_le64(CACHE_SUPERBLOCK_MAGIC); > + disk_super->version = cpu_to_le32(CACHE_VERSION); > + memset(disk_super->policy_name, 0, CACHE_POLICY_NAME_SIZE); > + > + r = dm_sm_copy_root(cmd->metadata_sm, &disk_super->metadata_space_map_root, > + metadata_len); > + if (r < 0) > + goto bad_locked; > + > + disk_super->mapping_root = cpu_to_le64(cmd->root); > + disk_super->hint_root = cpu_to_le64(cmd->hint_root); > + disk_super->discard_root = cpu_to_le64(cmd->discard_root); > + disk_super->discard_block_size = cpu_to_le64(cmd->discard_block_size); > + disk_super->discard_nr_blocks = cpu_to_le64(from_dblock(cmd->discard_nr_blocks)); > + disk_super->metadata_block_size = cpu_to_le32(CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT); > + disk_super->data_block_size = cpu_to_le32(cmd->data_block_size); > + disk_super->cache_blocks = cpu_to_le32(0); > + memset(disk_super->policy_name, 0, sizeof(disk_super->policy_name)); > + > + disk_super->read_hits = cpu_to_le32(0); > + disk_super->read_misses = cpu_to_le32(0); > + disk_super->write_hits = cpu_to_le32(0); > + disk_super->write_misses = cpu_to_le32(0); > + > + return dm_tm_commit(cmd->tm, sblock); > + > +bad_locked: > + dm_bm_unlock(sblock); > + return r; > +} > + > +static int __format_metadata(struct dm_cache_metadata *cmd) > +{ > + int r; > + > + debug("formatting metadata dev"); > + r = dm_tm_create_with_sm(cmd->bm, CACHE_SUPERBLOCK_LOCATION, > + &cmd->tm, &cmd->metadata_sm); > + if (r < 0) { > + DMERR("tm_create_with_sm failed"); > + return r; > + } > + > + __setup_mapping_info(cmd); > + > + r = dm_array_empty(&cmd->info, &cmd->root); > + if (r < 0) > + goto bad; > + > + dm_bitset_info_init(cmd->tm, &cmd->discard_info); > + > + r = dm_bitset_empty(&cmd->discard_info, &cmd->discard_root); > + if (r < 0) > + goto bad; > + > + cmd->discard_block_size = 0; > + cmd->discard_nr_blocks = 0; > + > + r = __write_initial_superblock(cmd); > + if (r) > + goto bad; > + > + cmd->clean_when_opened = true; > + return 0; > + > +bad: > + dm_tm_destroy(cmd->tm); > + dm_sm_destroy(cmd->metadata_sm); > + > + return r; > +} > + > +static int __check_incompat_features(struct cache_disk_superblock *disk_super, > + struct dm_cache_metadata *cmd) > +{ > + uint32_t features; > + > + features = le32_to_cpu(disk_super->incompat_flags) & ~CACHE_FEATURE_INCOMPAT_SUPP; > + if (features) { > + DMERR("could not access metadata due to unsupported optional features (%lx).", > + (unsigned long)features); > + return -EINVAL; > + } > + > + /* > + * Check for read-only metadata to skip the following RDWR checks. > + */ > + if (get_disk_ro(cmd->bdev->bd_disk)) > + return 0; > + > + features = le32_to_cpu(disk_super->compat_ro_flags) & ~CACHE_FEATURE_COMPAT_RO_SUPP; > + if (features) { > + DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", > + (unsigned long)features); > + return -EINVAL; > + } > + > + return 0; > +} > + > +static int __open_metadata(struct dm_cache_metadata *cmd) > +{ > + int r; > + struct dm_block *sblock; > + struct cache_disk_superblock *disk_super; > + unsigned long sb_flags; > + > + r = superblock_read_lock(cmd, &sblock); > + if (r < 0) { > + DMERR("couldn't read lock superblock"); > + return r; > + } > + > + disk_super = dm_block_data(sblock); > + > + r = __check_incompat_features(disk_super, cmd); > + if (r < 0) > + goto bad; > + > + r = dm_tm_open_with_sm(cmd->bm, CACHE_SUPERBLOCK_LOCATION, > + disk_super->metadata_space_map_root, > + sizeof(disk_super->metadata_space_map_root), > + &cmd->tm, &cmd->metadata_sm); > + if (r < 0) { > + DMERR("tm_open_with_sm failed"); > + goto bad; > + } > + > + __setup_mapping_info(cmd); > + dm_bitset_info_init(cmd->tm, &cmd->discard_info); > + sb_flags = le32_to_cpu(disk_super->flags); > + cmd->clean_when_opened = test_bit(CLEAN_SHUTDOWN, &sb_flags); > + return dm_bm_unlock(sblock); > + > +bad: > + dm_bm_unlock(sblock); > + return r; > +} > + > +static int __open_or_format_metadata(struct dm_cache_metadata *cmd, > + bool format_device) > +{ > + int r, unformatted; > + > + r = __superblock_all_zeroes(cmd->bm, &unformatted); > + if (r) > + return r; > + > + if (unformatted) > + return format_device ? __format_metadata(cmd) : -EPERM; > + > + return __open_metadata(cmd); > +} > + > +static int __create_persistent_data_objects(struct dm_cache_metadata *cmd, > + bool may_format_device) > +{ > + int r; > + cmd->bm = dm_block_manager_create(cmd->bdev, CACHE_METADATA_BLOCK_SIZE, > + CACHE_METADATA_CACHE_SIZE, > + CACHE_MAX_CONCURRENT_LOCKS); > + if (IS_ERR(cmd->bm)) { > + DMERR("could not create block manager"); > + return PTR_ERR(cmd->bm); > + } > + > + r = __open_or_format_metadata(cmd, may_format_device); > + if (r) > + dm_block_manager_destroy(cmd->bm); > + > + return r; > +} > + > +static void __destroy_persistent_data_objects(struct dm_cache_metadata *cmd) > +{ > + dm_sm_destroy(cmd->metadata_sm); > + dm_tm_destroy(cmd->tm); > + dm_block_manager_destroy(cmd->bm); > +} > + > +typedef unsigned long (*flags_mutator)(unsigned long); > + > +static void update_flags(struct cache_disk_superblock *disk_super, > + flags_mutator mutator) > +{ > + uint32_t sb_flags = mutator(le32_to_cpu(disk_super->flags)); > + disk_super->flags = cpu_to_le32(sb_flags); > +} > + > +static unsigned long set_clean_shutdown(unsigned long flags) > +{ > + set_bit(CLEAN_SHUTDOWN, &flags); > + return flags; > +} > + > +static unsigned long clear_clean_shutdown(unsigned long flags) > +{ > + clear_bit(CLEAN_SHUTDOWN, &flags); > + return flags; > +} > + > +static void read_superblock_fields(struct dm_cache_metadata *cmd, > + struct cache_disk_superblock *disk_super) > +{ > + cmd->root = le64_to_cpu(disk_super->mapping_root); > + cmd->hint_root = le64_to_cpu(disk_super->hint_root); > + cmd->discard_root = le64_to_cpu(disk_super->discard_root); > + cmd->discard_block_size = le64_to_cpu(disk_super->discard_block_size); > + cmd->discard_nr_blocks = to_dblock(le64_to_cpu(disk_super->discard_nr_blocks)); > + cmd->data_block_size = le32_to_cpu(disk_super->data_block_size); > + cmd->cache_blocks = to_cblock(le32_to_cpu(disk_super->cache_blocks)); > + strncpy(cmd->policy_name, disk_super->policy_name, sizeof(cmd->policy_name)); > + > + cmd->stats.read_hits = le32_to_cpu(disk_super->read_hits); > + cmd->stats.read_misses = le32_to_cpu(disk_super->read_misses); > + cmd->stats.write_hits = le32_to_cpu(disk_super->write_hits); > + cmd->stats.write_misses = le32_to_cpu(disk_super->write_misses); > + > + cmd->changed = false; > +} > + > +/* > + * The mutator updates the superblock flags. > + */ > +static int __begin_transaction_flags(struct dm_cache_metadata *cmd, > + flags_mutator mutator) > +{ > + int r; > + struct cache_disk_superblock *disk_super; > + struct dm_block *sblock; > + > + r = superblock_lock(cmd, &sblock); > + if (r) > + return r; > + > + disk_super = dm_block_data(sblock); > + update_flags(disk_super, mutator); > + read_superblock_fields(cmd, disk_super); > + > + return dm_bm_flush_and_unlock(cmd->bm, sblock); > +} > + > +static int __begin_transaction(struct dm_cache_metadata *cmd) > +{ > + int r; > + struct cache_disk_superblock *disk_super; > + struct dm_block *sblock; > + > + /* > + * We re-read the superblock every time. Shouldn't need to do this > + * really. > + */ > + r = superblock_read_lock(cmd, &sblock); > + if (r) > + return r; > + > + disk_super = dm_block_data(sblock); > + read_superblock_fields(cmd, disk_super); > + dm_bm_unlock(sblock); > + > + return 0; > +} > + > +static int __commit_transaction(struct dm_cache_metadata *cmd, > + flags_mutator mutator) > +{ > + int r; > + size_t metadata_len; > + struct cache_disk_superblock *disk_super; > + struct dm_block *sblock; > + > + /* > + * We need to know if the cache_disk_superblock exceeds a 512-byte sector. > + */ > + BUILD_BUG_ON(sizeof(struct cache_disk_superblock) > 512); > + > + r = dm_bitset_flush(&cmd->discard_info, cmd->discard_root, > + &cmd->discard_root); > + if (r) > + return r; > + > + r = dm_tm_pre_commit(cmd->tm); > + if (r < 0) > + return r; > + > + r = dm_sm_root_size(cmd->metadata_sm, &metadata_len); > + if (r < 0) > + return r; > + > + r = superblock_lock(cmd, &sblock); > + if (r) > + return r; > + > + disk_super = dm_block_data(sblock); > + > + if (mutator) > + update_flags(disk_super, mutator); > + > + debug("root = %lu\n", (unsigned long) cmd->root); > + disk_super->mapping_root = cpu_to_le64(cmd->root); > + disk_super->hint_root = cpu_to_le64(cmd->hint_root); > + disk_super->discard_root = cpu_to_le64(cmd->discard_root); > + disk_super->discard_block_size = cpu_to_le64(cmd->discard_block_size); > + disk_super->discard_nr_blocks = cpu_to_le64(from_dblock(cmd->discard_nr_blocks)); > + disk_super->cache_blocks = cpu_to_le32(from_cblock(cmd->cache_blocks)); > + strncpy(disk_super->policy_name, cmd->policy_name, sizeof(disk_super->policy_name)); > + > + disk_super->read_hits = cpu_to_le32(cmd->stats.read_hits); > + disk_super->read_misses = cpu_to_le32(cmd->stats.read_misses); > + disk_super->write_hits = cpu_to_le32(cmd->stats.write_hits); > + disk_super->write_misses = cpu_to_le32(cmd->stats.write_misses); > + > + r = dm_sm_copy_root(cmd->metadata_sm, &disk_super->metadata_space_map_root, > + metadata_len); > + if (r < 0) { > + dm_bm_unlock(sblock); > + return r; > + } > + > + return dm_tm_commit(cmd->tm, sblock); > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * The mappings are held in a dm-array that has 64-bit values stored in > + * little-endian format. The index is the cblock, the high 48bits of the > + * value are the oblock and the low 16 bit the flags. > + */ > +#define FLAGS_MASK ((1 << 16) - 1) > + > +static __le64 pack_value(dm_oblock_t block, unsigned flags) > +{ > + uint64_t value = from_oblock(block); > + value <<= 16; > + value = value | (flags & FLAGS_MASK); > + return cpu_to_le64(value); > +} > + > +static void unpack_value(__le64 value_le, dm_oblock_t *block, unsigned *flags) > +{ > + uint64_t value = le64_to_cpu(value_le); > + uint64_t b = value >> 16; > + *block = to_oblock(b); > + *flags = value & FLAGS_MASK; > +} > + > +/*----------------------------------------------------------------*/ > + > +struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev, > + sector_t data_block_size, > + bool may_format_device) > +{ > + int r; > + struct dm_cache_metadata *cmd; > + > + cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); > + if (!cmd) { > + DMERR("could not allocate metadata struct"); > + return NULL; > + } > + > + init_rwsem(&cmd->root_lock); > + cmd->bdev = bdev; > + cmd->data_block_size = data_block_size; > + cmd->cache_blocks = 0; > + cmd->changed = true; > + > + r = __create_persistent_data_objects(cmd, may_format_device); > + if (r) { > + kfree(cmd); > + return ERR_PTR(r); > + } > + > + r = __begin_transaction_flags(cmd, clear_clean_shutdown); > + if (r < 0) { > + dm_cache_metadata_close(cmd); > + return ERR_PTR(r); > + } > + > + return cmd; > +} > + > +void dm_cache_metadata_close(struct dm_cache_metadata *cmd) > +{ > + __destroy_persistent_data_objects(cmd); > + kfree(cmd); > +} > + > +int dm_cache_resize(struct dm_cache_metadata *cmd, dm_cblock_t new_cache_size) > +{ > + int r; > + __le64 null_mapping = pack_value(0, 0); > + > + down_write(&cmd->root_lock); > + __dm_bless_for_disk(&null_mapping); > + r = dm_array_resize(&cmd->info, cmd->root, from_cblock(cmd->cache_blocks), > + from_cblock(new_cache_size), > + &null_mapping, &cmd->root); > + if (!r) > + cmd->cache_blocks = new_cache_size; > + cmd->changed = true; > + up_write(&cmd->root_lock); > + > + return r; > +} > + > +int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd, > + sector_t discard_block_size, > + dm_dblock_t new_nr_entries) > +{ > + int r; > + > + down_write(&cmd->root_lock); > + r = dm_bitset_resize(&cmd->discard_info, > + cmd->discard_root, > + from_dblock(cmd->discard_nr_blocks), > + from_dblock(new_nr_entries), > + false, &cmd->discard_root); > + if (!r) { > + cmd->discard_block_size = discard_block_size; > + cmd->discard_nr_blocks = new_nr_entries; > + } > + > + cmd->changed = true; > + up_write(&cmd->root_lock); > + > + return r; > +} > + > +static int __set_discard(struct dm_cache_metadata *cmd, dm_dblock_t b) > +{ > + return dm_bitset_set_bit(&cmd->discard_info, cmd->discard_root, > + from_dblock(b), &cmd->discard_root); > +} > + > +static int __clear_discard(struct dm_cache_metadata *cmd, dm_dblock_t b) > +{ > + return dm_bitset_clear_bit(&cmd->discard_info, cmd->discard_root, > + from_dblock(b), &cmd->discard_root); > +} > + > +static int __is_discarded(struct dm_cache_metadata *cmd, dm_dblock_t b, > + bool *is_discarded) > +{ > + return dm_bitset_test_bit(&cmd->discard_info, cmd->discard_root, > + from_dblock(b), &cmd->discard_root, > + is_discarded); > +} > + > +static int __discard(struct dm_cache_metadata *cmd, > + dm_dblock_t dblock, bool discard) > +{ > + int r; > + > + r = (discard ? __set_discard : __clear_discard)(cmd, dblock); > + if (r) > + return r; > + > + cmd->changed = true; > + return 0; > +} > + > +int dm_cache_set_discard(struct dm_cache_metadata *cmd, > + dm_dblock_t dblock, bool discard) > +{ > + int r; > + > + down_write(&cmd->root_lock); > + r = __discard(cmd, dblock, discard); > + up_write(&cmd->root_lock); > + > + return r; > +} > + > +static int __load_discards(struct dm_cache_metadata *cmd, > + load_discard_fn fn, void *context) > +{ > + int r = 0; > + dm_block_t b; > + bool discard; > + > + for (b = 0; b < from_dblock(cmd->discard_nr_blocks); b++) { > + dm_dblock_t dblock = to_dblock(b); > + > + if (cmd->clean_when_opened) { > + r = __is_discarded(cmd, dblock, &discard); > + if (r) > + return r; > + } else > + discard = false; > + > + r = fn(context, cmd->discard_block_size, dblock, discard); > + if (r) > + break; > + } > + > + return r; > +} > + > +int dm_cache_load_discards(struct dm_cache_metadata *cmd, > + load_discard_fn fn, void *context) > +{ > + int r; > + > + down_read(&cmd->root_lock); > + r = __load_discards(cmd, fn, context); > + up_read(&cmd->root_lock); > + > + return r; > +} > + > +dm_cblock_t dm_cache_size(struct dm_cache_metadata *cmd) > +{ > + dm_cblock_t r; > + > + down_read(&cmd->root_lock); > + r = cmd->cache_blocks; > + up_read(&cmd->root_lock); > + > + return r; > +} > + > +static int __remove(struct dm_cache_metadata *cmd, dm_cblock_t cblock) > +{ > + int r; > + __le64 value = pack_value(0, 0); > + > + debug("__remove %lu\n", (unsigned long) oblock); > + __dm_bless_for_disk(&value); > + r = dm_array_set(&cmd->info, cmd->root, from_cblock(cblock), > + &value, &cmd->root); > + if (r) > + return r; > + > + cmd->changed = true; > + return 0; > +} > + > +int dm_cache_remove_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock) > +{ > + int r; > + > + down_write(&cmd->root_lock); > + r = __remove(cmd, cblock); > + up_write(&cmd->root_lock); > + > + return r; > +} > + > +static int __insert(struct dm_cache_metadata *cmd, > + dm_cblock_t cblock, dm_oblock_t oblock) > +{ > + int r; > + __le64 value = pack_value(oblock, M_VALID); > + __dm_bless_for_disk(&value); > + > + r = dm_array_set(&cmd->info, cmd->root, from_cblock(cblock), > + &value, &cmd->root); > + if (r) > + return r; > + > + cmd->changed = true; > + return 0; > +} > + > +int dm_cache_insert_mapping(struct dm_cache_metadata *cmd, > + dm_cblock_t cblock, dm_oblock_t oblock) > +{ > + int r; > + > + down_write(&cmd->root_lock); > + r = __insert(cmd, cblock, oblock); > + up_write(&cmd->root_lock); > + > + return r; > +} > + > +struct thunk { > + load_mapping_fn fn; > + void *context; > + > + struct dm_cache_metadata *cmd; > + bool respect_dirty_flags; > + bool hints_valid; > +}; > + > +static bool hints_array_available(struct dm_cache_metadata *cmd, > + const char *policy_name) > +{ > + bool policy_names_match = !strncmp(cmd->policy_name, policy_name, > + sizeof(cmd->policy_name)); > + > + return cmd->clean_when_opened && policy_names_match && cmd->hint_root; > +} > + > +static int __load_mapping(void *context, uint64_t cblock, void *leaf) > +{ > + int r = 0; > + bool dirty; > + __le64 value; > + __le32 hint_value = 0; > + dm_oblock_t oblock; > + unsigned flags; > + struct thunk *thunk = context; > + struct dm_cache_metadata *cmd = thunk->cmd; > + > + memcpy(&value, leaf, sizeof(value)); > + unpack_value(value, &oblock, &flags); > + > + if (flags & M_VALID) { > + if (thunk->hints_valid) { > + r = dm_array_get(&cmd->hint_info, cmd->hint_root, > + cblock, &hint_value); > + if (r && r != -ENODATA) > + return r; > + } > + > + dirty = thunk->respect_dirty_flags ? (flags & M_DIRTY) : true; > + r = thunk->fn(thunk->context, oblock, to_cblock(cblock), > + dirty, le32_to_cpu(hint_value), thunk->hints_valid); > + } > + > + return r; > +} > + > +static int __load_mappings(struct dm_cache_metadata *cmd, const char *policy_name, > + load_mapping_fn fn, void *context) > +{ > + struct thunk thunk; > + > + thunk.fn = fn; > + thunk.context = context; > + > + thunk.cmd = cmd; > + thunk.respect_dirty_flags = cmd->clean_when_opened; > + thunk.hints_valid = hints_array_available(cmd, policy_name); > + > + return dm_array_walk(&cmd->info, cmd->root, __load_mapping, &thunk); > +} > + > +int dm_cache_load_mappings(struct dm_cache_metadata *cmd, const char *policy_name, > + load_mapping_fn fn, void *context) > +{ > + int r; > + > + debug("> dm_cache_load_mappings\n"); > + down_read(&cmd->root_lock); > + r = __load_mappings(cmd, policy_name, fn, context); > + up_read(&cmd->root_lock); > + debug("< dm_cache_load_mappings\n"); > + > + return r; > +} > + > +static int __dump_mapping(void *context, uint64_t cblock, void *leaf) > +{ > + int r = 0; > + __le64 value; > + dm_oblock_t oblock; > + unsigned flags; > + > + memcpy(&value, leaf, sizeof(value)); > + unpack_value(value, &oblock, &flags); > + > + if (flags & M_VALID) > + pr_alert("%p o(%u) -> c(%u)\n", leaf, > + (unsigned) from_oblock(oblock), > + (unsigned) cblock); > + > + return r; > +} > + > +static int __dump_mappings(struct dm_cache_metadata *cmd) > +{ > + return dm_array_walk(&cmd->info, cmd->root, __dump_mapping, NULL); > +} > + > +void dm_cache_dump(struct dm_cache_metadata *cmd) > +{ > + down_read(&cmd->root_lock); > + __dump_mappings(cmd); > + up_read(&cmd->root_lock); > +} > + > +int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd) > +{ > + int r; > + > + down_read(&cmd->root_lock); > + r = cmd->changed; > + up_read(&cmd->root_lock); > + > + return r; > +} > + > +static int __dirty(struct dm_cache_metadata *cmd, dm_cblock_t cblock, bool dirty) > +{ > + int r; > + unsigned flags; > + dm_oblock_t oblock; > + __le64 value; > + > + r = dm_array_get(&cmd->info, cmd->root, from_cblock(cblock), &value); > + if (r) > + return r; > + > + unpack_value(value, &oblock, &flags); > + > + if (((flags & M_DIRTY) && dirty) || (!(flags & M_DIRTY) && !dirty)) > + /* nothing to be done */ > + return 0; > + > + value = pack_value(oblock, flags | (dirty ? M_DIRTY : 0)); > + __dm_bless_for_disk(&value); > + > + r = dm_array_set(&cmd->info, cmd->root, from_cblock(cblock), > + &value, &cmd->root); > + if (r) > + return r; > + > + cmd->changed = true; > + return 0; > + > +} > + > +int dm_cache_set_dirty(struct dm_cache_metadata *cmd, > + dm_cblock_t cblock, bool dirty) > +{ > + int r; > + > + down_write(&cmd->root_lock); > + r = __dirty(cmd, cblock, dirty); > + up_write(&cmd->root_lock); > + > + return r; > +} > + > +void dm_cache_get_stats(struct dm_cache_metadata *cmd, > + struct dm_cache_statistics *stats) > +{ > + down_read(&cmd->root_lock); > + memcpy(stats, &cmd->stats, sizeof(*stats)); > + up_read(&cmd->root_lock); > +} > + > +void dm_cache_set_stats(struct dm_cache_metadata *cmd, > + struct dm_cache_statistics *stats) > +{ > + down_write(&cmd->root_lock); > + memcpy(&cmd->stats, stats, sizeof(*stats)); > + up_write(&cmd->root_lock); > +} > + > +int dm_cache_commit(struct dm_cache_metadata *cmd, bool clean_shutdown) > +{ > + int r; > + flags_mutator mutator = (clean_shutdown ? set_clean_shutdown : > + clear_clean_shutdown); > + > + down_write(&cmd->root_lock); > + r = __commit_transaction(cmd, mutator); > + if (r) > + goto out; > + > + r = __begin_transaction(cmd); > + > +out: > + up_write(&cmd->root_lock); > + return r; > +} > + > +int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd, > + dm_block_t *result) > +{ > + int r = -EINVAL; > + > + down_read(&cmd->root_lock); > + r = dm_sm_get_nr_free(cmd->metadata_sm, result); > + up_read(&cmd->root_lock); > + > + return r; > +} > + > +int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd, > + dm_block_t *result) > +{ > + int r = -EINVAL; > + > + down_read(&cmd->root_lock); > + r = dm_sm_get_nr_blocks(cmd->metadata_sm, result); > + up_read(&cmd->root_lock); > + > + return r; > +} > + > +/*----------------------------------------------------------------*/ > + > +static int begin_hints(struct dm_cache_metadata *cmd, const char *policy_name) > +{ > + int r; > + __le32 value; > + > + if (!policy_name[0] || > + (strlen(policy_name) > sizeof(cmd->policy_name) - 1)) > + return -EINVAL; > + > + if (strcmp(cmd->policy_name, policy_name)) { > + strncpy(cmd->policy_name, policy_name, sizeof(cmd->policy_name)); > + > + if (cmd->hint_root) { > + r = dm_array_del(&cmd->hint_info, cmd->hint_root); > + if (r) > + return r; > + } > + > + r = dm_array_empty(&cmd->hint_info, &cmd->hint_root); > + if (r) > + return r; > + > + value = cpu_to_le32(0); > + __dm_bless_for_disk(&value); > + r = dm_array_resize(&cmd->hint_info, cmd->hint_root, 0, > + from_cblock(cmd->cache_blocks), > + &value, &cmd->hint_root); > + if (r) > + return r; > + } > + > + return 0; > +} > + > +int dm_cache_begin_hints(struct dm_cache_metadata *cmd, const char *policy_name) > +{ > + int r; > + > + down_write(&cmd->root_lock); > + r = begin_hints(cmd, policy_name); > + up_write(&cmd->root_lock); > + > + return r; > +} > + > +static int save_hint(struct dm_cache_metadata *cmd, dm_cblock_t cblock, > + uint32_t hint) > +{ > + int r; > + __le32 value = cpu_to_le32(hint); > + __dm_bless_for_disk(&value); > + > + r = dm_array_set(&cmd->hint_info, cmd->hint_root, > + from_cblock(cblock), &value, &cmd->hint_root); > + cmd->changed = true; > + > + return r; > +} > + > +int dm_cache_save_hint(struct dm_cache_metadata *cmd, dm_cblock_t cblock, > + uint32_t hint) > +{ > + int r; > + > + down_write(&cmd->root_lock); > + r = save_hint(cmd, cblock, hint); > + up_write(&cmd->root_lock); > + > + return r; > +} > diff --git a/drivers/md/dm-cache-metadata.h b/drivers/md/dm-cache-metadata.h > new file mode 100644 > index 0000000..e0eef0d > --- /dev/null > +++ b/drivers/md/dm-cache-metadata.h > @@ -0,0 +1,170 @@ > +/* > + * Copyright (C) 2012 Red Hat, Inc. > + * > + * This file is released under the GPL. > + */ > + > +#ifndef DM_CACHE_METADATA_H > +#define DM_CACHE_METADATA_H > + > +#include "persistent-data/dm-block-manager.h" > + > +/*----------------------------------------------------------------*/ > + > +/* > + * It's helpful to get sparse to differentiate between indexes into the > + * origin device, indexes into the cache device, and indexes into the > + * discard bitset. > + */ > + > +typedef dm_block_t __bitwise__ dm_oblock_t; > +typedef uint32_t __bitwise__ dm_cblock_t; > +typedef dm_block_t __bitwise__ dm_dblock_t; > + > +static inline dm_oblock_t to_oblock(dm_block_t b) > +{ > + return (__force dm_oblock_t) b; > +} > + > +static inline dm_block_t from_oblock(dm_oblock_t b) > +{ > + return (__force dm_block_t) b; > +} > + > +static inline dm_cblock_t to_cblock(uint32_t b) > +{ > + return (__force dm_cblock_t) b; > +} > + > +static inline uint32_t from_cblock(dm_cblock_t b) > +{ > + return (__force uint32_t) b; > +} > + > +static inline dm_dblock_t to_dblock(dm_block_t b) > +{ > + return (__force dm_dblock_t) b; > +} > + > +static inline dm_block_t from_dblock(dm_dblock_t b) > +{ > + return (__force dm_block_t) b; > +} > + > +/*----------------------------------------------------------------*/ > + > +#define CACHE_POLICY_NAME_SIZE 16 > +#define CACHE_METADATA_BLOCK_SIZE 4096 > + > +/* FIXME: remove this restriction */ > +/* > + * The metadata device is currently limited in size. > + * > + * We have one block of index, which can hold 255 index entries. Each > + * index entry contains allocation info about 16k metadata blocks. > + */ > +#define CACHE_METADATA_MAX_SECTORS (255 * (1 << 14) * (CACHE_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT))) > + > +/* > + * A metadata device larger than 16GB triggers a warning. > + */ > +#define CACHE_METADATA_MAX_SECTORS_WARNING (16 * (1024 * 1024 * 1024 >> SECTOR_SHIFT)) > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Compat feature flags. Any incompat flags beyond the ones > + * specified below will prevent use of the thin metadata. > + */ > +#define CACHE_FEATURE_COMPAT_SUPP 0UL > +#define CACHE_FEATURE_COMPAT_RO_SUPP 0UL > +#define CACHE_FEATURE_INCOMPAT_SUPP 0UL > + > +/* > + * Reopens or creates a new, empty metadata volume. > + * Returns an ERR_PTR on failure. > + */ > +struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev, > + sector_t data_block_size, > + bool may_format_device); > + > +void dm_cache_metadata_close(struct dm_cache_metadata *cmd); > + > +/* > + * The metadata needs to know how many cache blocks there are. We're dont > + * care about the origin, assuming the core target is giving us valid > + * origin blocks to map to. > + */ > +int dm_cache_resize(struct dm_cache_metadata *cmd, dm_cblock_t new_cache_size); > +dm_cblock_t dm_cache_size(struct dm_cache_metadata *cmd); > + > +int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd, > + sector_t discard_block_size, > + dm_dblock_t new_nr_entries); > + > +typedef int (*load_discard_fn)(void *context, sector_t discard_block_size, > + dm_dblock_t dblock, bool discarded); > +int dm_cache_load_discards(struct dm_cache_metadata *cmd, > + load_discard_fn fn, void *context); > + > +int dm_cache_set_discard(struct dm_cache_metadata *cmd, dm_dblock_t dblock, bool discard); > + > +int dm_cache_remove_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock); > +int dm_cache_insert_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock, dm_oblock_t oblock); > +int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd); > + > +typedef int (*load_mapping_fn)(void *context, dm_oblock_t oblock, > + dm_cblock_t cblock, bool dirty, > + uint32_t hint, bool hint_valid); > +int dm_cache_load_mappings(struct dm_cache_metadata *cmd, > + const char *policy_name, > + load_mapping_fn fn, > + void *context); > + > +int dm_cache_set_dirty(struct dm_cache_metadata *cmd, dm_cblock_t cblock, bool dirty); > + > +struct dm_cache_statistics { > + uint32_t read_hits; > + uint32_t read_misses; > + uint32_t write_hits; > + uint32_t write_misses; > +}; > + > +void dm_cache_get_stats(struct dm_cache_metadata *cmd, > + struct dm_cache_statistics *stats); > +void dm_cache_set_stats(struct dm_cache_metadata *cmd, > + struct dm_cache_statistics *stats); > + > +int dm_cache_commit(struct dm_cache_metadata *cmd, bool clean_shutdown); > + > +int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd, > + dm_block_t *result); > + > +int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd, > + dm_block_t *result); > + > +void dm_cache_dump(struct dm_cache_metadata *cmd); > + > +/* > + * The policy is invited to save a 32bit hint value for every cblock (eg, > + * for a hit count). These are stored against the policy name. If > + * policies are changed, then hints will be lost. If the machine crashes, > + * hints will be lost. > + * > + * The hints are indexed by the cblock, but many policies will not > + * neccessarily have a fast way of accessing efficiently via cblock. So > + * rather than querying the policy for each cblock, we let it walk its data > + * structures and fill in the hints in whatever order it wishes. > + */ > + > +int dm_cache_begin_hints(struct dm_cache_metadata *cmd, const char *policy_name); > + > +/* > + * requests hints for every cblock and stores in the metadata device. > + */ > +int dm_cache_save_hint(struct dm_cache_metadata *cmd, > + dm_cblock_t cblock, uint32_t hint); > + > +/*----------------------------------------------------------------*/ > + > +#endif > diff --git a/drivers/md/dm-cache-policy-cleaner.c b/drivers/md/dm-cache-policy-cleaner.c > new file mode 100644 > index 0000000..089c432 > --- /dev/null > +++ b/drivers/md/dm-cache-policy-cleaner.c > @@ -0,0 +1,482 @@ > +/* > + * Copyright (C) 2012 Red Hat. All rights reserved. > + * > + * writeback cache policy supporting flushing out dirty cache blocks. > + * > + * This file is released under the GPL. > + */ > + > +#include "dm-cache-policy.h" > +#include "dm.h" > + > +#include <linux/hash.h> > +#include <linux/list.h> > +#include <linux/module.h> > +#include <linux/slab.h> > + > +/*----------------------------------------------------------------*/ > + > +/* Cache entry struct. */ > +struct wb_cache_entry { > + struct list_head list; > + struct hlist_node hlist; > + > + dm_oblock_t oblock; > + dm_cblock_t cblock; > + bool dirty:1; > + bool pending:1; > +}; > + > +struct hash { > + struct hlist_head *table; > + dm_block_t hash_bits; > + unsigned nr_buckets; > +}; > + > +struct policy { > + struct dm_cache_policy policy; > + spinlock_t lock; > + > + struct list_head free; > + struct list_head clean; > + struct list_head clean_pending; > + struct list_head dirty; > + > + /* > + * We know exactly how many cblocks will be needed, > + * so we can allocate them up front. > + */ > + dm_cblock_t cache_size, nr_cblocks_allocated; > + struct wb_cache_entry *cblocks; > + struct hash chash; > +}; > + > +/*----------------------------------------------------------------------------*/ > + > +/* > + * Low-level functions. > + */ > +static unsigned next_power(unsigned n, unsigned min) > +{ > + return roundup_pow_of_two(max(n, min)); > +} > + > +static struct policy *to_policy(struct dm_cache_policy *p) > +{ > + return container_of(p, struct policy, policy); > +} > + > +static struct list_head *list_pop(struct list_head *q) > +{ > + struct list_head *r = q->next; > + list_del(r); > + return r; > +} > + > +/*----------------------------------------------------------------------------*/ > + > +/* Allocate/free various resources. */ > +static int alloc_hash(struct hash *hash, unsigned elts) > +{ > + hash->nr_buckets = next_power(elts >> 4, 16); > + hash->hash_bits = ffs(hash->nr_buckets) - 1; > + hash->table = vzalloc(sizeof(*hash->table) * hash->nr_buckets); > + > + return hash->table ? 0 : -ENOMEM; > +} > + > +static void free_hash(struct hash *hash) > +{ > + vfree(hash->table); > +} > + > +static int alloc_cache_blocks_with_hash(struct policy *p, dm_cblock_t cache_size) > +{ > + int r; > + > + p->cblocks = vzalloc(sizeof(*p->cblocks) * from_cblock(cache_size)); > + if (p->cblocks) { > + unsigned u = from_cblock(cache_size); > + > + while (u--) > + list_add(&p->cblocks[u].list, &p->free); > + > + p->nr_cblocks_allocated = 0; > + > + /* Cache entries hash. */ > + r = alloc_hash(&p->chash, from_cblock(cache_size)); > + if (r) > + vfree(p->cblocks); > + > + } else > + r = -ENOMEM; > + > + return r; > +} > + > +static void free_cache_blocks_and_hash(struct policy *p) > +{ > + free_hash(&p->chash); > + vfree(p->cblocks); > +} > + > +static struct wb_cache_entry *alloc_cache_entry(struct policy *p) > +{ > + struct wb_cache_entry *e; > + > + BUG_ON(from_cblock(p->nr_cblocks_allocated) >= from_cblock(p->cache_size)); > + > + e = list_entry(list_pop(&p->free), struct wb_cache_entry, list); > + p->nr_cblocks_allocated = to_cblock(from_cblock(p->nr_cblocks_allocated) + 1); > + > + return e; > +} > + > +/*----------------------------------------------------------------------------*/ > + > +/* Hash functions (lookup, insert, remove). */ > +static struct wb_cache_entry *lookup_cache_entry(struct policy *p, dm_oblock_t oblock) > +{ > + struct hash *hash = &p->chash; > + unsigned h = hash_64(from_oblock(oblock), hash->hash_bits); > + struct wb_cache_entry *cur; > + struct hlist_node *tmp; > + struct hlist_head *bucket = &hash->table[h]; > + > + hlist_for_each_entry(cur, tmp, bucket, hlist) { > + if (cur->oblock == oblock) { > + /* Move upfront bucket for faster access. */ > + hlist_del(&cur->hlist); > + hlist_add_head(&cur->hlist, bucket); > + return cur; > + } > + } > + > + return NULL; > +} > + > +static void insert_cache_hash_entry(struct policy *p, struct wb_cache_entry *e) > +{ > + unsigned h = hash_64(from_oblock(e->oblock), p->chash.hash_bits); > + > + hlist_add_head(&e->hlist, &p->chash.table[h]); > +} > + > +static void remove_cache_hash_entry(struct wb_cache_entry *e) > +{ > + hlist_del(&e->hlist); > +} > + > +/* Public interface (see dm-cache-policy.h */ > +static int wb_map(struct dm_cache_policy *pe, dm_oblock_t oblock, > + bool can_block, bool can_migrate, bool discarded_oblock, > + struct bio *bio, struct policy_result *result) > +{ > + struct policy *p = to_policy(pe); > + struct wb_cache_entry *e; > + unsigned long flags; > + > + result->op = POLICY_MISS; > + > + if (can_block) > + spin_lock_irqsave(&p->lock, flags); > + > + else if (!spin_trylock_irqsave(&p->lock, flags)) > + return -EWOULDBLOCK; > + > + e = lookup_cache_entry(p, oblock); > + if (e) { > + result->op = POLICY_HIT; > + result->cblock = e->cblock; > + > + } > + > + spin_unlock_irqrestore(&p->lock, flags); > + > + return 0; > +} > + > +static int wb_lookup(struct dm_cache_policy *pe, dm_oblock_t oblock, dm_cblock_t *cblock) > +{ > + int r; > + struct policy *p = to_policy(pe); > + struct wb_cache_entry *e; > + unsigned long flags; > + > + if (!spin_trylock_irqsave(&p->lock, flags)) > + return -EWOULDBLOCK; > + > + e = lookup_cache_entry(p, oblock); > + if (e) { > + *cblock = e->cblock; > + r = 0; > + > + } else > + r = -ENOENT; > + > + spin_unlock_irqrestore(&p->lock, flags); > + > + return r; > +} > + > + > +static void __set_clear_dirty(struct dm_cache_policy *pe, dm_oblock_t oblock, bool set) > +{ > + struct policy *p = to_policy(pe); > + struct wb_cache_entry *e; > + > + e = lookup_cache_entry(p, oblock); > + BUG_ON(!e); > + > + if (set) { > + if (!e->dirty) { > + e->dirty = true; > + list_move(&e->list, &p->dirty); > + } > + > + } else { > + if (e->dirty) { > + e->pending = false; > + e->dirty = false; > + list_move(&e->list, &p->clean); > + } > + } > +} > + > +static void wb_set_dirty(struct dm_cache_policy *pe, dm_oblock_t oblock) > +{ > + struct policy *p = to_policy(pe); > + unsigned long flags; > + > + spin_lock_irqsave(&p->lock, flags); > + __set_clear_dirty(pe, oblock, true); > + spin_unlock_irqrestore(&p->lock, flags); > +} > + > +static void wb_clear_dirty(struct dm_cache_policy *pe, dm_oblock_t oblock) > +{ > + struct policy *p = to_policy(pe); > + unsigned long flags; > + > + spin_lock_irqsave(&p->lock, flags); > + __set_clear_dirty(pe, oblock, false); > + spin_unlock_irqrestore(&p->lock, flags); > +} > + > +static void add_cache_entry(struct policy *p, struct wb_cache_entry *e) > +{ > + insert_cache_hash_entry(p, e); > + if (e->dirty) > + list_add(&e->list, &p->dirty); > + else > + list_add(&e->list, &p->clean); > +} > + > +static int wb_load_mapping(struct dm_cache_policy *pe, > + dm_oblock_t oblock, dm_cblock_t cblock, > + uint32_t hint, bool hint_valid) > +{ > + int r; > + struct policy *p = to_policy(pe); > + struct wb_cache_entry *e = alloc_cache_entry(p); > + > + if (e) { > + e->cblock = cblock; > + e->oblock = oblock; > + e->dirty = false; /* blocks default to clean */ > + add_cache_entry(p, e); > + r = 0; > + > + } else > + r = -ENOMEM; > + > + return r; > +} > + > +static void wb_destroy(struct dm_cache_policy *pe) > +{ > + struct policy *p = to_policy(pe); > + > + free_cache_blocks_and_hash(p); > + kfree(p); > +} > + > +static struct wb_cache_entry *__wb_force_remove_mapping(struct policy *p, dm_oblock_t oblock) > +{ > + struct wb_cache_entry *r = lookup_cache_entry(p, oblock); > + > + BUG_ON(!r); > + > + remove_cache_hash_entry(r); > + list_del(&r->list); > + > + return r; > +} > + > +static void wb_remove_mapping(struct dm_cache_policy *pe, dm_oblock_t oblock) > +{ > + struct policy *p = to_policy(pe); > + struct wb_cache_entry *e; > + unsigned long flags; > + > + spin_lock_irqsave(&p->lock, flags); > + e = __wb_force_remove_mapping(p, oblock); > + list_add_tail(&e->list, &p->free); > + BUG_ON(!from_cblock(p->nr_cblocks_allocated)); > + p->nr_cblocks_allocated = to_cblock(from_cblock(p->nr_cblocks_allocated) - 1); > + spin_unlock_irqrestore(&p->lock, flags); > +} > + > +static void wb_force_mapping(struct dm_cache_policy *pe, > + dm_oblock_t current_oblock, dm_oblock_t oblock) > +{ > + struct policy *p = to_policy(pe); > + struct wb_cache_entry *e; > + unsigned long flags; > + > + spin_lock_irqsave(&p->lock, flags); > + e = __wb_force_remove_mapping(p, current_oblock); > + e->oblock = oblock; > + add_cache_entry(p, e); > + spin_unlock_irqrestore(&p->lock, flags); > +} > + > +static struct wb_cache_entry *get_next_dirty_entry(struct policy *p) > +{ > + struct list_head *l; > + struct wb_cache_entry *r; > + > + if (list_empty(&p->dirty)) > + return NULL; > + > + l = list_pop(&p->dirty); > + r = container_of(l, struct wb_cache_entry, list); > + list_add(l, &p->clean_pending); > + > + return r; > +} > + > +static int wb_writeback_work(struct dm_cache_policy *pe, > + dm_oblock_t *oblock, > + dm_cblock_t *cblock) > +{ > + int r = -ENOENT; > + struct policy *p = to_policy(pe); > + struct wb_cache_entry *e; > + unsigned long flags; > + > + spin_lock_irqsave(&p->lock, flags); > + > + e = get_next_dirty_entry(p); > + if (e) { > + *oblock = e->oblock; > + *cblock = e->cblock; > + r = 0; > + } > + > + spin_unlock_irqrestore(&p->lock, flags); > + > + return r; > +} > + > +static dm_cblock_t wb_residency(struct dm_cache_policy *pe) > +{ > + return to_policy(pe)->nr_cblocks_allocated; > +} > + > +#if 0 > +static int wb_status(struct dm_cache_policy *pe, status_type_t type, unsigned status_flags, char *result, unsigned maxlen) > +{ > + ssize_t sz = 0; > + struct policy *p = to_policy(pe); > + > + switch (type) { > + case STATUSTYPE_INFO: > + DMEMIT("%u", from_cblock(p->nr_dirty)); > + break; > + > + case STATUSTYPE_TABLE: > + break; > + } > + > + return 0; > +} > +#endif > + > +/* Init the policy plugin interface function pointers. */ > +static void init_policy_functions(struct policy *p) > +{ > + p->policy.destroy = wb_destroy; > + p->policy.map = wb_map; > + p->policy.lookup = wb_lookup; > + p->policy.set_dirty = wb_set_dirty; > + p->policy.clear_dirty = wb_clear_dirty; > + p->policy.load_mapping = wb_load_mapping; > + p->policy.walk_mappings = NULL; > + p->policy.remove_mapping = wb_remove_mapping; > + p->policy.writeback_work = wb_writeback_work; > + p->policy.force_mapping = wb_force_mapping; > + p->policy.residency = wb_residency; > + p->policy.tick = NULL; > +#if 0 > + p->policy.status = wb_status; > + p->policy.message = NULL; > +#endif > +} > + > +static struct dm_cache_policy *wb_create(dm_cblock_t cache_size, > + sector_t origin_size, > + sector_t block_size, > + int argc, char **argv) > +{ > + int r; > + struct policy *p = kzalloc(sizeof(*p), GFP_KERNEL); > + > + if (!p) > + return NULL; > + > + init_policy_functions(p); > + INIT_LIST_HEAD(&p->free); > + INIT_LIST_HEAD(&p->clean); > + INIT_LIST_HEAD(&p->clean_pending); > + INIT_LIST_HEAD(&p->dirty); > + > + p->cache_size = cache_size; > + spin_lock_init(&p->lock); > + > + /* Allocate cache entry structs and add them to free list. */ > + r = alloc_cache_blocks_with_hash(p, cache_size); > + if (!r) > + return &p->policy; > + > + kfree(p); > + > + return NULL; > +} > +/*----------------------------------------------------------------------------*/ > + > +static struct dm_cache_policy_type wb_policy_type = { > + .name = "cleaner", > + .hint_size = 0, > + .owner = THIS_MODULE, > + .create = wb_create > +}; > + > +static int __init wb_init(void) > +{ > + return dm_cache_policy_register(&wb_policy_type); > +} > + > +static void __exit wb_exit(void) > +{ > + dm_cache_policy_unregister(&wb_policy_type); > +} > + > +module_init(wb_init); > +module_exit(wb_exit); > + > +MODULE_AUTHOR("Heinz Mauelshagen"); > +MODULE_LICENSE("GPL"); > +MODULE_DESCRIPTION("cleaner cache policy"); > + > +/*----------------------------------------------------------------------------*/ > diff --git a/drivers/md/dm-cache-policy-internal.h b/drivers/md/dm-cache-policy-internal.h > new file mode 100644 > index 0000000..a7795b8 > --- /dev/null > +++ b/drivers/md/dm-cache-policy-internal.h > @@ -0,0 +1,120 @@ > +/* > + * Copyright (C) 2012 Red Hat. All rights reserved. > + * > + * This file is released under the GPL. > + */ > + > +#ifndef DM_CACHE_POLICY_INTERNAL_H > +#define DM_CACHE_POLICY_INTERNAL_H > + > +#include "dm-cache-policy.h" > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Little inline functions that simplify calling the policy methods. > + */ > +static inline int policy_map(struct dm_cache_policy *p, dm_oblock_t oblock, > + bool can_block, bool can_migrate, bool discarded_oblock, > + struct bio *bio, struct policy_result *result) > +{ > + return p->map(p, oblock, can_block, can_migrate, discarded_oblock, bio, result); > +} > + > +static inline int policy_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) > +{ > + BUG_ON(!p->lookup); > + return p->lookup(p, oblock, cblock); > +} > + > +static inline void policy_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) > +{ > + if (p->set_dirty) > + p->set_dirty(p, oblock); > +} > + > +static inline void policy_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) > +{ > + if (p->clear_dirty) > + p->clear_dirty(p, oblock); > +} > + > +static inline int policy_load_mapping(struct dm_cache_policy *p, > + dm_oblock_t oblock, dm_cblock_t cblock, > + uint32_t hint, bool hint_valid) > +{ > + return p->load_mapping(p, oblock, cblock, hint, hint_valid); > +} > + > +static inline int policy_walk_mappings(struct dm_cache_policy *p, > + policy_walk_fn fn, void *context) > +{ > + return p->walk_mappings ? p->walk_mappings(p, fn, context) : 0; > +} > + > +static inline int policy_writeback_work(struct dm_cache_policy *p, > + dm_oblock_t *oblock, > + dm_cblock_t *cblock) > +{ > + return p->writeback_work ? p->writeback_work(p, oblock, cblock) : -ENOENT; > +} > + > +static inline void policy_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) > +{ > + return p->remove_mapping(p, oblock); > +} > + > +static inline void policy_force_mapping(struct dm_cache_policy *p, > + dm_oblock_t current_oblock, dm_oblock_t new_oblock) > +{ > + return p->force_mapping(p, current_oblock, new_oblock); > +} > + > +static inline dm_cblock_t policy_residency(struct dm_cache_policy *p) > +{ > + return p->residency(p); > +} > + > +static inline void policy_tick(struct dm_cache_policy *p) > +{ > + if (p->tick) > + return p->tick(p); > +} > + > +static inline int policy_status(struct dm_cache_policy *p, status_type_t type, > + unsigned status_flags, char *result, unsigned maxlen) > +{ > + return p->status ? p->status(p, type, status_flags, result, maxlen) : 0; > +} > + > +static inline int policy_message(struct dm_cache_policy *p, unsigned argc, char **argv) > +{ > + return p->message ? p->message(p, argc, argv) : 0; > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Creates a new cache policy given a policy name, a cache size, an origin size and the block size. > + */ > +struct dm_cache_policy *dm_cache_policy_create(const char *name, dm_cblock_t cache_size, > + sector_t origin_size, sector_t block_size, > + int argc, char **argv); > + > +/* > + * Destroys the policy. This drops references to the policy module as well > + * as calling it's destroy method. So always use this rather than calling > + * the policy->destroy method directly. > + */ > +void dm_cache_policy_destroy(struct dm_cache_policy *p); > + > +/* > + * In case we've forgotten. > + */ > +const char *dm_cache_policy_get_name(struct dm_cache_policy *p); > + > +size_t dm_cache_policy_get_hint_size(struct dm_cache_policy *p); > + > +/*----------------------------------------------------------------*/ > + > +#endif > diff --git a/drivers/md/dm-cache-policy-mq.c b/drivers/md/dm-cache-policy-mq.c > new file mode 100644 > index 0000000..f4cb941 > --- /dev/null > +++ b/drivers/md/dm-cache-policy-mq.c > @@ -0,0 +1,1254 @@ > +/* > + * Copyright (C) 2012 Red Hat. All rights reserved. > + * > + * This file is released under the GPL. > + */ > + > +#include "dm-cache-policy.h" > +#include "dm.h" > + > +#include <linux/hash.h> > +#include <linux/list.h> > +#include <linux/module.h> > +#include <linux/mutex.h> > +#include <linux/slab.h> > + > +#define DM_MSG_PREFIX "cache-policy-mq" > + > +static struct kmem_cache *mq_entry_cache; > + > +/*----------------------------------------------------------------*/ > + > +static unsigned next_power(unsigned n, unsigned min) > +{ > + return roundup_pow_of_two(max(n, min)); > +} > + > +/*----------------------------------------------------------------*/ > + > +static unsigned long *alloc_bitset(unsigned nr_entries) > +{ > + size_t s = sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG); > + return vzalloc(s); > +} > + > +static void free_bitset(unsigned long *bits) > +{ > + vfree(bits); > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Large, sequential ios are probably better left on the origin device since > + * spindles tend to have good bandwidth. > + * > + * The io_tracker tries to spot when the io is in one of these sequential > + * modes. > + * > + * The two thresholds are hard coded for now. I'd like them to be > + * accessible through a sysfs interface, rather than via the target line. > + */ > +#define RANDOM_THRESHOLD_DEFAULT 4 > +#define SEQUENTIAL_THRESHOLD_DEFAULT 512 > + > +enum io_pattern { > + PATTERN_SEQUENTIAL, > + PATTERN_RANDOM > +}; > + > +struct io_tracker { > + enum io_pattern pattern; > + > + unsigned nr_seq_samples; > + unsigned nr_rand_samples; > + int thresholds[2]; > + > + dm_oblock_t last_end_oblock; > +}; > + > +static void iot_init(struct io_tracker *t, > + int sequential_threshold, int random_threshold) > +{ > + t->pattern = PATTERN_RANDOM; > + t->nr_seq_samples = 0; > + t->nr_rand_samples = 0; > + t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold > -1 ? sequential_threshold : SEQUENTIAL_THRESHOLD_DEFAULT; > + t->thresholds[PATTERN_RANDOM] = random_threshold > -1 ? random_threshold : RANDOM_THRESHOLD_DEFAULT; > + t->last_end_oblock = 0; > +} > + > +static enum io_pattern iot_pattern(struct io_tracker *t) > +{ > + return t->pattern; > +} > + > +static void iot_update_stats(struct io_tracker *t, struct bio *bio) > +{ > + if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1) { > + t->nr_seq_samples++; > + > + } else { > + /* > + * Just one non-sequential IO is enough to reset the > + * counters. > + */ > + if (t->nr_seq_samples) { > + t->nr_seq_samples = 0; > + t->nr_rand_samples = 0; > + } > + > + t->nr_rand_samples++; > + } > + > + t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1); > +} > + > +static void iot_check_for_pattern_switch(struct io_tracker *t) > +{ > + switch (t->pattern) { > + case PATTERN_SEQUENTIAL: > + if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) { > + t->pattern = PATTERN_RANDOM; > + t->nr_seq_samples = t->nr_rand_samples = 0; > + } > + break; > + > + case PATTERN_RANDOM: > + if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) { > + t->pattern = PATTERN_SEQUENTIAL; > + t->nr_seq_samples = t->nr_rand_samples = 0; > + } > + break; > + } > +} > + > +static void iot_examine_bio(struct io_tracker *t, struct bio *bio) > +{ > + iot_update_stats(t, bio); > + iot_check_for_pattern_switch(t); > +} > + > +/*----------------------------------------------------------------*/ > + > + > +/* > + * This queue is divided up into different levels. Allowing us to push > + * entries to the back of any of the levels. Think of it as a partially > + * sorted queue. > + */ > +#define NR_QUEUE_LEVELS 16u > + > +struct queue { > + struct list_head qs[NR_QUEUE_LEVELS]; > +}; > + > +static void queue_init(struct queue *q) > +{ > + unsigned i; > + > + for (i = 0; i < NR_QUEUE_LEVELS; i++) > + INIT_LIST_HEAD(q->qs + i); > +} > + > +/* > + * Insert an entry to the back of the given level. > + */ > +static void queue_push(struct queue *q, unsigned level, struct list_head *elt) > +{ > + list_add_tail(elt, q->qs + level); > +} > + > +static void queue_remove(struct list_head *elt) > +{ > + list_del(elt); > +} > + > +/* > + * Shifts all regions down one level. This has no effect on the order of > + * the queue. > + */ > +static void queue_shift_down(struct queue *q) > +{ > + unsigned level; > + > + for (level = 1; level < NR_QUEUE_LEVELS; level++) > + list_splice_init(q->qs + level, q->qs + level - 1); > +} > + > +/* > + * Gives us the oldest entry of the lowest popoulated level. If the first > + * level is emptied then we shift down one level. > + */ > +static struct list_head *queue_pop(struct queue *q) > +{ > + unsigned level; > + struct list_head *r; > + > + for (level = 0; level < NR_QUEUE_LEVELS; level++) > + if (!list_empty(q->qs + level)) { > + r = q->qs[level].next; > + list_del(r); > + > + /* have we just emptied the bottom level? */ > + if (level == 0 && list_empty(q->qs)) > + queue_shift_down(q); > + > + return r; > + } > + > + return NULL; > +} > + > +static struct list_head *list_pop(struct list_head *lh) > +{ > + struct list_head *r = lh->next; > + > + BUG_ON(!r); > + list_del_init(r); > + > + return r; > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Describes a cache entry. Used in both the cache and the pre_cache. > + */ > +struct entry { > + struct hlist_node hlist; > + struct list_head list; > + dm_oblock_t oblock; > + dm_cblock_t cblock; /* valid iff in_cache */ > + > + // FIXME: pack these better > + bool in_cache:1; > + unsigned hit_count; > + unsigned generation; > + unsigned tick; > +}; > + > +struct mq_policy { > + struct dm_cache_policy policy; > + > + /* protects everything */ > + struct mutex lock; > + dm_cblock_t cache_size; > + struct io_tracker tracker; > + > + /* > + * We maintain two queues of entries. The cache proper contains > + * the currently active mappings. Whereas the pre_cache tracks > + * blocks that are being hit frequently and potential candidates > + * for promotion to the cache. > + */ > + struct queue pre_cache; > + struct queue cache; > + > + /* > + * Keeps track of time, incremented by the core. We use this to > + * avoid attributing multiple hits within the same tick. > + * > + * Access to tick_protected should be done with the spin lock held. > + * It's copied to tick at the start of the map function (within the > + * mutex). > + */ > + spinlock_t tick_lock; > + unsigned tick_protected; > + unsigned tick; > + > + /* > + * A count of the number of times the map function has been called > + * and found an entry in the pre_cache or cache. Currently used to > + * calculate the generation. > + */ > + unsigned hit_count; > + > + /* > + * A generation is a longish period that is used to trigger some > + * book keeping effects. eg, decrementing hit counts on entries. > + * This is needed to allow the cache to evolve as io patterns > + * change. > + */ > + unsigned generation; > + unsigned generation_period; /* in lookups (will probably change) */ > + > + /* > + * Entries in the pre_cache whose hit count passes the promotion > + * threshold move to the cache proper. Working out the correct > + * value for the promotion_threshold is crucial to this policy. > + */ > + unsigned promote_threshold; > + > + /* > + * We need cache_size entries for the cache, and choose to have > + * cache_size entries for the pre_cache too. One motivation for > + * using the same size is to make the hit counts directly > + * comparable between pre_cache and cache. > + */ > + unsigned nr_entries; > + unsigned nr_entries_allocated; > + struct list_head free; > + > + /* > + * Cache blocks may be unallocated. We store this info in a > + * bitset. > + */ > + unsigned long *allocation_bitset; > + unsigned nr_cblocks_allocated; > + unsigned find_free_nr_words; > + unsigned find_free_last_word; > + > + /* > + * The hash table allows us to quickly find an entry by origin > + * block. Both pre_cache and cache entries are in here. > + */ > + unsigned nr_buckets; > + dm_block_t hash_bits; > + struct hlist_head *table; > + > + int threshold_args[2]; > +}; > + > +/*----------------------------------------------------------------*/ > +/* Free/alloc mq cache entry structures. */ > +static void takeout_queue(struct list_head *lh, struct queue *q) > +{ > + unsigned level; > + > + for (level = 0; level < NR_QUEUE_LEVELS; level++) > + list_splice(q->qs + level, lh); > +} > + > +static void free_entries(struct mq_policy *mq) > +{ > + struct entry *e, *tmp; > + > + takeout_queue(&mq->free, &mq->pre_cache); > + takeout_queue(&mq->free, &mq->cache); > + > + list_for_each_entry_safe(e, tmp, &mq->free, list) > + kmem_cache_free(mq_entry_cache, e); > +} > + > +static int alloc_entries(struct mq_policy *mq, unsigned elts) > +{ > + unsigned u = mq->nr_entries; > + > + INIT_LIST_HEAD(&mq->free); > + mq->nr_entries_allocated = 0; > + > + while (u--) { > + struct entry *e = kmem_cache_zalloc(mq_entry_cache, GFP_KERNEL); > + > + if (!e) { > + free_entries(mq); > + return -ENOMEM; > + } > + > + > + list_add(&e->list, &mq->free); > + } > + > + return 0; > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Simple hash table implementation. Should replace with the standard hash > + * table that's making its way upstream. > + */ > +static void hash_insert(struct mq_policy *mq, struct entry *e) > +{ > + unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits); > + hlist_add_head(&e->hlist, mq->table + h); > +} > + > +static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock) > +{ > + unsigned h = hash_64(from_oblock(oblock), mq->hash_bits); > + struct hlist_head *bucket = mq->table + h; > + struct hlist_node *tmp; > + struct entry *e; > + > + hlist_for_each_entry(e, tmp, bucket, hlist) > + if (e->oblock == oblock) { > + hlist_del(&e->hlist); > + hlist_add_head(&e->hlist, bucket); > + return e; > + } > + > + return NULL; > +} > + > +static void hash_remove(struct entry *e) > +{ > + hlist_del(&e->hlist); > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Allocates a new entry structure. The memory is allocated in one lump, > + * so we just handing it out here. Returns NULL if all entries have > + * already been allocated. Cannot fail otherwise. > + */ > +static struct entry *alloc_entry(struct mq_policy *mq) > +{ > + struct entry *e; > + > + if (mq->nr_entries_allocated >= mq->nr_entries) { > + BUG_ON(!list_empty(&mq->free)); > + return NULL; > + } > + > + e = list_entry(list_pop(&mq->free), struct entry, list); > + INIT_LIST_HEAD(&e->list); > + INIT_HLIST_NODE(&e->hlist); > + > + mq->nr_entries_allocated++; > + return e; > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Mark cache blocks allocated or not in the bitset. > + */ > +static void alloc_cblock(struct mq_policy *mq, dm_cblock_t cblock) > +{ > + BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size)); > + BUG_ON(test_bit(from_cblock(cblock), mq->allocation_bitset)); > + set_bit(from_cblock(cblock), mq->allocation_bitset); > + mq->nr_cblocks_allocated++; > +} > + > +static void free_cblock(struct mq_policy *mq, dm_cblock_t cblock) > +{ > + BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size)); > + BUG_ON(!test_bit(from_cblock(cblock), mq->allocation_bitset)); > + clear_bit(from_cblock(cblock), mq->allocation_bitset); > + mq->nr_cblocks_allocated--; > +} > + > +static bool any_free_cblocks(struct mq_policy *mq) > +{ > + return mq->nr_cblocks_allocated < from_cblock(mq->cache_size); > +} > + > +/* > + * Fills result out with a cache block that isn't in use, or return > + * -ENOSPC. This does _not_ mark the cblock as allocated, the caller is > + * reponsible for that. > + */ > +static int __find_free_cblock(struct mq_policy *mq, unsigned begin, unsigned end, > + dm_cblock_t *result, unsigned *last_word) > +{ > + int r = -ENOSPC; > + unsigned w; > + > + for (w = begin; w < end; w++) { > + /* > + * ffz is undefined if no zero exists > + */ > + if (mq->allocation_bitset[w] != ~0UL) { > + *last_word = w; > + *result = to_cblock((w * BITS_PER_LONG) + ffz(mq->allocation_bitset[w])); > + if (from_cblock(*result) < from_cblock(mq->cache_size)) > + r = 0; > + > + break; > + } > + } > + > + return r; > +} > + > +static int find_free_cblock(struct mq_policy *mq, dm_cblock_t *result) > +{ > + int r; > + > + if (!any_free_cblocks(mq)) > + return -ENOSPC; > + > + r = __find_free_cblock(mq, mq->find_free_last_word, mq->find_free_nr_words, result, &mq->find_free_last_word); > + if (r == -ENOSPC && mq->find_free_last_word) > + r = __find_free_cblock(mq, 0, mq->find_free_last_word, result, &mq->find_free_last_word); > + > + return r; > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Now we get to the meat of the policy. This section deals with deciding > + * when to to add entries to the pre_cache and cache, and move between > + * them. > + */ > + > +/* > + * The queue level is based on the log2 of the hit count. > + */ > +static unsigned queue_level(struct entry *e) > +{ > + return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u); > +} > + > +/* > + * Inserts the entry into the pre_cache or the cache. Ensures the cache > + * block is marked as allocated if necc. Inserts into the hash table. Sets the > + * tick which records when the entry was last moved about. > + */ > +static void push(struct mq_policy *mq, struct entry *e) > +{ > + e->tick = mq->tick; > + hash_insert(mq, e); > + > + if (e->in_cache) { > + alloc_cblock(mq, e->cblock); > + queue_push(&mq->cache, queue_level(e), &e->list); > + } else > + queue_push(&mq->pre_cache, queue_level(e), &e->list); > +} > + > +/* > + * Removes an entry from pre_cache or cache. Removes from the hash table. > + * Frees off the cache block if necc. > + */ > +static void del(struct mq_policy *mq, struct entry *e) > +{ > + queue_remove(&e->list); > + hash_remove(e); > + if (e->in_cache) > + free_cblock(mq, e->cblock); > +} > + > +/* > + * Like del, except it removes the first entry in the queue (ie. the least > + * recently used). > + */ > +static struct entry *pop(struct mq_policy *mq, struct queue *q) > +{ > + struct entry *e = container_of(queue_pop(q), struct entry, list); > + > + if (e) { > + hash_remove(e); > + > + if (e->in_cache) > + free_cblock(mq, e->cblock); > + } > + > + return e; > +} > + > +/* > + * Has this entry already been updated? > + */ > +static bool updated_this_tick(struct mq_policy *mq, struct entry *e) > +{ > + return mq->tick == e->tick; > +} > + > +/* > + * The promotion threshold is adjusted every generation. As are the counts > + * of the entries. > + * > + * At the moment the threshold is taken by averaging the hit counts of some > + * of the entries in the cache (the first 20 entries of the first level). > + * > + * We can be much cleverer than this though. For example, each promotion > + * could bump up the threshold helping to prevent churn. Much more to do > + * here. > + */ > + > +#define MAX_TO_AVERAGE 20 > + > +static void check_generation(struct mq_policy *mq) > +{ > + unsigned total = 0, nr = 0, count = 0, level; > + struct list_head *head; > + struct entry *e; > + > + if ((mq->hit_count >= mq->generation_period) && > + (mq->nr_cblocks_allocated == from_cblock(mq->cache_size))) { > + > + mq->hit_count = 0; > + mq->generation++; > + > + for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) { > + head = mq->cache.qs + level; > + list_for_each_entry (e, head, list) { > + nr++; > + total += e->hit_count; > + > + if (++count >= MAX_TO_AVERAGE) > + break; > + } > + } > + > + mq->promote_threshold = nr ? total / nr : 1; > + if (mq->promote_threshold * nr < total) > + mq->promote_threshold++; > + > + pr_alert("promote threshold = %u, nr = %u\n", mq->promote_threshold, nr); > + } > +} > + > +/* > + * Whenever we use an entry we bump up it's hit counter, and push it to the > + * back to it's current level. > + */ > +static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e) > +{ > + if (updated_this_tick(mq, e)) > + return; > + > + e->hit_count++; > + mq->hit_count++; > + check_generation(mq); > + > + /* generation adjustment, to stop the counts increasing forever. */ > + /* FIXME: divide? */ > + //e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); > + e->generation = mq->generation; > + > + del(mq, e); > + push(mq, e); > +} > + > +/* > + * Demote the least recently used entry from the cache to the pre_cache. > + * Returns the new cache entry to use, and the old origin block it was > + * mapped to. > + * > + * We drop the hit count on the demoted entry back to 1 to stop it bouncing > + * straight back into the cache if it's subsequently hit. There are > + * various options here, and more experimentation would be good: > + * > + * - just forget about the demoted entry completely (ie. don't insert it > + into the pre_cache). > + * - divide the hit count rather that setting to some hard coded value. > + * - set the hit count to a hard coded value other than 1, eg, is it better > + * if it goes in at level 2? > + */ > +static dm_cblock_t demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock) > +{ > + dm_cblock_t result; > + struct entry *demoted = pop(mq, &mq->cache); > + > + BUG_ON(!demoted); > + result = demoted->cblock; > + *oblock = demoted->oblock; > + demoted->in_cache = false; > + demoted->hit_count = 1; > + push(mq, demoted); > + > + return result; > +} > + > +/* > + * We modify the basic promotion_threshold depending on the specific io. > + * > + * If the origin block has been discarded then there's no cost to copy it > + * to the cache. > + * > + * We bias towards reads, since they can be demoted at no cost if they > + * haven't been dirtied. > + */ > +#define DISCARDED_PROMOTE_THRESHOLD 1 > +#define READ_PROMOTE_THRESHOLD 4 > +#define WRITE_PROMOTE_THRESHOLD 8 > + > +static unsigned adjusted_promote_threshold(struct mq_policy *mq, > + bool discarded_oblock, int data_dir) > +{ > + if (discarded_oblock && any_free_cblocks(mq) && data_dir == WRITE) > + /* > + * We don't need to do any copying at all, so give this a > + * very low threshold. In practice this only triggers > + * during initial population after a format. > + */ > + return DISCARDED_PROMOTE_THRESHOLD; > + > + return data_dir == READ ? > + (mq->promote_threshold + READ_PROMOTE_THRESHOLD) : > + (mq->promote_threshold + WRITE_PROMOTE_THRESHOLD); > +} > + > +static bool should_promote(struct mq_policy *mq, struct entry *e, > + bool discarded_oblock, int data_dir) > +{ > + return e->hit_count >= > + adjusted_promote_threshold(mq, discarded_oblock, data_dir); > +} > + > +static int cache_entry_found(struct mq_policy *mq, > + struct entry *e, > + struct policy_result *result) > +{ > + requeue_and_update_tick(mq, e); > + > + if (e->in_cache) { > + result->op = POLICY_HIT; > + result->cblock = e->cblock; > + return 0; > + } > + > + return 0; > +} > + > +/* > + * Moves and entry from the pre_cache to the cache. The main work is > + * finding which cache block to use. > + */ > +static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e, > + struct policy_result *result) > +{ > + dm_cblock_t cblock; > + > + if (find_free_cblock(mq, &cblock) == -ENOSPC) { > + result->op = POLICY_REPLACE; > + cblock = demote_cblock(mq, &result->old_oblock); > + } else > + result->op = POLICY_NEW; > + > + result->cblock = e->cblock = cblock; > + > + del(mq, e); > + e->in_cache = true; > + push(mq, e); > + > + return 0; > +} > + > +static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e, > + bool can_migrate, bool discarded_oblock, > + int data_dir, struct policy_result *result) > +{ > + int r = 0; > + bool updated = updated_this_tick(mq, e); > + > + requeue_and_update_tick(mq, e); > + > + if ((!discarded_oblock && updated) || > + !should_promote(mq, e, discarded_oblock, data_dir)) > + result->op = POLICY_MISS; > + > + else if (!can_migrate) > + r = -EWOULDBLOCK; > + > + else > + r = pre_cache_to_cache(mq, e, result); > + > + return r; > +} > + > +static void insert_in_pre_cache(struct mq_policy *mq, > + dm_oblock_t oblock) > +{ > + struct entry *e = alloc_entry(mq); > + > + if (!e) > + /* > + * There's no spare entry structure, so we grab the least > + * used one from the pre_cache. > + */ > + e = pop(mq, &mq->pre_cache); > + > + if (unlikely(!e)) { > + DMWARN("couldn't pop from pre cache"); > + return; > + } > + > + e->in_cache = false; > + e->oblock = oblock; > + e->hit_count = 1; > + e->generation = mq->generation; > + push(mq, e); > +} > + > +static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock, > + struct policy_result *result) > +{ > + struct entry *e; > + dm_cblock_t cblock; > + > + if (find_free_cblock(mq, &cblock) == -ENOSPC) { > + result->op = POLICY_MISS; > + insert_in_pre_cache(mq, oblock); > + return; > + } > + > + e = alloc_entry(mq); > + if (unlikely(!e)) { > + result->op = POLICY_MISS; > + return; > + } > + > + e->oblock = oblock; > + e->cblock = cblock; > + e->in_cache = true; > + e->hit_count = 1; > + e->generation = mq->generation; > + push(mq, e); > + > + result->op = POLICY_NEW; > + result->cblock = e->cblock; > +} > + > +static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock, > + bool can_migrate, bool discarded_oblock, > + int data_dir, struct policy_result *result) > +{ > + if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) { > + if (can_migrate) { > + insert_in_cache(mq, oblock, result); > + return 0; > + } else > + return -EWOULDBLOCK; > + > + } else { > + insert_in_pre_cache(mq, oblock); > + result->op = POLICY_MISS; > + return 0; > + } > +} > + > +/* > + * Looks the oblock up in the hash table, then decides whether to put in > + * pre_cache, or cache etc. > + */ > +static int map(struct mq_policy *mq, dm_oblock_t oblock, > + bool can_migrate, bool discarded_oblock, > + int data_dir, struct policy_result *result) > +{ > + int r = 0; > + struct entry *e = hash_lookup(mq, oblock); > + > + if (e && e->in_cache) > + r = cache_entry_found(mq, e, result); > + > + else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL) > + result->op = POLICY_MISS; > + > + else if (e) > + r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock, > + data_dir, result); > + else > + r = no_entry_found(mq, oblock, can_migrate, discarded_oblock, > + data_dir, result); > + > + if (r == -EWOULDBLOCK) > + result->op = POLICY_MISS; > + return r; > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Public interface, via the policy struct. See dm-cache-policy.h for a > + * description of these. > + */ > + > +static struct mq_policy *to_mq_policy(struct dm_cache_policy *p) > +{ > + return container_of(p, struct mq_policy, policy); > +} > + > +static void mq_destroy(struct dm_cache_policy *p) > +{ > + struct mq_policy *mq = to_mq_policy(p); > + > + free_bitset(mq->allocation_bitset); > + kfree(mq->table); > + free_entries(mq); > + kfree(mq); > +} > + > +static void copy_tick(struct mq_policy *mq) > +{ > + unsigned long flags; > + > + spin_lock_irqsave(&mq->tick_lock, flags); > + mq->tick = mq->tick_protected; > + spin_unlock_irqrestore(&mq->tick_lock, flags); > +} > + > +static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock, > + bool can_block, bool can_migrate, bool discarded_oblock, > + struct bio *bio, struct policy_result *result) > +{ > + int r; > + struct mq_policy *mq = to_mq_policy(p); > + > + result->op = POLICY_MISS; > + > + if (can_block) > + mutex_lock(&mq->lock); > + else > + if (!mutex_trylock(&mq->lock)) > + return -EWOULDBLOCK; > + > + copy_tick(mq); > + > + iot_examine_bio(&mq->tracker, bio); > + r = map(mq, oblock, can_migrate, discarded_oblock, > + bio_data_dir(bio), result); > + > + mutex_unlock(&mq->lock); > + > + return r; > +} > + > +static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) > +{ > + int r; > + struct mq_policy *mq = to_mq_policy(p); > + struct entry *e; > + > + if (!mutex_trylock(&mq->lock)) > + return -EWOULDBLOCK; > + > + e = hash_lookup(mq, oblock); > + if (e && e->in_cache) { > + *cblock = e->cblock; > + r = 0; > + > + } else > + r = -ENOENT; > + > + mutex_unlock(&mq->lock); > + > + return r; > +} > + > +static int mq_load_mapping(struct dm_cache_policy *p, > + dm_oblock_t oblock, dm_cblock_t cblock, > + uint32_t hint, bool hint_valid) > +{ > + struct mq_policy *mq = to_mq_policy(p); > + struct entry *e; > + > + e = alloc_entry(mq); > + if (!e) > + return -ENOMEM; > + > + e->cblock = cblock; > + e->oblock = oblock; > + e->in_cache = true; > + e->hit_count = hint_valid ? hint : 1; > + e->generation = mq->generation; > + push(mq, e); > + > + return 0; > +} > + > +static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, > + void *context) > +{ > + struct mq_policy *mq = to_mq_policy(p); > + int r = 0; > + struct entry *e; > + unsigned level; > + > + mutex_lock(&mq->lock); > + for (level = 0; level < NR_QUEUE_LEVELS; level++) > + list_for_each_entry(e, &mq->cache.qs[level], list) { > + r = fn(context, e->cblock, e->oblock, e->hit_count); > + if (r) > + goto out; > + } > + > +out: > + mutex_unlock(&mq->lock); > + return r; > +} > + > +static void remove_mapping(struct mq_policy *mq, dm_oblock_t oblock) > +{ > + struct entry *e = hash_lookup(mq, oblock); > + > + BUG_ON(!e || !e->in_cache); > + > + del(mq, e); > + e->in_cache = false; > + push(mq, e); > +} > + > +static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) > +{ > + struct mq_policy *mq = to_mq_policy(p); > + > + mutex_lock(&mq->lock); > + remove_mapping(mq, oblock); > + mutex_unlock(&mq->lock); > +} > + > +static void force_mapping(struct mq_policy *mq, > + dm_oblock_t current_oblock, dm_oblock_t new_oblock) > +{ > + struct entry *e = hash_lookup(mq, current_oblock); > + > + BUG_ON(!e || !e->in_cache); > + > + del(mq, e); > + e->oblock = new_oblock; > + push(mq, e); > +} > + > +static void mq_force_mapping(struct dm_cache_policy *p, > + dm_oblock_t current_oblock, dm_oblock_t new_oblock) > +{ > + struct mq_policy *mq = to_mq_policy(p); > + > + mutex_lock(&mq->lock); > + force_mapping(mq, current_oblock, new_oblock); > + mutex_unlock(&mq->lock); > +} > + > +static dm_cblock_t mq_residency(struct dm_cache_policy *p) > +{ > + struct mq_policy *mq = to_mq_policy(p); > + > + // FIXME: lock mutex, not sure we can block here > + return to_cblock(mq->nr_cblocks_allocated); > +} > + > +static void mq_tick(struct dm_cache_policy *p) > +{ > + struct mq_policy *mq = to_mq_policy(p); > + unsigned long flags; > + > + spin_lock_irqsave(&mq->tick_lock, flags); > + mq->tick_protected++; > + spin_unlock_irqrestore(&mq->tick_lock, flags); > +} > + > +static int process_config_option(struct mq_policy *mq, char **argv, bool set_ctr_arg) > +{ > + enum io_pattern pattern; > + unsigned long tmp; > + > + if (!strcasecmp(argv[0], "sequential_threshold")) > + pattern = PATTERN_SEQUENTIAL; > + else if (!strcasecmp(argv[0], "random_threshold")) > + pattern = PATTERN_RANDOM; > + else > + return -EINVAL; > + > + if (kstrtoul(argv[1], 10, &tmp)) > + return -EINVAL; > + > + > + if (set_ctr_arg) { > + if (mq->threshold_args[pattern] > -1) > + return -EINVAL; > + > + mq->threshold_args[pattern] = tmp; > + } > + > + mq->tracker.thresholds[pattern] = tmp; > + > + return 0; > +} > + > +static int mq_message(struct dm_cache_policy *p, unsigned argc, char **argv) > +{ > + int r = -EINVAL; > + struct mq_policy *mq = to_mq_policy(p); > + > + if (argc != 3) > + return -EINVAL; > + > + if (!strcasecmp(argv[0], "set_config")) > + r = process_config_option(mq, argv + 1, false); > + > + return r; > +} > + > +static int mq_status(struct dm_cache_policy *p, status_type_t type, > + unsigned status_flags, char *result, unsigned maxlen) > +{ > + ssize_t sz = 0; > + struct mq_policy *mq = to_mq_policy(p); > + > + switch (type) { > + case STATUSTYPE_INFO: > + DMEMIT(" %u %u", > + mq->tracker.thresholds[PATTERN_SEQUENTIAL], > + mq->tracker.thresholds[PATTERN_RANDOM]); > + break; > + > + case STATUSTYPE_TABLE: > + if (mq->threshold_args[PATTERN_SEQUENTIAL] > -1) > + DMEMIT(" sequential_threshold %u", mq->threshold_args[PATTERN_SEQUENTIAL]); > + > + if (mq->threshold_args[PATTERN_RANDOM] > -1) > + DMEMIT(" random_threshold %u", mq->threshold_args[PATTERN_RANDOM]); > + } > + > + return 0; > +} > + > +static int process_policy_args(struct mq_policy *mq, int argc, char **argv) > +{ > + int r; > + unsigned u; > + > + mq->threshold_args[0] = mq->threshold_args[1] = -1; > + > + if (!argc) > + return 0; > + > + if (argc != 2 && argc != 4) > + return -EINVAL; > + > + for (r = u = 0; u < argc && !r; u += 2) > + r = process_config_option(mq, argv + u, true); > + > + return r; > +} > + > +/* Init the policy plugin interface function pointers. */ > +static void init_policy_functions(struct mq_policy *mq) > +{ > + mq->policy.destroy = mq_destroy; > + mq->policy.map = mq_map; > + mq->policy.lookup = mq_lookup; > + mq->policy.load_mapping = mq_load_mapping; > + mq->policy.walk_mappings = mq_walk_mappings; > + mq->policy.remove_mapping = mq_remove_mapping; > + mq->policy.writeback_work = NULL; > + mq->policy.force_mapping = mq_force_mapping; > + mq->policy.residency = mq_residency; > + mq->policy.tick = mq_tick; > + mq->policy.status = mq_status; > + mq->policy.message = mq_message; > +} > + > +static struct dm_cache_policy *mq_create(dm_cblock_t cache_size, > + sector_t origin_size, > + sector_t block_size, > + int argc, char **argv) > +{ > + int r; > + struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); > + > + if (!mq) > + return NULL; > + > + init_policy_functions(mq); > + > + /* Need to do that before iot_init(). */ > + r = process_policy_args(mq, argc, argv); > + if (r) > + goto bad_free_policy; > + > + iot_init(&mq->tracker, mq->threshold_args[PATTERN_SEQUENTIAL], mq->threshold_args[PATTERN_RANDOM]); > + > + mq->cache_size = cache_size; > + mq->tick_protected = 0; > + mq->tick = 0; > + mq->hit_count = 0; > + mq->generation = 0; > + mq->promote_threshold = 0; > + mutex_init(&mq->lock); > + spin_lock_init(&mq->tick_lock); > + mq->find_free_nr_words = dm_div_up(from_cblock(mq->cache_size), BITS_PER_LONG); > + mq->find_free_last_word = 0; > + > + queue_init(&mq->pre_cache); > + queue_init(&mq->cache); > + mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U); > + > + mq->nr_entries = 2 * from_cblock(cache_size); > + r = alloc_entries(mq, mq->nr_entries); > + if (r) > + goto bad_cache_alloc; > + > + mq->nr_entries_allocated = 0; > + mq->nr_cblocks_allocated = 0; > + > + mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16); > + mq->hash_bits = ffs(mq->nr_buckets) - 1; > + mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL); > + if (!mq->table) > + goto bad_alloc_table; > + > + mq->allocation_bitset = alloc_bitset(from_cblock(cache_size)); > + if (!mq->allocation_bitset) > + goto bad_alloc_bitset; > + > + return &mq->policy; > + > +bad_alloc_bitset: > + kfree(mq->table); > +bad_alloc_table: > + free_entries(mq); > +bad_free_policy: > +bad_cache_alloc: > + kfree(mq); > + > + return NULL; > +} > + > +/*----------------------------------------------------------------*/ > + > +static struct dm_cache_policy_type mq_policy_type = { > + .name = "mq", > + .hint_size = 0, > + .owner = THIS_MODULE, > + .create = mq_create > +}; > + > +static struct dm_cache_policy_type default_policy_type = { > + .name = "default", > + .hint_size = 0, > + .owner = THIS_MODULE, > + .create = mq_create > +}; > + > +static int __init mq_init(void) > +{ > + int r; > + > + mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry", > + sizeof(struct entry), > + __alignof__(struct entry), > + 0, NULL); > + if (!mq_entry_cache) > + goto bad; > + > + r = dm_cache_policy_register(&mq_policy_type); > + if (r) > + goto bad_register_mq; > + > + r = dm_cache_policy_register(&default_policy_type); > + if (!r) > + return 0; > + > + dm_cache_policy_unregister(&mq_policy_type); > +bad_register_mq: > + kmem_cache_destroy(mq_entry_cache); > +bad: > + return -ENOMEM; > +} > + > +static void __exit mq_exit(void) > +{ > + dm_cache_policy_unregister(&mq_policy_type); > + dm_cache_policy_unregister(&default_policy_type); > + kmem_cache_destroy(mq_entry_cache); > +} > + > +module_init(mq_init); > +module_exit(mq_exit); > + > +MODULE_AUTHOR("Joe Thornber"); > +MODULE_LICENSE("GPL"); > +MODULE_DESCRIPTION("mq cache policy"); > + > +MODULE_ALIAS("dm-cache-default"); > + > +/*----------------------------------------------------------------*/ > diff --git a/drivers/md/dm-cache-policy.c b/drivers/md/dm-cache-policy.c > new file mode 100644 > index 0000000..6c57873 > --- /dev/null > +++ b/drivers/md/dm-cache-policy.c > @@ -0,0 +1,147 @@ > +/* > + * Copyright (C) 2012 Red Hat. All rights reserved. > + * > + * This file is released under the GPL. > + */ > + > +#include "dm-cache-policy-internal.h" > +#include "dm.h" > + > +#include <linux/list.h> > +#include <linux/module.h> > +#include <linux/slab.h> > + > +/*----------------------------------------------------------------*/ > + > +#define DM_MSG_PREFIX "cache-policy" > +static DEFINE_SPINLOCK(register_lock); > +static LIST_HEAD(register_list); > + > +static struct dm_cache_policy_type *__find_policy(const char *name) > +{ > + struct dm_cache_policy_type *t; > + > + list_for_each_entry (t, ®ister_list, list) > + if (!strcmp(t->name, name)) > + return t; > + > + return NULL; > +} > + > +static struct dm_cache_policy_type *__get_policy(const char *name) > +{ > + struct dm_cache_policy_type *t = __find_policy(name); > + > + if (!t) { > + spin_unlock(®ister_lock); > + request_module("dm-cache-%s", name); > + spin_lock(®ister_lock); > + t = __find_policy(name); > + } > + > + if (t && !try_module_get(t->owner)) { > + DMWARN("couldn't get module"); > + t = NULL; > + } > + > + return t; > +} > + > +static struct dm_cache_policy_type *get_policy(const char *name) > +{ > + struct dm_cache_policy_type *t; > + > + spin_lock(®ister_lock); > + t = __get_policy(name); > + spin_unlock(®ister_lock); > + > + return t; > +} > + > +static void put_policy(struct dm_cache_policy_type *t) > +{ > + module_put(t->owner); > +} > + > +int dm_cache_policy_register(struct dm_cache_policy_type *type) > +{ > + int r; > + > + /* One size fits all for now */ > + if (type->hint_size != 0 && type->hint_size != 4) > + return -EINVAL; > + > + spin_lock(®ister_lock); > + if (__find_policy(type->name)) { > + DMWARN("attempt to register policy under duplicate name"); > + r = -EINVAL; > + } else { > + list_add(&type->list, ®ister_list); > + r = 0; > + } > + spin_unlock(®ister_lock); > + > + return r; > +} > +EXPORT_SYMBOL_GPL(dm_cache_policy_register); > + > +void dm_cache_policy_unregister(struct dm_cache_policy_type *type) > +{ > + spin_lock(®ister_lock); > + list_del_init(&type->list); > + spin_unlock(®ister_lock); > +} > +EXPORT_SYMBOL_GPL(dm_cache_policy_unregister); > + > +struct dm_cache_policy *dm_cache_policy_create(const char *name, > + dm_cblock_t cache_size, > + sector_t origin_size, > + sector_t block_size, > + int argc, char **argv) > +{ > + struct dm_cache_policy *p = NULL; > + struct dm_cache_policy_type *type; > + > + type = get_policy(name); > + if (!type) { > + DMWARN("unknown policy type"); > + return NULL; > + } > + > + p = type->create(cache_size, origin_size, block_size, argc, argv); > + if (!p) { > + put_policy(type); > + return NULL; > + } > + p->private = type; > + > + return p; > +} > +EXPORT_SYMBOL_GPL(dm_cache_policy_create); > + > +void dm_cache_policy_destroy(struct dm_cache_policy *p) > +{ > + struct dm_cache_policy_type *t = p->private; > + > + put_policy(t); > + p->destroy(p); > +} > +EXPORT_SYMBOL_GPL(dm_cache_policy_destroy); > + > +const char *dm_cache_policy_get_name(struct dm_cache_policy *p) > +{ > + struct dm_cache_policy_type *t = p->private; > + > + return t->name; > +} > +EXPORT_SYMBOL_GPL(dm_cache_policy_get_name); > + > +size_t dm_cache_policy_get_hint_size(struct dm_cache_policy *p) > +{ > + struct dm_cache_policy_type *t = p->private; > + > + return t->hint_size; > +} > +EXPORT_SYMBOL_GPL(dm_cache_policy_get_hint_size); > + > +/*----------------------------------------------------------------*/ > diff --git a/drivers/md/dm-cache-policy.h b/drivers/md/dm-cache-policy.h > new file mode 100644 > index 0000000..942bc1e > --- /dev/null > +++ b/drivers/md/dm-cache-policy.h > @@ -0,0 +1,220 @@ > +/* > + * Copyright (C) 2012 Red Hat. All rights reserved. > + * > + * This file is released under the GPL. > + */ > + > +#ifndef DM_CACHE_POLICY_H > +#define DM_CACHE_POLICY_H > + > +#include "dm-cache-metadata.h" > +#include "persistent-data/dm-block-manager.h" > + > +#include <linux/device-mapper.h> > + > +/*----------------------------------------------------------------*/ > + > +/* FIXME: make it clear which methods are optional. Get debug policy to > + * double check this at start. > + */ > + > +/* > + * The cache policy makes the important decisions about which blocks get to > + * live on the faster cache device. > + * > + * When the core target has to remap a bio it calls the 'map' method of the > + * policy. This returns an instruction telling the core target what to do. > + * > + * POLICY_HIT: > + * That block is in the cache. Remap to the cache and carry on. > + * > + * POLICY_MISS: > + * This block is on the origin device. Remap and carry on. > + * > + * POLICY_NEW: > + * This block is currently on the origin device, but the policy wants to > + * move it. The core should: > + * > + * - hold any further io to this origin block > + * - copy the origin to the given cache block > + * - release all the held blocks > + * - remap the original block to the cache > + * > + * POLICY_REPLACE: > + * This block is currently on the origin device. The policy wants to > + * move it to the cache, with the added complication that the destination > + * cache block needs a writeback first. The core should: > + * > + * - hold any further io to this origin block > + * - hold any further io to the origin block that's being written back > + * - writeback > + * - copy new block to cache > + * - release held blocks > + * - remap bio to cache and reissue. > + * > + * Should the core run into trouble while processing a POLICY_NEW or > + * POLICY_REPLACE instruction it will roll back the policies mapping using > + * remove_mapping() or force_mapping(). These methods must not fail. This > + * approach avoids having transactional semantics in the policy (ie, the > + * core informing the policy when a migration is complete), and hence makes > + * it easier to write new policies. > + * > + * In general policy methods should never block, except in the case of the > + * map function when can_migrate is set. So be careful to implement using > + * bounded, preallocated memory. > + */ > +enum policy_operation { > + POLICY_HIT, > + POLICY_MISS, > + POLICY_NEW, > + POLICY_REPLACE > +}; > + > +/* > + * This is the instruction passed back to the core target. > + */ > +struct policy_result { > + enum policy_operation op; > + dm_oblock_t old_oblock; /* POLICY_REPLACE */ > + dm_cblock_t cblock; /* POLICY_HIT, POLICY_NEW, POLICY_REPLACE */ > +}; > + > +typedef int (*policy_walk_fn)(void *context, dm_cblock_t cblock, > + dm_oblock_t oblock, uint32_t hint); > + > +/* > + * The cache policy object. Just a bunch of methods. It is envisaged that > + * this structure will be embedded in a bigger, policy specific structure > + * (ie. use container_of()). > + */ > +struct dm_cache_policy { > + > + // FIXME: make it clear which methods are optional, and which may > + // block. > + > + /* > + * Destroys this object. > + */ > + void (*destroy)(struct dm_cache_policy *p); > + > + /* > + * See large comment above. > + * > + * oblock - the origin block we're interested in. > + * > + * can_block - indicates whether the current thread is allowed to > + * block. -EWOULDBLOCK returned if it can't and would. > + * > + * can_migrate - gives permission for POLICY_NEW or POLICY_REPLACE > + * instructions. If denied and the policy would have > + * returned one of these instructions it should > + * return -EWOULDBLOCK. > + * > + * discarded_oblock - indicates whether the whole origin block is > + * in a discarded state (FIXME: better to tell the > + * policy about this sooner, so it can recycle that > + * cache block if it wants.) > + * bio - the bio that triggered this call. > + * result - gets filled in with the instruction. > + * > + * May only return 0, or -EWOULDBLOCK (if !can_migrate) > + */ > + int (*map)(struct dm_cache_policy *p, dm_oblock_t oblock, > + bool can_block, bool can_migrate, bool discarded_oblock, > + struct bio *bio, struct policy_result *result); > + > + /* > + * Sometimes we want to see if a block is in the cache, without > + * triggering any update of stats. (ie. it's not a real hit). > + * > + * Must not block. > + * > + * Returns 1 iff in cache, 0 iff not, < 0 on error (-EWOULDBLOCK > + * would be typical). > + */ > + int (*lookup)(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock); > + > + /* > + * oblock must be a mapped block. Must not block. > + */ > + void (*set_dirty)(struct dm_cache_policy *p, dm_oblock_t oblock); > + void (*clear_dirty)(struct dm_cache_policy *p, dm_oblock_t oblock); > + > + /* > + * Called when a cache target is first created. Used to load a > + * mapping from the metadata device into the policy. > + */ > + int (*load_mapping)(struct dm_cache_policy *p, dm_oblock_t oblock, > + dm_cblock_t cblock, uint32_t hint, bool hint_valid); > + > + int (*walk_mappings)(struct dm_cache_policy *p, policy_walk_fn fn, > + void *context); > + > + /* > + * Override functions used on the error paths of the core target. > + * They must succeed. > + */ > + void (*remove_mapping)(struct dm_cache_policy *p, dm_oblock_t oblock); > + void (*force_mapping)(struct dm_cache_policy *p, dm_oblock_t current_oblock, > + dm_oblock_t new_oblock); > + > + int (*writeback_work)(struct dm_cache_policy *p, dm_oblock_t *oblock, dm_cblock_t *cblock); > + > + > + /* > + * How full is the cache? > + */ > + dm_cblock_t (*residency)(struct dm_cache_policy *p); > + > + /* > + * Because of where we sit in the block layer, we can be asked to > + * map a lot of little bios that are all in the same block (no > + * queue merging has occurred). To stop the policy being fooled by > + * these the core target sends regular tick() calls to the policy. > + * The policy should only count an entry as hit once per tick. > + */ > + void (*tick)(struct dm_cache_policy *p); > + > + /* > + * Status and message. > + */ > + int (*status) (struct dm_cache_policy *p, status_type_t type, > + unsigned status_flags, char *result, unsigned maxlen); > + int (*message) (struct dm_cache_policy *p, unsigned argc, char **argv); > + > + /* > + * Book keeping ptr for the policy register, not for general use. > + */ > + void *private; > +}; > + > +/*----------------------------------------------------------------*/ > + > +/* > + * We maintain a little register of the different policy types. > + */ > +#define CACHE_POLICY_NAME_MAX 16 > + > +struct dm_cache_policy_type { > + /* For use by the register code only. */ > + struct list_head list; > + > + /* > + * Policy writers should fill in these fields. The name field is > + * what gets passed on the target line to select your policy. > + */ > + char name[CACHE_POLICY_NAME_MAX]; > + size_t hint_size; /* in bytes, must be 0 or 4 */ > + struct module *owner; > + struct dm_cache_policy *(*create)(dm_cblock_t cache_size, > + sector_t origin_size, > + sector_t block_size, > + int argc, char **argv); > +}; > + > +int dm_cache_policy_register(struct dm_cache_policy_type *type); > +void dm_cache_policy_unregister(struct dm_cache_policy_type *type); > + > +/*----------------------------------------------------------------*/ > + > +#endif > diff --git a/drivers/md/dm-cache-target.c b/drivers/md/dm-cache-target.c > new file mode 100644 > index 0000000..34b76b2 > --- /dev/null > +++ b/drivers/md/dm-cache-target.c > @@ -0,0 +1,2443 @@ > +/* > + * Copyright (C) 2012 Red Hat. All rights reserved. > + * > + * This file is released under the GPL. > + */ > + > +#include "dm.h" > +#include "dm-bio-prison.h" > +#include "dm-cache-metadata.h" > +#include "dm-cache-policy-internal.h" > + > +#include <asm/div64.h> > + > +#include <linux/blkdev.h> > +#include <linux/dm-io.h> > +#include <linux/dm-kcopyd.h> > +#include <linux/init.h> > +#include <linux/list.h> > +#include <linux/mempool.h> > +#include <linux/module.h> > +#include <linux/slab.h> > + > +#define DM_MSG_PREFIX "cache" > +#define DAEMON "cached" > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Glossary: > + * > + * oblock: index of an origin block > + * cblock: index of a cache block > + * promotion: movement of a block from origin to cache > + * demotion: movement of a block from cache to origin > + * migration: movement of a block between the origin and cache device, > + * either direction > + */ > + > +/*----------------------------------------------------------------*/ > + > +static size_t bitset_size_in_bytes(unsigned nr_entries) > +{ > + return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG); > +} > + > +static unsigned long *alloc_bitset(unsigned nr_entries) > +{ > + size_t s = bitset_size_in_bytes(nr_entries); > + return vzalloc(s); > +} > + > +static void clear_bitset(void *bitset, unsigned nr_entries) > +{ > + size_t s = bitset_size_in_bytes(nr_entries); > + memset(bitset, 0, s); > +} > + > +static void free_bitset(unsigned long *bits) > +{ > + vfree(bits); > +} > + > +/*----------------------------------------------------------------*/ > + > +#define PRISON_CELLS 1024 > +#define MIGRATION_POOL_SIZE 128 > +#define COMMIT_PERIOD HZ > +#define MIGRATION_COUNT_WINDOW 10 > + > +/* > + * The block size of the device holding cache data must be >= 32KB > + */ > +#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) > + > +/* > + * FIXME: the cache is read/write for the time being. > + */ > +enum cache_mode { > + CM_WRITE, /* metadata may be changed */ > + CM_READ_ONLY, /* metadata may not be changed */ > +}; > + > +struct cache_features { > + enum cache_mode mode; > + bool write_through:1; > +}; > + > +struct cache { > + struct dm_target *ti; > + struct dm_target_callbacks callbacks; > + > + /* > + * Metadata is written to this device. > + */ > + struct dm_dev *metadata_dev; > + > + /* > + * The slower of the two data devices. Typically a spindle. > + */ > + struct dm_dev *origin_dev; > + > + /* > + * The faster of the two data devices. Typically an SSD. > + */ > + struct dm_dev *cache_dev; > + > + /* > + * Cache features such as write-through. > + */ > + struct cache_features features; > + > + /* > + * Size of the origin device in _complete_ blocks and native sectors. > + */ > + dm_oblock_t origin_blocks; > + sector_t origin_sectors; > + > + /* > + * Size of the cache device in blocks. > + */ > + dm_cblock_t cache_size; > + > + /* > + * Fields for converting from sectors to blocks. > + */ > + sector_t sectors_per_block; > + int sectors_per_block_shift; > + > + struct dm_cache_metadata *cmd; > + > + spinlock_t lock; > + struct bio_list deferred_bios; > + struct bio_list deferred_flush_bios; > + struct list_head quiesced_migrations; > + struct list_head completed_migrations; > + struct list_head need_commit_migrations; > + sector_t migration_threshold; > + atomic_t nr_migrations; > + wait_queue_head_t migration_wait; > + > + /* > + * cache_size entries, dirty if set > + */ > + dm_cblock_t nr_dirty; > + unsigned long *dirty_bitset; > + > + /* > + * origin_blocks entries, discarded if set. > + */ > + sector_t discard_block_size; /* a power of 2 times sectors per block */ > + dm_dblock_t discard_nr_blocks; > + unsigned long *discard_bitset; > + > + struct dm_kcopyd_client *copier; > + struct workqueue_struct *wq; > + struct work_struct worker; > + > + struct delayed_work waker; > + unsigned long last_commit_jiffies; > + > + struct dm_bio_prison *prison; > + struct dm_deferred_set *all_io_ds; > + > + mempool_t *migration_pool; > + struct dm_cache_migration *next_migration; > + > + struct dm_cache_policy *policy; > + unsigned policy_nr_args; > + > + bool need_tick_bio:1; > + bool sized:1; > + bool quiescing:1; > + bool commit_requested:1; > + bool loaded_mappings:1; > + bool loaded_discards:1; > + > + atomic_t read_hit; > + atomic_t read_miss; > + atomic_t write_hit; > + atomic_t write_miss; > + atomic_t demotion; > + atomic_t promotion; > + atomic_t copies_avoided; > + atomic_t cache_cell_clash; > + atomic_t commit_count; > + atomic_t discard_count; > +}; > + > +struct per_bio_data { > + bool tick:1; > + unsigned req_nr:2; > + struct dm_deferred_entry *all_io_entry; > +}; > + > +struct dm_cache_migration { > + struct list_head list; > + struct cache *cache; > + > + unsigned long start_jiffies; > + dm_oblock_t old_oblock; > + dm_oblock_t new_oblock; > + dm_cblock_t cblock; > + > + bool err:1; > + bool writeback:1; > + bool demote:1; > + bool promote:1; > + > + struct dm_bio_prison_cell *old_ocell; > + struct dm_bio_prison_cell *new_ocell; > +}; > + > +/* > + * Processing a bio in the worker thread may require these memory > + * allocations. We prealloc to avoid deadlocks (the same worker thread > + * frees them back to the mempool). > + */ > +struct prealloc { > + struct dm_cache_migration *mg; > + struct dm_bio_prison_cell *cell1; > + struct dm_bio_prison_cell *cell2; > +}; > + > +static void wake_worker(struct cache *cache) > +{ > + queue_work(cache->wq, &cache->worker); > +} > + > +/*----------------------------------------------------------------*/ > + > +static int prealloc_data_structs(struct cache *cache, struct prealloc *p) > +{ > + if (!p->mg) { > + p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT); > + if (!p->mg) > + return -ENOMEM; > + } > + > + if (!p->cell1) { > + p->cell1 = dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT); > + if (!p->cell1) > + return -ENOMEM; > + } > + > + if (!p->cell2) { > + p->cell2 = dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT); > + if (!p->cell2) > + return -ENOMEM; > + } > + > + return 0; > +} > + > +static void prealloc_free_structs(struct cache *cache, struct prealloc *p) > +{ > + if (p->cell2) > + dm_bio_prison_free_cell(cache->prison, p->cell2); > + > + if (p->cell1) > + dm_bio_prison_free_cell(cache->prison, p->cell1); > + > + if (p->mg) > + mempool_free(p->mg, cache->migration_pool); > +} > + > +static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p) > +{ > + struct dm_cache_migration *mg = p->mg; > + > + BUG_ON(!mg); > + p->mg = NULL; > + > + return mg; > +} > + > +static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p) > +{ > + struct dm_bio_prison_cell *r = NULL; > + > + if (p->cell1) { > + r = p->cell1; > + p->cell1 = NULL; > + > + } else if (p->cell2) { > + r = p->cell2; > + p->cell2 = NULL; > + } else > + BUG(); > + > + return r; > +} > + > +static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell) > +{ > + if (!p->cell2) > + p->cell2 = cell; > + > + else if (!p->cell1) > + p->cell1 = cell; > + > + else > + BUG(); > +} > + > +/*----------------------------------------------------------------*/ > + > +static void build_key(dm_oblock_t oblock, struct dm_cell_key *key) > +{ > + key->virtual = 0; > + key->dev = 0; > + key->block = from_oblock(oblock); > +} > + > +/* > + * The caller hands in a preallocated cell, and a free function for it. > + * The cell will be freed if there's an error, or if it wasn't used because > + * a cell with that key already exists. > + */ > +typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell); > + > +static int bio_detain(struct cache *cache, dm_oblock_t oblock, > + struct bio *bio, struct dm_bio_prison_cell *cell, > + cell_free_fn free_fn, void *free_context, > + struct dm_bio_prison_cell **result) > +{ > + int r; > + struct dm_cell_key key; > + > + build_key(oblock, &key); > + r = dm_bio_detain(cache->prison, &key, bio, cell, result); > + if (r) > + free_fn(free_context, cell); > + > + return r; > +} > + > +static int get_cell(struct cache *cache, > + dm_oblock_t oblock, > + struct prealloc *structs, > + struct dm_bio_prison_cell **result) > +{ > + int r; > + struct dm_cell_key key; > + struct dm_bio_prison_cell *cell; > + > + cell = prealloc_get_cell(structs); > + > + build_key(oblock, &key); > + r = dm_get_cell(cache->prison, &key, cell, result); > + if (r) > + prealloc_put_cell(structs, cell); > + > + return r; > +} > + > + /*----------------------------------------------------------------*/ > + > +static bool is_dirty(struct cache *cache, dm_cblock_t b) > +{ > + return test_bit(from_cblock(b), cache->dirty_bitset); > +} > + > +static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock) > +{ > + if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { > + cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1); > + policy_set_dirty(cache->policy, oblock); > + } > +} > + > +static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock) > +{ > + if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { > + policy_clear_dirty(cache->policy, oblock); > + cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1); > + if (!from_cblock(cache->nr_dirty)) > + dm_table_event(cache->ti->table); > + } > +} > + > +/*----------------------------------------------------------------*/ > + > +static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) > +{ > + sector_t tmp = cache->discard_block_size; > + dm_block_t b = from_oblock(oblock); > + > + do_div(tmp, cache->sectors_per_block); > + do_div(b, tmp); > + return to_dblock(b); > +} > + > +static void set_discard(struct cache *cache, dm_dblock_t b) > +{ > + unsigned long flags; > + > + atomic_inc(&cache->discard_count); > + > + spin_lock_irqsave(&cache->lock, flags); > + set_bit(from_dblock(b), cache->discard_bitset); > + spin_unlock_irqrestore(&cache->lock, flags); > +} > + > +static void clear_discard(struct cache *cache, dm_dblock_t b) > +{ > + unsigned long flags; > + > + spin_lock_irqsave(&cache->lock, flags); > + clear_bit(from_dblock(b), cache->discard_bitset); > + spin_unlock_irqrestore(&cache->lock, flags); > +} > + > +static bool is_discarded(struct cache *cache, dm_dblock_t b) > +{ > + int r; > + unsigned long flags; > + > + spin_lock_irqsave(&cache->lock, flags); > + r = test_bit(from_dblock(b), cache->discard_bitset); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + return r; > +} > + > +static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) > +{ > + int r; > + unsigned long flags; > + > + spin_lock_irqsave(&cache->lock, flags); > + r = test_bit(from_dblock(oblock_to_dblock(cache, b)), > + cache->discard_bitset); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + return r; > +} > + > +/*----------------------------------------------------------------*/ > + > +static void load_stats(struct cache *cache) > +{ > + struct dm_cache_statistics stats; > + > + dm_cache_get_stats(cache->cmd, &stats); > + atomic_set(&cache->read_hit, stats.read_hits); > + atomic_set(&cache->read_miss, stats.read_misses); > + atomic_set(&cache->write_hit, stats.write_hits); > + atomic_set(&cache->write_miss, stats.write_misses); > +} > + > +static void save_stats(struct cache *cache) > +{ > + struct dm_cache_statistics stats; > + > + stats.read_hits = atomic_read(&cache->read_hit); > + stats.read_misses = atomic_read(&cache->read_miss); > + stats.write_hits = atomic_read(&cache->write_hit); > + stats.write_misses = atomic_read(&cache->write_miss); > + > + dm_cache_set_stats(cache->cmd, &stats); > +} > + > +/*---------------------------------------------------------------- > + * Per request data > + *--------------------------------------------------------------*/ > +static struct per_bio_data *get_per_bio_data(struct bio *bio) > +{ > + struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); > + BUG_ON(!pb); > + return pb; > +} > + > +static struct per_bio_data *init_per_bio_data(struct bio *bio) > +{ > + struct per_bio_data *pb = get_per_bio_data(bio); > + > + pb->tick = false; > + pb->req_nr = dm_bio_get_target_request_nr(bio); > + pb->all_io_entry = NULL; > + > + return pb; > +} > + > +/*---------------------------------------------------------------- > + * Remapping > + *--------------------------------------------------------------*/ > +static bool block_size_is_power_of_two(struct cache *cache) > +{ > + return cache->sectors_per_block_shift >= 0; > +} > + > +static void remap_to_origin(struct cache *cache, struct bio *bio) > +{ > + bio->bi_bdev = cache->origin_dev->bdev; > +} > + > +static void remap_to_cache(struct cache *cache, struct bio *bio, > + dm_cblock_t cblock) > +{ > + sector_t bi_sector = bio->bi_sector; > + > + bio->bi_bdev = cache->cache_dev->bdev; > + if (!block_size_is_power_of_two(cache)) > + bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) + > + sector_div(bi_sector, cache->sectors_per_block); > + else > + bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) | > + (bi_sector & (cache->sectors_per_block - 1)); > +} > + > +static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) > +{ > + unsigned long flags; > + struct per_bio_data *pb = get_per_bio_data(bio); > + > + spin_lock_irqsave(&cache->lock, flags); > + if (cache->need_tick_bio && > + !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) { > + pb->tick = true; > + cache->need_tick_bio = false; > + } > + spin_unlock_irqrestore(&cache->lock, flags); > +} > + > +static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, > + dm_oblock_t oblock) > +{ > + check_if_tick_bio_needed(cache, bio); > + remap_to_origin(cache, bio); > + if (bio_data_dir(bio) == WRITE) > + clear_discard(cache, oblock_to_dblock(cache, oblock)); > +} > + > +static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, > + dm_oblock_t oblock, dm_cblock_t cblock) > +{ > + remap_to_cache(cache, bio, cblock); > + if (bio_data_dir(bio) == WRITE) { > + set_dirty(cache, oblock, cblock); > + clear_discard(cache, oblock_to_dblock(cache, oblock)); > + } > +} > + > +static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) > +{ > + sector_t block_nr = bio->bi_sector; > + > + if (!block_size_is_power_of_two(cache)) > + (void) sector_div(block_nr, cache->sectors_per_block); > + else > + block_nr >>= cache->sectors_per_block_shift; > + > + return to_oblock(block_nr); > +} > + > +static int bio_triggers_commit(struct cache *cache, struct bio *bio) > +{ > + return bio->bi_rw & (REQ_FLUSH | REQ_FUA); > +} > + > +static void issue(struct cache *cache, struct bio *bio) > +{ > + unsigned long flags; > + > + if (!bio_triggers_commit(cache, bio)) { > + generic_make_request(bio); > + return; > + } > + > + /* > + * Batch together any bios that trigger commits and then issue a > + * single commit for them in do_worker(). > + */ > + spin_lock_irqsave(&cache->lock, flags); > + cache->commit_requested = true; > + bio_list_add(&cache->deferred_flush_bios, bio); > + spin_unlock_irqrestore(&cache->lock, flags); > +} > + > +/*---------------------------------------------------------------- > + * Migration processing > + * > + * Migration covers moving data from the origin device to the cache, or > + * vice versa. > + *--------------------------------------------------------------*/ > +static void free_migration(struct dm_cache_migration *mg) > +{ > + mempool_free(mg, mg->cache->migration_pool); > +} > + > +static void inc_nr_migrations(struct cache *cache) > +{ > + atomic_inc(&cache->nr_migrations); > +} > + > +static void dec_nr_migrations(struct cache *cache) > +{ > + atomic_dec(&cache->nr_migrations); > + > + /* > + * Wake the worker in case we're suspending the target. > + */ > + wake_up(&cache->migration_wait); > +} > + > +static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, > + bool holder) > +{ > + (holder ? dm_cell_release : dm_cell_release_no_holder) > + (cache->prison, cell, &cache->deferred_bios); > + dm_bio_prison_free_cell(cache->prison, cell); > +} > + > +static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, > + bool holder) > +{ > + unsigned long flags; > + > + spin_lock_irqsave(&cache->lock, flags); > + __cell_defer(cache, cell, holder); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + wake_worker(cache); > +} > + > +static void cleanup_migration(struct dm_cache_migration *mg) > +{ > + dec_nr_migrations(mg->cache); > + free_migration(mg); > +} > + > +static void migration_failure(struct dm_cache_migration *mg) > +{ > + struct cache *cache = mg->cache; > + > + if (mg->writeback) { > + DMWARN_LIMIT("writeback failed; couldn't copy block"); > + set_dirty(cache, mg->old_oblock, mg->cblock); > + cell_defer(cache, mg->old_ocell, false); > + > + } else if (mg->demote) { > + DMWARN_LIMIT("demotion failed; couldn't copy block"); > + policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock); > + > + cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1); > + if (mg->promote) > + cell_defer(cache, mg->new_ocell, 1); > + } else { > + DMWARN_LIMIT("promotion failed; couldn't copy block"); > + policy_remove_mapping(cache->policy, mg->new_oblock); > + cell_defer(cache, mg->new_ocell, 1); > + } > + > + cleanup_migration(mg); > +} > + > +static void migration_success_pre_commit(struct dm_cache_migration *mg) > +{ > + unsigned long flags; > + struct cache *cache = mg->cache; > + > + if (mg->writeback) { > + cell_defer(cache, mg->old_ocell, false); > + clear_dirty(cache, mg->old_oblock, mg->cblock); > + cleanup_migration(mg); > + return; > + > + } else if (mg->demote) { > + if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) { > + DMWARN_LIMIT("demotion failed; couldn't update on disk metadata"); > + policy_force_mapping(cache->policy, mg->new_oblock, > + mg->old_oblock); > + if (mg->promote) > + cell_defer(cache, mg->new_ocell, true); > + cleanup_migration(mg); > + return; > + } > + } else { > + if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) { > + DMWARN_LIMIT("promotion failed; couldn't update on disk metadata"); > + policy_remove_mapping(cache->policy, mg->new_oblock); > + cleanup_migration(mg); > + return; > + } > + } > + > + spin_lock_irqsave(&cache->lock, flags); > + list_add_tail(&mg->list, &cache->need_commit_migrations); > + cache->commit_requested = true; > + spin_unlock_irqrestore(&cache->lock, flags); > +} > + > +static void migration_success_post_commit(struct dm_cache_migration *mg) > +{ > + unsigned long flags; > + struct cache *cache = mg->cache; > + > + if (mg->writeback) { > + DMWARN("shouldn't get here"); > + return; > + > + } else if (mg->demote) { > + cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1); > + > + if (mg->promote) { > + mg->demote = false; > + > + spin_lock_irqsave(&cache->lock, flags); > + list_add_tail(&mg->list, &cache->quiesced_migrations); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + } else > + cleanup_migration(mg); > + > + } else { > + cell_defer(cache, mg->new_ocell, true); > + clear_dirty(cache, mg->new_oblock, mg->cblock); > + cleanup_migration(mg); > + } > +} > + > +static void copy_complete(int read_err, unsigned long write_err, void *context) > +{ > + unsigned long flags; > + struct dm_cache_migration *mg = (struct dm_cache_migration *) context; > + struct cache *cache = mg->cache; > + > + if (read_err || write_err) > + mg->err = true; > + > + spin_lock_irqsave(&cache->lock, flags); > + list_add_tail(&mg->list, &cache->completed_migrations); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + wake_worker(cache); > +} > + > +static void issue_copy_real(struct dm_cache_migration *mg) > +{ > + int r; > + struct dm_io_region o_region, c_region; > + struct cache *cache = mg->cache; > + > + o_region.bdev = cache->origin_dev->bdev; > + o_region.count = cache->sectors_per_block; > + > + c_region.bdev = cache->cache_dev->bdev; > + c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block; > + c_region.count = cache->sectors_per_block; > + > + if (mg->writeback || mg->demote) { > + /* demote */ > + o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block; > + r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg); > + } else { > + /* promote */ > + o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block; > + r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg); > + } > + > + if (r < 0) > + migration_failure(mg); > +} > + > +static void avoid_copy(struct dm_cache_migration *mg) > +{ > + atomic_inc(&mg->cache->copies_avoided); > + migration_success_pre_commit(mg); > +} > + > +static void issue_copy(struct dm_cache_migration *mg) > +{ > + bool avoid; > + struct cache *cache = mg->cache; > + > + if (mg->writeback || mg->demote) > + avoid = !is_dirty(cache, mg->cblock) || > + is_discarded_oblock(cache, mg->old_oblock); > + else > + avoid = is_discarded_oblock(cache, mg->new_oblock); > + > + avoid ? avoid_copy(mg) : issue_copy_real(mg); > +} > + > +static void complete_migration(struct dm_cache_migration *mg) > +{ > + if (mg->err) > + migration_failure(mg); > + else > + migration_success_pre_commit(mg); > +} > + > +static void process_migrations(struct cache *cache, struct list_head *head, > + void (*fn)(struct dm_cache_migration *)) > +{ > + unsigned long flags; > + struct list_head list; > + struct dm_cache_migration *mg, *tmp; > + > + INIT_LIST_HEAD(&list); > + spin_lock_irqsave(&cache->lock, flags); > + list_splice_init(head, &list); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + list_for_each_entry_safe(mg, tmp, &list, list) > + fn(mg); > +} > + > +static void __queue_quiesced_migration(struct dm_cache_migration *mg) > +{ > + list_add_tail(&mg->list, &mg->cache->quiesced_migrations); > +} > + > +static void queue_quiesced_migration(struct dm_cache_migration *mg) > +{ > + unsigned long flags; > + struct cache *cache = mg->cache; > + > + spin_lock_irqsave(&cache->lock, flags); > + __queue_quiesced_migration(mg); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + wake_worker(cache); > +} > + > +static void queue_quiesced_migrations(struct cache *cache, struct list_head *work) > +{ > + unsigned long flags; > + struct dm_cache_migration *mg, *tmp; > + > + spin_lock_irqsave(&cache->lock, flags); > + list_for_each_entry_safe(mg, tmp, work, list) > + __queue_quiesced_migration(mg); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + wake_worker(cache); > +} > + > +static void check_for_quiesced_migrations(struct cache *cache, > + struct per_bio_data *pb) > +{ > + struct list_head work; > + > + if (!pb->all_io_entry) > + return; > + > + INIT_LIST_HEAD(&work); > + if (pb->all_io_entry) > + dm_deferred_entry_dec(pb->all_io_entry, &work); > + > + if (!list_empty(&work)) > + queue_quiesced_migrations(cache, &work); > +} > + > +static void quiesce_migration(struct dm_cache_migration *mg) > +{ > + if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list)) > + queue_quiesced_migration(mg); > +} > + > +static void promote(struct cache *cache, struct prealloc *structs, > + dm_oblock_t oblock, dm_cblock_t cblock, > + struct dm_bio_prison_cell *cell) > +{ > + struct dm_cache_migration *mg = prealloc_get_migration(structs); > + > + mg->err = false; > + mg->writeback = false; > + mg->demote = false; > + mg->promote = true; > + mg->cache = cache; > + mg->new_oblock = oblock; > + mg->cblock = cblock; > + mg->old_ocell = NULL; > + mg->new_ocell = cell; > + mg->start_jiffies = jiffies; > + > + inc_nr_migrations(cache); > + quiesce_migration(mg); > +} > + > +static void writeback(struct cache *cache, struct prealloc *structs, > + dm_oblock_t oblock, dm_cblock_t cblock, > + struct dm_bio_prison_cell *cell) > +{ > + struct dm_cache_migration *mg = prealloc_get_migration(structs); > + > + mg->err = false; > + mg->writeback = true; > + mg->demote = false; > + mg->promote = false; > + mg->cache = cache; > + mg->old_oblock = oblock; > + mg->cblock = cblock; > + mg->old_ocell = cell; > + mg->new_ocell = NULL; > + mg->start_jiffies = jiffies; > + > + inc_nr_migrations(cache); > + quiesce_migration(mg); > +} > + > +static void demote_then_promote(struct cache *cache, struct prealloc *structs, > + dm_oblock_t old_oblock, dm_oblock_t new_oblock, > + dm_cblock_t cblock, > + struct dm_bio_prison_cell *old_ocell, > + struct dm_bio_prison_cell *new_ocell) > +{ > + struct dm_cache_migration *mg = prealloc_get_migration(structs); > + > + mg->err = false; > + mg->writeback = false; > + mg->demote = true; > + mg->promote = true; > + mg->cache = cache; > + mg->old_oblock = old_oblock; > + mg->new_oblock = new_oblock; > + mg->cblock = cblock; > + mg->old_ocell = old_ocell; > + mg->new_ocell = new_ocell; > + mg->start_jiffies = jiffies; > + > + inc_nr_migrations(cache); > + quiesce_migration(mg); > +} > + > +/*---------------------------------------------------------------- > + * bio processing > + *--------------------------------------------------------------*/ > +static void defer_bio(struct cache *cache, struct bio *bio) > +{ > + unsigned long flags; > + > + spin_lock_irqsave(&cache->lock, flags); > + bio_list_add(&cache->deferred_bios, bio); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + wake_worker(cache); > +} > + > +static void process_flush_bio(struct cache *cache, struct bio *bio) > +{ > + struct per_bio_data *pb = get_per_bio_data(bio); > + > + BUG_ON(bio->bi_size); > + if (!pb->req_nr) > + remap_to_origin(cache, bio); > + else > + remap_to_cache(cache, bio, 0); > + > + issue(cache, bio); > +} > + > +/* > + * People generally discard large parts of a device, eg, the whole device > + * when formatting. Splitting these large discards up into cache block > + * sized ios and then quiescing (always neccessary for discard) takes too > + * long. > + * > + * We keep it simple, and allow any size of discard to come in, and just > + * mark off blocks on the discard bitset. No passdown occurs! > + * > + * To implement passdown we need to change the bio_prison such that a cell > + * can have a key that spans many blocks. This change is planned for > + * thin-provisioning. > + */ > +static void process_discard_bio(struct cache *cache, struct bio *bio) > +{ > + dm_block_t start_block = dm_sector_div_up(bio->bi_sector, > + cache->discard_block_size); > + dm_block_t end_block = bio->bi_sector + bio_sectors(bio); > + dm_block_t b; > + > + do_div(end_block, cache->discard_block_size); > + > + for (b = start_block; b < end_block; b++) > + set_discard(cache, to_dblock(b)); > + > + bio_endio(bio, 0); > +} > + > +static bool spare_migration_bandwidth(struct cache *cache) > +{ > + sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) * > + cache->sectors_per_block; > + return current_volume < cache->migration_threshold; > +} > + > +static bool is_writethrough_io(struct cache *cache, struct bio *bio, > + dm_cblock_t cblock) > +{ > + return bio_data_dir(bio) == WRITE && > + cache->features.write_through && !is_dirty(cache, cblock); > +} > + > +static void inc_hit_counter(struct cache *cache, struct bio *bio) > +{ > + atomic_inc(bio_data_dir(bio) == READ ? > + &cache->read_hit : &cache->write_hit); > +} > + > +static void inc_miss_counter(struct cache *cache, struct bio *bio) > +{ > + atomic_inc(bio_data_dir(bio) == READ ? > + &cache->read_miss : &cache->write_miss); > +} > + > +static void process_bio(struct cache *cache, struct prealloc *structs, > + struct bio *bio) > +{ > + int r; > + bool release_cell = true; > + dm_oblock_t block = get_bio_block(cache, bio); > + struct dm_bio_prison_cell *cell, *old_ocell, *new_ocell; > + struct policy_result lookup_result; > + struct per_bio_data *pb = get_per_bio_data(bio); > + bool discarded_block = is_discarded_oblock(cache, block); > + bool can_migrate = discarded_block || spare_migration_bandwidth(cache); > + > + /* > + * Check to see if that block is currently migrating. > + */ > + cell = prealloc_get_cell(structs); > + r = bio_detain(cache, block, bio, cell, > + (cell_free_fn) prealloc_put_cell, > + structs, &new_ocell); > + if (r > 0) > + return; > + > + r = policy_map(cache->policy, block, true, can_migrate, discarded_block, > + bio, &lookup_result); > + > + if (r == -EWOULDBLOCK) > + /* migration has been denied */ > + lookup_result.op = POLICY_MISS; > + > + switch (lookup_result.op) { > + case POLICY_HIT: > + inc_hit_counter(cache, bio); > + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); > + > + if (is_writethrough_io(cache, bio, lookup_result.cblock)) { > + /* > + * No need to mark anything dirty in write through mode. > + */ > + pb->req_nr == 0 ? > + remap_to_cache(cache, bio, lookup_result.cblock) : > + remap_to_origin_clear_discard(cache, bio, block); > + } else > + remap_to_cache_dirty(cache, bio, block, lookup_result.cblock); > + > + issue(cache, bio); > + break; > + > + case POLICY_MISS: > + inc_miss_counter(cache, bio); > + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); > + > + if (pb->req_nr != 0) { > + /* > + * This is a duplicate writethrough io that is no > + * longer needed because the block has been demoted. > + */ > + bio_endio(bio, 0); > + } else { > + remap_to_origin_clear_discard(cache, bio, block); > + issue(cache, bio); > + } > + break; > + > + case POLICY_NEW: > + atomic_inc(&cache->promotion); > + promote(cache, structs, block, lookup_result.cblock, new_ocell); > + release_cell = false; > + break; > + > + case POLICY_REPLACE: > + cell = prealloc_get_cell(structs); > + r = bio_detain(cache, lookup_result.old_oblock, bio, cell, > + (cell_free_fn) prealloc_put_cell, > + structs, &old_ocell); > + if (r > 0) { > + /* > + * We have to be careful to avoid lock inversion of > + * the cells. So we back off, and wait for the > + * old_ocell to become free. > + */ > + policy_force_mapping(cache->policy, block, > + lookup_result.old_oblock); > + atomic_inc(&cache->cache_cell_clash); > + break; > + } > + atomic_inc(&cache->demotion); > + atomic_inc(&cache->promotion); > + > + demote_then_promote(cache, structs, lookup_result.old_oblock, > + block, lookup_result.cblock, > + old_ocell, new_ocell); > + release_cell = false; > + break; > + > + default: > + DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__, > + (unsigned) lookup_result.op); > + bio_io_error(bio); > + } > + > + if (release_cell) > + cell_defer(cache, new_ocell, false); > +} > + > +static int need_commit_due_to_time(struct cache *cache) > +{ > + return jiffies < cache->last_commit_jiffies || > + jiffies > cache->last_commit_jiffies + COMMIT_PERIOD; > +} > + > +static int commit_if_needed(struct cache *cache) > +{ > + if (dm_cache_changed_this_transaction(cache->cmd) && > + (cache->commit_requested || need_commit_due_to_time(cache))) { > + atomic_inc(&cache->commit_count); > + cache->last_commit_jiffies = jiffies; > + cache->commit_requested = false; > + return dm_cache_commit(cache->cmd, false); > + } > + > + return 0; > +} > + > +static void process_deferred_bios(struct cache *cache) > +{ > + unsigned long flags; > + struct bio_list bios; > + struct bio *bio; > + struct prealloc structs; > + > + memset(&structs, 0, sizeof(structs)); > + bio_list_init(&bios); > + > + spin_lock_irqsave(&cache->lock, flags); > + bio_list_merge(&bios, &cache->deferred_bios); > + bio_list_init(&cache->deferred_bios); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + while (!bio_list_empty(&bios)) { > + /* > + * If we've got no free migration structs, and processing > + * this bio might require one, we pause until there are some > + * prepared mappings to process. > + */ > + if (prealloc_data_structs(cache, &structs)) { > + spin_lock_irqsave(&cache->lock, flags); > + bio_list_merge(&cache->deferred_bios, &bios); > + spin_unlock_irqrestore(&cache->lock, flags); > + break; > + } > + > + bio = bio_list_pop(&bios); > + > + if (bio->bi_rw & REQ_FLUSH) > + process_flush_bio(cache, bio); > + else if (bio->bi_rw & REQ_DISCARD) > + process_discard_bio(cache, bio); > + else > + process_bio(cache, &structs, bio); > + } > + > + prealloc_free_structs(cache, &structs); > +} > + > +static void process_deferred_flush_bios(struct cache *cache, bool submit_bios) > +{ > + unsigned long flags; > + struct bio_list bios; > + struct bio *bio; > + > + bio_list_init(&bios); > + > + spin_lock_irqsave(&cache->lock, flags); > + bio_list_merge(&bios, &cache->deferred_flush_bios); > + bio_list_init(&cache->deferred_flush_bios); > + spin_unlock_irqrestore(&cache->lock, flags); > + > + while ((bio = bio_list_pop(&bios))) > + submit_bios ? generic_make_request(bio) : bio_io_error(bio); > +} > + > +static void writeback_some_dirty_blocks(struct cache *cache) > +{ > + int r = 0; > + dm_oblock_t oblock; > + dm_cblock_t cblock; > + struct prealloc structs; > + struct dm_bio_prison_cell *old_ocell; > + > + memset(&structs, 0, sizeof(structs)); > + > + while (spare_migration_bandwidth(cache)) { > + if (prealloc_data_structs(cache, &structs)) > + break; > + > + r = policy_writeback_work(cache->policy, &oblock, &cblock); > + if (r) > + break; > + > + r = get_cell(cache, oblock, &structs, &old_ocell); > + if (r) { > + policy_set_dirty(cache->policy, oblock); > + break; > + } > + > + writeback(cache, &structs, oblock, cblock, old_ocell); > + } > + > + prealloc_free_structs(cache, &structs); > +} > + > +/*---------------------------------------------------------------- > + * Main worker loop > + *--------------------------------------------------------------*/ > +static void start_quiescing(struct cache *cache) > +{ > + unsigned long flags; > + > + spin_lock_irqsave(&cache->lock, flags); > + cache->quiescing = 1; > + spin_unlock_irqrestore(&cache->lock, flags); > +} > + > +static void stop_quiescing(struct cache *cache) > +{ > + unsigned long flags; > + > + spin_lock_irqsave(&cache->lock, flags); > + cache->quiescing = 0; > + spin_unlock_irqrestore(&cache->lock, flags); > +} > + > +static bool is_quiescing(struct cache *cache) > +{ > + int r; > + unsigned long flags; > + > + spin_lock_irqsave(&cache->lock, flags); > + r = cache->quiescing; > + spin_unlock_irqrestore(&cache->lock, flags); > + > + return r; > +} > + > +static void wait_for_migrations(struct cache *cache) > +{ > + wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations)); > +} > + > +static void stop_worker(struct cache *cache) > +{ > + cancel_delayed_work(&cache->waker); > + flush_workqueue(cache->wq); > +} > + > +static void requeue_deferred_io(struct cache *cache) > +{ > + struct bio *bio; > + struct bio_list bios; > + > + bio_list_init(&bios); > + bio_list_merge(&bios, &cache->deferred_bios); > + bio_list_init(&cache->deferred_bios); > + > + while ((bio = bio_list_pop(&bios))) > + bio_endio(bio, DM_ENDIO_REQUEUE); > +} > + > +static int more_work(struct cache *cache) > +{ > + if (is_quiescing(cache)) > + return !list_empty(&cache->quiesced_migrations) || > + !list_empty(&cache->completed_migrations) || > + !list_empty(&cache->need_commit_migrations); > + else > + return !bio_list_empty(&cache->deferred_bios) || > + !bio_list_empty(&cache->deferred_flush_bios) || > + !list_empty(&cache->quiesced_migrations) || > + !list_empty(&cache->completed_migrations) || > + !list_empty(&cache->need_commit_migrations); > +} > + > +static void do_worker(struct work_struct *ws) > +{ > + struct cache *cache = container_of(ws, struct cache, worker); > + > + do { > + if (!is_quiescing(cache)) > + process_deferred_bios(cache); > + > + process_migrations(cache, &cache->quiesced_migrations, issue_copy); > + process_migrations(cache, &cache->completed_migrations, complete_migration); > + > + writeback_some_dirty_blocks(cache); > + > + if (commit_if_needed(cache)) { > + process_deferred_flush_bios(cache, false); > + > + /* > + * FIXME: rollback metadata or just go into a > + * failure mode and error everything > + */ > + } else { > + process_deferred_flush_bios(cache, true); > + process_migrations(cache, &cache->need_commit_migrations, > + migration_success_post_commit); > + } > + } while (more_work(cache)); > +} > + > +/* > + * We want to commit periodically so that not too much > + * unwritten metadata builds up. > + */ > +static void do_waker(struct work_struct *ws) > +{ > + struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); > + wake_worker(cache); > + queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); > +} > + > +/*----------------------------------------------------------------*/ > + > +static int is_congested(struct dm_dev *dev, int bdi_bits) > +{ > + struct request_queue *q = bdev_get_queue(dev->bdev); > + return bdi_congested(&q->backing_dev_info, bdi_bits); > +} > + > +static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits) > +{ > + struct cache *cache = container_of(cb, struct cache, callbacks); > + > + return is_congested(cache->origin_dev, bdi_bits) || > + is_congested(cache->cache_dev, bdi_bits); > +} > + > +/*---------------------------------------------------------------- > + * Target methods > + *--------------------------------------------------------------*/ > + > +/* > + * This function gets called on the error paths of the constructor, so we > + * have to cope with a partially initialised struct. > + */ > +static void destroy(struct cache *cache) > +{ > + if (cache->next_migration) > + mempool_free(cache->next_migration, cache->migration_pool); > + > + if (cache->migration_pool) > + mempool_destroy(cache->migration_pool); > + > + if (cache->all_io_ds) > + dm_deferred_set_destroy(cache->all_io_ds); > + > + if (cache->prison) > + dm_bio_prison_destroy(cache->prison); > + > + if (cache->wq) > + destroy_workqueue(cache->wq); > + > + if (cache->dirty_bitset) > + free_bitset(cache->dirty_bitset); > + > + if (cache->discard_bitset) > + free_bitset(cache->discard_bitset); > + > + if (cache->copier) > + dm_kcopyd_client_destroy(cache->copier); > + > + if (cache->cmd) > + dm_cache_metadata_close(cache->cmd); > + > + if (cache->metadata_dev) > + dm_put_device(cache->ti, cache->metadata_dev); > + > + if (cache->origin_dev) > + dm_put_device(cache->ti, cache->origin_dev); > + > + if (cache->cache_dev) > + dm_put_device(cache->ti, cache->cache_dev); > + > + if (cache->policy) > + dm_cache_policy_destroy(cache->policy); > + > + kfree(cache); > +} > + > +static void cache_dtr(struct dm_target *ti) > +{ > + struct cache *cache = ti->private; > + > + pr_alert("dm-cache statistics:\n"); > + pr_alert("read hits:\t%u\n", (unsigned) atomic_read(&cache->read_hit)); > + pr_alert("read misses:\t%u\n", (unsigned) atomic_read(&cache->read_miss)); > + pr_alert("write hits:\t%u\n", (unsigned) atomic_read(&cache->write_hit)); > + pr_alert("write misses:\t%u\n", (unsigned) atomic_read(&cache->write_miss)); > + pr_alert("demotions:\t%u\n", (unsigned) atomic_read(&cache->demotion)); > + pr_alert("promotions:\t%u\n", (unsigned) atomic_read(&cache->promotion)); > + pr_alert("copies avoided:\t%u\n", (unsigned) atomic_read(&cache->copies_avoided)); > + pr_alert("cache cell clashs:\t%u\n", (unsigned) atomic_read(&cache->cache_cell_clash)); > + pr_alert("commits:\t\t%u\n", (unsigned) atomic_read(&cache->commit_count)); > + pr_alert("discards:\t\t%u\n", (unsigned) atomic_read(&cache->discard_count)); > + > + destroy(cache); > +} > + > +static sector_t get_dev_size(struct dm_dev *dev) > +{ > + return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; > +} > + > +/*----------------------------------------------------------------*/ > + > +/* > + * Construct a cache device mapping. > + * > + * cache <metadata dev> <cache dev> <origin dev> <block size> > + * <#feature_args> [<arg>]* <policy> <#policy_args> [<arg>]* > + * > + * metadata dev : fast device holding the persistent metadata > + * cache dev : fast device holding cached data blocks > + * origin dev : slow device holding original data blocks > + * block size : cache unit size in sectors > + * #feature args [<arg>]* : number of feature arguments followed by > + * optional arguments * cache dev > + * policy : the replacement policy to use > + > + * #policy_args [<arg>]* : number of policy arguments followed by optional > + * arguments; see policy plugin for instances > + * (key value pairs count as 2; delimiter is space) > + * > + * Optional feature arguments are: > + * writeback: write back cache allowing cache block contents to > + * differ from origin blocks for performance reasons > + * writethrough: write through caching prohibiting cache block > + * content from being distinct from origin block content > + */ > +struct cache_args { > + struct dm_target *ti; > + > + struct dm_dev *metadata_dev; > + > + struct dm_dev *cache_dev; > + sector_t cache_sectors; > + > + struct dm_dev *origin_dev; > + sector_t origin_sectors; > + > + sector_t block_size; > + > + const char *policy_name; > + int policy_argc; > + char **policy_argv; > + > + struct cache_features features; > +}; > + > +static void destroy_cache_args(struct cache_args *ca) > +{ > + if (ca->metadata_dev) > + dm_put_device(ca->ti, ca->metadata_dev); > + > + if (ca->cache_dev) > + dm_put_device(ca->ti, ca->cache_dev); > + > + if (ca->origin_dev) > + dm_put_device(ca->ti, ca->origin_dev); > + > + kfree(ca); > +} > + > +static int ensure_args__(struct dm_arg_set *as, > + unsigned count, char **error) > +{ > + if (as->argc < count) { > + *error = "Insufficient args"; > + return -EINVAL; > + } > + > + return 0; > +} > + > +#define ensure_args(n) \ > + r = ensure_args__(as, n, error); \ > + if (r) \ > + return r; > + > +static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, > + char **error) > +{ > + int r; > + sector_t metadata_dev_size; > + char b[BDEVNAME_SIZE]; > + > + ensure_args(1); > + > + r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, > + &ca->metadata_dev); > + if (r) { > + *error = "Error opening metadata device"; > + return r; > + } > + > + metadata_dev_size = get_dev_size(ca->metadata_dev); > + if (metadata_dev_size > CACHE_METADATA_MAX_SECTORS_WARNING) > + DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", > + bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); > + > + return 0; > +} > + > +static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, > + char **error) > +{ > + int r; > + > + ensure_args(1); > + r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, > + &ca->cache_dev); > + if (r) { > + *error = "Error opening cache device"; > + return r; > + } > + ca->cache_sectors = get_dev_size(ca->cache_dev); > + > + return 0; > +} > + > +static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, > + char **error) > +{ > + int r; > + > + ensure_args(1); > + r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, > + &ca->origin_dev); > + if (r) { > + *error = "Error opening origin device"; > + return r; > + } > + > + ca->origin_sectors = get_dev_size(ca->origin_dev); > + if (ca->ti->len > ca->origin_sectors) { > + *error = "Device size larger than cached device"; > + return -EINVAL; > + } > + > + return 0; > +} > + > +static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, > + char **error) > +{ > + int r; > + unsigned long tmp; > + > + ensure_args(1); > + if (kstrtoul(dm_shift_arg(as), 10, &tmp) || !tmp || > + tmp < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || > + tmp & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { > + *error = "Invalid data block size"; > + return -EINVAL; > + } > + > + if (tmp > ca->cache_sectors) { > + *error = "Data block size is larger than the cache device"; > + return -EINVAL; > + } > + > + ca->block_size = tmp; > + > + return 0; > +} > + > +static void init_features(struct cache_features *cf) > +{ > + cf->mode = CM_WRITE; > + cf->write_through = false; > +} > + > +static int parse_features(struct cache_args *ca, struct dm_arg_set *as, > + char **error) > +{ > + static struct dm_arg _args[] = { > + {0, 1, "Invalid number of cache feature arguments"}, > + }; > + > + int r; > + unsigned argc; > + const char *arg; > + struct cache_features *cf = &ca->features; > + > + init_features(cf); > + > + r = dm_read_arg_group(_args, as, &argc, error); > + if (r) > + return -EINVAL; > + > + while (argc--) { > + arg = dm_shift_arg(as); > + > + if (!strcasecmp(arg, "writeback")) > + cf->write_through = false; > + > + else if (!strcasecmp(arg, "writethrough")) > + cf->write_through = true; > + > + else { > + *error = "Unrecognised cache feature requested"; > + return -EINVAL; > + } > + } > + > + return 0; > +} > + > +static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, > + char **error) > +{ > + static struct dm_arg _args[] = { > + {0, 1024, "Invalid number of policy arguments"}, > + }; > + > + int r; > + ensure_args(1); > + ca->policy_name = dm_shift_arg(as); > + > + r = dm_read_arg_group(_args, as, &ca->policy_argc, error); > + if (r) > + return -EINVAL; > + > + ca->policy_argv = as->argv; > + dm_consume_args(as, ca->policy_argc); > + > + return 0; > +} > + > +static int parse_cache_args(struct cache_args *ca, int argc, char **argv, > + char **error) > +{ > + int r; > + struct dm_arg_set as; > + > + as.argc = argc; > + as.argv = argv; > + > +#define parse(name) \ > + r = parse_ ## name(ca, &as, error); \ > + if (r) \ > + return r; > + > + parse(metadata_dev); > + parse(cache_dev); > + parse(origin_dev); > + parse(block_size); > + parse(features); > + parse(policy); > +#undef parse > + > + return 0; > +} > + > +/*----------------------------------------------------------------*/ > + > +static struct kmem_cache *_migration_cache; > + > +static int create_cache_policy(struct cache *cache, struct cache_args *ca, > + char **error) > +{ > + cache->policy = dm_cache_policy_create(ca->policy_name, > + cache->cache_size, > + cache->origin_sectors, > + cache->sectors_per_block, > + ca->policy_argc, ca->policy_argv); > + if (!cache->policy) { > + *error = "Error creating cache's policy"; > + return -ENOMEM; > + } > + > + return 0; > +} > + > +/* > + * We want the discard block size to be a power of two, at least the size > + * of the cache block size, and have no more than 2^14 discard blocks > + * across the origin. > + */ > +#define MAX_DISCARD_BLOCKS (1 << 14) > + > +static bool too_many_discard_blocks(sector_t block_size, > + sector_t origin_size) > +{ > + do_div(origin_size, block_size); > + return origin_size > MAX_DISCARD_BLOCKS; > +} > + > +static sector_t calculate_discard_block_size(sector_t cache_block_size, > + sector_t origin_size) > +{ > + sector_t r; > + > + r = roundup_pow_of_two(cache_block_size); > + > + if (origin_size) > + while (too_many_discard_blocks(r, origin_size)) > + r *= 2; > + > + return r; > +} > + > +#define DEFAULT_MIGRATION_THRESHOLD (2048 * 100) > + > +static int cache_create(struct cache_args *ca, struct cache **result) > +{ > + int r = 0; > + char **error = &ca->ti->error; > + struct cache *cache; > + struct dm_target *ti = ca->ti; > + dm_block_t origin_blocks; > + struct dm_cache_metadata *cmd; > + bool may_format = ca->features.mode == CM_WRITE; > + > + cache = kzalloc(sizeof(*cache), GFP_KERNEL); > + if (!cache) > + return -ENOMEM; > + > + cache->ti = ca->ti; > + ti->private = cache; > + ti->per_bio_data_size = sizeof(struct per_bio_data); > + ti->num_flush_requests = 2; > + ti->flush_supported = true; > + > + ti->num_discard_requests = 1; > + ti->discards_supported = true; > + ti->discard_zeroes_data_unsupported = true; > + > + cache->callbacks.congested_fn = cache_is_congested; > + dm_table_add_target_callbacks(ti->table, &cache->callbacks); > + > +#define consume(n) n; n = NULL; > + > + cache->metadata_dev = consume(ca->metadata_dev); > + cache->origin_dev = consume(ca->origin_dev); > + cache->cache_dev = consume(ca->cache_dev); > + memcpy(&cache->features, &ca->features, sizeof(cache->features)); > + > + // FIXME: factor out this whole section > + origin_blocks = cache->origin_sectors = ca->origin_sectors; > + do_div(origin_blocks, ca->block_size); > + cache->origin_blocks = to_oblock(origin_blocks); > + > + cache->sectors_per_block = ca->block_size; > + if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { > + r = -EINVAL; > + goto bad; > + } > + > + if (ca->block_size & (ca->block_size - 1)) { > + dm_block_t cache_size = ca->cache_sectors; > + > + cache->sectors_per_block_shift = -1; > + (void) sector_div(cache_size, ca->block_size); > + cache->cache_size = to_cblock(cache_size); > + } else { > + cache->sectors_per_block_shift = __ffs(ca->block_size); > + cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift); > + } > + > + cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, > + ca->block_size, may_format); > + if (IS_ERR(cmd)) { > + *error = "Error creating metadata object"; > + r = PTR_ERR(cmd); > + goto bad; > + } > + cache->cmd = cmd; > + > + spin_lock_init(&cache->lock); > + bio_list_init(&cache->deferred_bios); > + bio_list_init(&cache->deferred_flush_bios); > + INIT_LIST_HEAD(&cache->quiesced_migrations); > + INIT_LIST_HEAD(&cache->completed_migrations); > + INIT_LIST_HEAD(&cache->need_commit_migrations); > + cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; > + atomic_set(&cache->nr_migrations, 0); > + init_waitqueue_head(&cache->migration_wait); > + > + cache->nr_dirty = 0; > + cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); > + if (!cache->dirty_bitset) { > + *error = "could not allocate dirty bitset"; > + goto bad; > + } > + clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); > + > + cache->discard_block_size = > + calculate_discard_block_size(cache->sectors_per_block, > + cache->origin_sectors); > + cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks); > + cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); > + if (!cache->discard_bitset) { > + *error = "could not allocate discard bitset"; > + goto bad; > + } > + clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); > + > + cache->copier = dm_kcopyd_client_create(); > + if (IS_ERR(cache->copier)) { > + *error = "could not create kcopyd client"; > + r = PTR_ERR(cache->copier); > + goto bad; > + } > + > + cache->wq = alloc_ordered_workqueue(DAEMON, WQ_MEM_RECLAIM); > + if (!cache->wq) { > + *error = "could not create workqueue for metadata object"; > + goto bad; > + } > + INIT_WORK(&cache->worker, do_worker); > + INIT_DELAYED_WORK(&cache->waker, do_waker); > + cache->last_commit_jiffies = jiffies; > + > + cache->prison = dm_bio_prison_create(PRISON_CELLS); > + if (!cache->prison) { > + *error = "could not create bio prison"; > + goto bad; > + } > + > + cache->all_io_ds = dm_deferred_set_create(); > + if (!cache->all_io_ds) { > + *error = "could not create all_io deferred set"; > + goto bad; > + } > + > + cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE, > + _migration_cache); > + if (!cache->migration_pool) { > + *error = "Error creating cache's endio_hook mempool"; > + goto bad; > + } > + > + cache->next_migration = NULL; > + > + r = create_cache_policy(cache, ca, error); > + if (r) > + goto bad; > + > + cache->policy_nr_args = ca->policy_argc; > + > + cache->need_tick_bio = true; > + cache->sized = false; > + cache->quiescing = false; > + cache->commit_requested = false; > + cache->loaded_mappings = false; > + cache->loaded_discards = false; > + > + load_stats(cache); > + > + atomic_set(&cache->demotion, 0); > + atomic_set(&cache->promotion, 0); > + atomic_set(&cache->copies_avoided, 0); > + atomic_set(&cache->cache_cell_clash, 0); > + atomic_set(&cache->commit_count, 0); > + atomic_set(&cache->discard_count, 0); > + > + *result = cache; > + return 0; > + > +bad: > + destroy(cache); > + return r; > +} > + > +static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) > +{ > + int r = -EINVAL; > + struct cache_args *ca; > + struct cache *cache = NULL; > + > + ca = kzalloc(sizeof(*ca), GFP_KERNEL); > + if (!ca) { > + ti->error = "Error allocating memory for cache"; > + return -ENOMEM; > + } > + ca->ti = ti; > + > + r = parse_cache_args(ca, argc, argv, &ti->error); > + if (r) > + goto out; > + > + r = cache_create(ca, &cache); > + ti->private = cache; > + > +out: > + destroy_cache_args(ca); > + return r; > +} > + > +static unsigned cache_get_num_duplicates(struct dm_target *ti, > + struct bio *bio) > +{ > + int r; > + struct cache *cache = ti->private; > + dm_oblock_t block = get_bio_block(cache, bio); > + dm_cblock_t cblock; > + > + if (bio_data_dir(bio) != WRITE || !cache->features.write_through) > + return 1; > + > +#if 0 > + r = policy_lookup(cache->policy, block, &cblock); > + if (r < 0) > + return 2; /* assume the worst */ > + > + return (!r && !is_dirty(cache, cblock)) ? 2 : 1; > +#else > + // testing the failure case > + return 2; > +#endif > +} > + > +static int cache_map(struct dm_target *ti, struct bio *bio) > +{ > + struct cache *cache = ti->private; > + > + int r; > + dm_oblock_t block = get_bio_block(cache, bio); > + bool can_migrate = false; > + bool discarded_block; > + struct dm_bio_prison_cell *cell; > + struct policy_result lookup_result; > + struct per_bio_data *pb; > + > + if (from_oblock(block) > from_oblock(cache->origin_blocks)) { > + /* > + * This can only occur if the io goes to a partial block at > + * the end of the origin device. We don't cache these. > + * Just remap to the origin and carry on. > + */ > + remap_to_origin_clear_discard(cache, bio, block); > + return DM_MAPIO_REMAPPED; > + } > + > + pb = init_per_bio_data(bio); > + > + if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) { > + defer_bio(cache, bio); > + return DM_MAPIO_SUBMITTED; > + } > + > + /* > + * Check to see if that block is currently migrating. > + */ > + cell = dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT); > + r = bio_detain(cache, block, bio, cell, > + (cell_free_fn) dm_bio_prison_free_cell, > + cache->prison, &cell); > + if (r) { > + if (r < 0) > + defer_bio(cache, bio); > + > + return DM_MAPIO_SUBMITTED; > + } > + > + discarded_block = is_discarded_oblock(cache, block); > + > + r = policy_map(cache->policy, block, false, can_migrate, discarded_block, > + bio, &lookup_result); > + if (r == -EWOULDBLOCK) { > + cell_defer(cache, cell, true); > + return DM_MAPIO_SUBMITTED; > + > + } else if (r) { > + DMERR("Bug in policy\n"); > + bio_io_error(bio); > + return DM_MAPIO_SUBMITTED; > + } > + > + switch (lookup_result.op) { > + case POLICY_HIT: > + inc_hit_counter(cache, bio); > + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); > + > + if (is_writethrough_io(cache, bio, lookup_result.cblock)) { > + /* > + * No need to mark anything dirty in write through mode. > + */ > + pb->req_nr == 0 ? > + remap_to_cache(cache, bio, lookup_result.cblock) : > + remap_to_origin_clear_discard(cache, bio, block); > + cell_defer(cache, cell, false); > + } else { > + remap_to_cache_dirty(cache, bio, block, lookup_result.cblock); > + cell_defer(cache, cell, false); > + } > + break; > + > + case POLICY_MISS: > + inc_miss_counter(cache, bio); > + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); > + > + if (pb->req_nr != 0) { > + /* > + * This is a duplicate writethrough io that is no > + * longer needed because the block has been demoted. > + */ > + bio_endio(bio, 0); > + cell_defer(cache, cell, false); > + return DM_MAPIO_SUBMITTED; > + } else { > + remap_to_origin_clear_discard(cache, bio, block); > + cell_defer(cache, cell, false); > + } > + break; > + > + default: > + DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__, > + (unsigned) lookup_result.op); > + bio_io_error(bio); > + return DM_MAPIO_SUBMITTED; > + } > + > + return DM_MAPIO_REMAPPED; > +} > + > +static int cache_end_io(struct dm_target *ti, struct bio *bio, int error) > +{ > + struct cache *cache = ti->private; > + unsigned long flags; > + struct per_bio_data *pb = get_per_bio_data(bio); > + > + if (pb->tick) { > + policy_tick(cache->policy); > + > + spin_lock_irqsave(&cache->lock, flags); > + cache->need_tick_bio = true; > + spin_unlock_irqrestore(&cache->lock, flags); > + } > + > + check_for_quiesced_migrations(cache, pb); > + return 0; > +} > + > +static int write_dirty_bitset(struct cache *cache) > +{ > + unsigned i, r; > + > + for (i = 0; i < from_cblock(cache->cache_size); i++) { > + r = dm_cache_set_dirty(cache->cmd, to_cblock(i), > + is_dirty(cache, to_cblock(i))); > + if (r) > + return r; > + } > + > + return 0; > +} > + > +static int write_discard_bitset(struct cache *cache) > +{ > + unsigned i, r; > + > + r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, > + cache->discard_nr_blocks); > + if (r) { > + DMERR("could not resize on-disk discard bitset"); > + return r; > + } > + > + for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { > + r = dm_cache_set_discard(cache->cmd, to_dblock(i), > + is_discarded(cache, to_dblock(i))); > + if (r) > + return r; > + } > + > + return 0; > +} > + > +static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock, > + uint32_t hint) > +{ > + struct cache *cache = context; > + return dm_cache_save_hint(cache->cmd, cblock, hint); > +} > + > +static int write_hints(struct cache *cache) > +{ > + int r; > + > + r = dm_cache_begin_hints(cache->cmd, > + dm_cache_policy_get_name(cache->policy)); > + if (r) { > + DMERR("dm_cache_begin_hints failed"); > + return r; > + } > + > + r = policy_walk_mappings(cache->policy, save_hint, cache); > + if (r) > + DMERR("policy_walk_mappings failed"); > + > + return r; > +} > + > +/* > + * returns true on success > + */ > +static bool sync_metadata(struct cache *cache) > +{ > + int r1, r2, r3, r4; > + > + r1 = write_dirty_bitset(cache); > + if (r1) > + DMERR("could not write dirty bitset"); > + > + r2 = write_discard_bitset(cache); > + if (r2) > + DMERR("could not write discard bitset"); > + > + save_stats(cache); > + > + r3 = write_hints(cache); > + if (r3) > + DMERR("could not write hints"); > + > + /* > + * If writing the above metadata failed, we still commit, but don't > + * set the clean shutdown flag. This will effectively force every > + * dirty bit to be set on reload. > + */ > + r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3); > + if (r4) > + DMERR("could not write cache metadata. Data loss may occur."); > + > + return !r1 && !r2 && !r3 && !r4; > +} > + > +static void cache_postsuspend(struct dm_target *ti) > +{ > + struct cache *cache = ti->private; > + > + start_quiescing(cache); > + wait_for_migrations(cache); > + stop_worker(cache); > + requeue_deferred_io(cache); > + stop_quiescing(cache); > + > + (void) sync_metadata(cache); > +} > + > +static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, > + bool dirty, uint32_t hint, bool hint_valid) > +{ > + int r; > + struct cache *cache = context; > + > + r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid); > + if (r) > + return r; > + > + if (dirty) > + set_dirty(cache, oblock, cblock); > + else > + clear_dirty(cache, oblock, cblock); > + > + return 0; > +} > + > +static int load_discard(void *context, sector_t discard_block_size, > + dm_dblock_t dblock, bool discard) > +{ > + struct cache *cache = context; > + > + // FIXME: handle mis-matched block size > + > + if (discard) > + set_discard(cache, dblock); > + else > + clear_discard(cache, dblock); > + > + return 0; > +} > + > +static int cache_preresume(struct dm_target *ti) > +{ > + int r = 0; > + struct cache *cache = ti->private; > + sector_t actual_cache_size = get_dev_size(cache->cache_dev); > + (void) sector_div(actual_cache_size, cache->sectors_per_block); > + > + /* > + * Check to see if the cache has resized. > + */ > + if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) { > + cache->cache_size = to_cblock(actual_cache_size); > + > + r = dm_cache_resize(cache->cmd, cache->cache_size); > + if (r) { > + DMERR("could not resize cache metadata"); > + return r; > + } > + > + cache->sized = true; > + } > + > + if (!cache->loaded_mappings) { > + r = dm_cache_load_mappings(cache->cmd, > + dm_cache_policy_get_name(cache->policy), > + load_mapping, cache); > + if (r) { > + DMERR("could not load cache mappings"); > + return r; > + } > + > + cache->loaded_mappings = true; > + } > + > + if (!cache->loaded_discards) { > + r = dm_cache_load_discards(cache->cmd, load_discard, cache); > + if (r) { > + DMERR("could not load origin discards"); > + return r; > + } > + > + cache->loaded_discards = true; > + } > + > + return r; > +} > + > +static void cache_resume(struct dm_target *ti) > +{ > + struct cache *cache = ti->private; > + > + cache->need_tick_bio = true; > + do_waker(&cache->waker.work); > +} > + > +static int cache_status(struct dm_target *ti, status_type_t type, > + unsigned status_flags, char *result, unsigned maxlen) > +{ > + int r = 0; > + ssize_t sz = 0; > + dm_block_t nr_free_blocks_metadata = 0; > + dm_block_t nr_blocks_metadata = 0; > + char buf[BDEVNAME_SIZE]; > + struct cache *cache = ti->private; > + dm_cblock_t residency; > + > + switch (type) { > + case STATUSTYPE_INFO: > + /* Commit to ensure statistics aren't out-of-date */ > + if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) { > + r = dm_cache_commit(cache->cmd, false); > + if (r) > + DMERR("could not commit metadata for accurate status"); > + } > + > + r = dm_cache_get_free_metadata_block_count(cache->cmd, > + &nr_free_blocks_metadata); > + if (r) > + DMERR("could not get metadata free block count"); > + > + r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); > + if (r) > + DMERR("could not get metadata device size"); > + > + residency = policy_residency(cache->policy); > + > + DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u %llu", > + (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), > + (unsigned long long)nr_blocks_metadata, > + (unsigned) atomic_read(&cache->read_hit), > + (unsigned) atomic_read(&cache->read_miss), > + (unsigned) atomic_read(&cache->write_hit), > + (unsigned) atomic_read(&cache->write_miss), > + (unsigned) atomic_read(&cache->demotion), > + (unsigned) atomic_read(&cache->promotion), > + (unsigned long long) from_cblock(residency), > + cache->nr_dirty, > + (unsigned long long) cache->migration_threshold); > + break; > + > + case STATUSTYPE_TABLE: > + format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); > + DMEMIT("%s ", buf); > + format_dev_t(buf, cache->cache_dev->bdev->bd_dev); > + DMEMIT("%s ", buf); > + format_dev_t(buf, cache->origin_dev->bdev->bd_dev); > + DMEMIT("%s ", buf); > + DMEMIT("%llu ", (unsigned long long) cache->sectors_per_block); > + > + DMEMIT("1 %s ", cache->features.write_through ? > + "writethrough" : "writeback"); > + > + DMEMIT("%s %u ", dm_cache_policy_get_name(cache->policy), > + cache->policy_nr_args); > + } > + > + if (sz < maxlen) > + r = policy_status(cache->policy, type, status_flags, > + result + sz, maxlen - sz); > + > + return r; > +} > + > +static int process_config_option(struct cache *cache, char **argv) > +{ > + if (!strcasecmp(argv[1], "migration_threshold")) { > + unsigned long tmp; > + > + if (kstrtoul(argv[2], 10, &tmp)) > + return -EINVAL; > + > + cache->migration_threshold = tmp; > + > + } else > + return 1; /* Inform caller it's not our option. */ > + > + return 0; > +} > + > +static int cache_message(struct dm_target *ti, unsigned argc, char **argv) > +{ > + int r = 0; > + struct cache *cache = ti->private; > + > + if (argc != 3) > + return -EINVAL; > + > + r = !strcasecmp(argv[0], "set_config") ? process_config_option(cache, argv) : 1; > + > + if (r == 1) /* Message is for the target -> hand over to policy plugin. */ > + r = policy_message(cache->policy, argc, argv); > + > + return r; > +} > + > +static int cache_iterate_devices(struct dm_target *ti, > + iterate_devices_callout_fn fn, void *data) > +{ > + int r = 0; > + struct cache *cache = ti->private; > + > + r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); > + if (!r) > + r = fn(ti, cache->origin_dev, 0, ti->len, data); > + > + return r; > +} > + > +static int cache_bvec_merge(struct dm_target *ti, > + struct bvec_merge_data *bvm, > + struct bio_vec *biovec, int max_size) > +{ > + struct cache *cache = ti->private; > + struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev); > + > + if (!q->merge_bvec_fn) > + return max_size; > + > + bvm->bi_bdev = cache->origin_dev->bdev; > + return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); > +} > + > +static void set_discard_limits(struct cache *cache, struct queue_limits *limits) > +{ > + /* > + * FIXME: these limits may be incompatible with the cache device > + */ > + limits->max_discard_sectors = cache->discard_block_size * 1024; > + limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; > +} > + > +static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) > +{ > + struct cache *cache = ti->private; > + > + blk_limits_io_min(limits, 0); > + blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); > + set_discard_limits(cache, limits); > +} > + > +/*----------------------------------------------------------------*/ > + > +static struct target_type cache_target = { > + .name = "cache", > + .version = {1, 0, 0}, > + .module = THIS_MODULE, > + .ctr = cache_ctr, > + .dtr = cache_dtr, > + .get_num_duplicates = cache_get_num_duplicates, > + .map = cache_map, > + .end_io = cache_end_io, > + .postsuspend = cache_postsuspend, > + .preresume = cache_preresume, > + .resume = cache_resume, > + .status = cache_status, > + .message = cache_message, > + .iterate_devices = cache_iterate_devices, > + .merge = cache_bvec_merge, > + .io_hints = cache_io_hints, > +}; > + > +static int __init dm_cache_init(void) > +{ > + int r; > + > + r = dm_register_target(&cache_target); > + if (r) > + return r; > + > + r = -ENOMEM; > + > + _migration_cache = KMEM_CACHE(dm_cache_migration, 0); > + if (!_migration_cache) { > + dm_unregister_target(&cache_target); > + return r; > + } > + > + return 0; > +} > + > +static void dm_cache_exit(void) > +{ > + dm_unregister_target(&cache_target); > + kmem_cache_destroy(_migration_cache); > +} > + > +module_init(dm_cache_init); > +module_exit(dm_cache_exit); > + > +MODULE_DESCRIPTION(DM_NAME " cache target"); > +MODULE_AUTHOR("Joe Thornber <ejt@xxxxxxxxxx>"); > +MODULE_LICENSE("GPL"); > diff --git a/drivers/md/persistent-data/dm-block-manager.c b/drivers/md/persistent-data/dm-block-manager.c > index ec4cb3c..fb50478 100644 > --- a/drivers/md/persistent-data/dm-block-manager.c > +++ b/drivers/md/persistent-data/dm-block-manager.c > @@ -613,6 +613,7 @@ int dm_bm_flush_and_unlock(struct dm_block_manager *bm, > > return dm_bufio_write_dirty_buffers(bm->bufio); > } > +EXPORT_SYMBOL_GPL(dm_bm_flush_and_unlock); > > void dm_bm_set_read_only(struct dm_block_manager *bm) > { > -- > 1.7.10.4 > > -- > dm-devel mailing list > dm-devel@xxxxxxxxxx > https://www.redhat.com/mailman/listinfo/dm-devel -- dm-devel mailing list dm-devel@xxxxxxxxxx https://www.redhat.com/mailman/listinfo/dm-devel