[PATCH 5/6] dm raid45 target: introcuce the raid45 target

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



This patch introduces the raid45 target module.

Heinz

 drivers/md/{dm-raid45.h.orig => dm-raid45.h} |   28 ++++++++++++++++++++++++++
 1 files changed, 28 insertions(+), 0 deletions(-)

diff --git a/drivers/md/dm-raid45.h.orig b/drivers/md/dm-raid45.h
index e69de29..c365f43 100644
--- a/drivers/md/dm-raid45.h.orig
+++ b/drivers/md/dm-raid45.h
@@ -0,0 +1,28 @@
+/*
+ * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
+ *
+ * Module Author: Heinz Mauelshagen (Mauelshagen@xxxxxxxxxx)
+ *
+ * Locking definitions for the device-mapper RAID45 target.
+ *
+ * This file is released under the GPL.
+ *
+ */
+
+#ifndef _DM_RAID45_H
+#define _DM_RAID45_H
+
+/* Factor out to dm.h! */
+#define	STR_LEN(ptr, str)	(ptr), (str), strlen((ptr))
+
+enum dm_lock_type { DM_RAID45_EX, DM_RAID45_SHARED };
+
+struct dm_raid45_locking_type {
+	/* Request a lock on a stripe. */
+	void* (*lock)(sector_t key, enum dm_lock_type type);
+
+	/* Release a lock on a stripe. */
+	void (*unlock)(void *lock_handle);
+};
+
+#endif
 drivers/md/{dm-raid45.c.orig => dm-raid45.c} | 4580 ++++++++++++++++++++++++++
 1 files changed, 4580 insertions(+), 0 deletions(-)

diff --git a/drivers/md/dm-raid45.c.orig b/drivers/md/dm-raid45.c
index e69de29..0c33fea 100644
--- a/drivers/md/dm-raid45.c.orig
+++ b/drivers/md/dm-raid45.c
@@ -0,0 +1,4580 @@
+/*
+ * Copyright (C) 2005-2009 Red Hat, Inc. All rights reserved.
+ *
+ * Module Author: Heinz Mauelshagen <heinzm@xxxxxxxxxx>
+ *
+ * This file is released under the GPL.
+ *
+ *
+ * Linux 2.6 Device Mapper RAID4 and RAID5 target.
+ *
+ * Supports:
+ *	o RAID4 with dedicated and selectable parity device
+ *	o RAID5 with rotating parity (left+right, symmetric+asymmetric)
+ *	o recovery of out of sync device for initial
+ *	  RAID set creation or after dead drive replacement
+ *	o run time optimization of xor algorithm used to calculate parity
+ *
+ *
+ * Thanks to MD for:
+ *    o the raid address calculation algorithm
+ *    o the base of the biovec <-> page list copier.
+ *
+ *
+ * Uses region hash to keep track of how many writes are in flight to
+ * regions in order to use dirty log to keep state of regions to recover:
+ *
+ *    o clean regions (those which are synchronized
+ * 	and don't have write io in flight)
+ *    o dirty regions (those with write io in flight)
+ *
+ *
+ * On startup, any dirty regions are migrated to the
+ * 'nosync' state and are subject to recovery by the daemon.
+ *
+ * See raid_ctr() for table definition.
+ *
+ * ANALYZEME: recovery bandwidth
+ */ 
+
+static const char *version = "v0.2594p";
+
+#include "dm.h"
+#include "dm-memcache.h"
+#include "dm-message.h"
+#include "dm-raid45.h"
+
+#include <linux/kernel.h>
+#include <linux/vmalloc.h>
+#include <linux/raid/xor.h>
+
+#include <linux/bio.h>
+#include <linux/dm-io.h>
+#include <linux/dm-dirty-log.h>
+#include <linux/dm-region-hash.h>
+
+
+/*
+ * Configurable parameters
+ */
+
+/* Minimum/maximum and default # of selectable stripes. */
+#define	STRIPES_MIN		8
+#define	STRIPES_MAX		16384
+#define	STRIPES_DEFAULT		80
+
+/* Maximum and default chunk size in sectors if not set in constructor. */
+#define	CHUNK_SIZE_MIN		8
+#define	CHUNK_SIZE_MAX		16384
+#define	CHUNK_SIZE_DEFAULT	64
+
+/* Default io size in sectors if not set in constructor. */
+#define	IO_SIZE_MIN		CHUNK_SIZE_MIN
+#define	IO_SIZE_DEFAULT		IO_SIZE_MIN
+
+/* Recover io size default in sectors. */
+#define	RECOVER_IO_SIZE_MIN		64
+#define	RECOVER_IO_SIZE_DEFAULT		256
+
+/* Default, minimum and maximum percentage of recover io bandwidth. */
+#define	BANDWIDTH_DEFAULT	10
+#define	BANDWIDTH_MIN		1
+#define	BANDWIDTH_MAX		100
+
+/* # of parallel recovered regions */
+#define RECOVERY_STRIPES_MIN	1
+#define RECOVERY_STRIPES_MAX	64
+#define RECOVERY_STRIPES_DEFAULT	RECOVERY_STRIPES_MIN
+/*
+ * END Configurable parameters
+ */
+
+#define	TARGET	"dm-raid45"
+#define	DAEMON	"kraid45d"
+#define	DM_MSG_PREFIX	TARGET
+
+#define	SECTORS_PER_PAGE	(PAGE_SIZE >> SECTOR_SHIFT)
+
+/* Amount/size for __xor(). */
+#define	XOR_SIZE	PAGE_SIZE
+
+/* Check value in range. */
+#define	range_ok(i, min, max)	(i >= min && i <= max)
+
+/* Check argument is power of 2. */
+#define POWER_OF_2(a) (!(a & (a - 1)))
+
+/* Structure access macros. */
+/* Derive raid_set from stripe_cache pointer. */
+#define	RS(x)	container_of(x, struct raid_set, sc)
+
+/* Page reference. */
+#define PAGE(stripe, p)  ((stripe)->obj[p].pl->page)
+
+/* Stripe chunk reference. */
+#define CHUNK(stripe, p) ((stripe)->chunk + p)
+
+/* Bio list reference. */
+#define	BL(stripe, p, rw)	(stripe->chunk[p].bl + rw)
+#define	BL_CHUNK(chunk, rw)	(chunk->bl + rw)
+
+/* Page list reference. */
+#define	PL(stripe, p)		(stripe->obj[p].pl)
+/* END: structure access macros. */
+
+/* Factor out to dm-bio-list.h */
+static inline void bio_list_push(struct bio_list *bl, struct bio *bio)
+{
+	bio->bi_next = bl->head;
+	bl->head = bio;
+
+	if (!bl->tail)
+		bl->tail = bio;
+}
+
+/* Factor out to dm.h */
+#define TI_ERR_RET(str, ret) \
+	do { ti->error = str; return ret; } while (0);
+#define TI_ERR(str)     TI_ERR_RET(str, -EINVAL)
+
+/* Macro to define access IO flags access inline functions. */
+#define	BITOPS(name, what, var, flag) \
+static inline int TestClear ## name ## what(struct var *v) \
+{ return test_and_clear_bit(flag, &v->io.flags); } \
+static inline int TestSet ## name ## what(struct var *v) \
+{ return test_and_set_bit(flag, &v->io.flags); } \
+static inline void Clear ## name ## what(struct var *v) \
+{ clear_bit(flag, &v->io.flags); } \
+static inline void Set ## name ## what(struct var *v) \
+{ set_bit(flag, &v->io.flags); } \
+static inline int name ## what(struct var *v) \
+{ return test_bit(flag, &v->io.flags); }
+
+/*-----------------------------------------------------------------
+ * Stripe cache
+ *
+ * Cache for all reads and writes to raid sets (operational or degraded)
+ *
+ * We need to run all data to and from a RAID set through this cache,
+ * because parity chunks need to get calculated from data chunks
+ * or, in the degraded/resynchronization case, missing chunks need
+ * to be reconstructed using the other chunks of the stripe.
+ *---------------------------------------------------------------*/
+/* Unique kmem cache name suffix # counter. */
+static atomic_t _stripe_sc_nr = ATOMIC_INIT(-1); /* kmem cache # counter. */
+
+/* A chunk within a stripe (holds bios hanging off). */
+/* IO status flags for chunks of a stripe. */
+enum chunk_flags {
+	CHUNK_DIRTY,		/* Pages of chunk dirty; need writing. */
+	CHUNK_ERROR,		/* IO error on any chunk page. */
+	CHUNK_IO,		/* Allow/prohibit IO on chunk pages. */
+	CHUNK_LOCKED,		/* Chunk pages locked during IO. */
+	CHUNK_MUST_IO,		/* Chunk must io. */
+	CHUNK_UNLOCK,		/* Enforce chunk unlock. */
+	CHUNK_UPTODATE,		/* Chunk pages are uptodate. */
+};
+
+#if READ != 0 || WRITE != 1
+#error dm-raid45: READ/WRITE != 0/1 used as index!!!
+#endif
+
+enum bl_type {
+	WRITE_QUEUED = WRITE + 1,
+	WRITE_MERGED,
+	NR_BL_TYPES,	/* Must be last one! */
+};
+struct stripe_chunk {
+	atomic_t cnt;		/* Reference count. */
+	struct stripe *stripe;	/* Backpointer to stripe for endio(). */
+	/* Bio lists for reads, writes, and writes merged. */
+	struct bio_list bl[NR_BL_TYPES];
+	struct {
+		unsigned long flags; /* IO status flags. */
+	} io;
+};
+
+/* Define chunk bit operations. */
+BITOPS(Chunk, Dirty,	 stripe_chunk, CHUNK_DIRTY)
+BITOPS(Chunk, Error,	 stripe_chunk, CHUNK_ERROR)
+BITOPS(Chunk, Io,	 stripe_chunk, CHUNK_IO)
+BITOPS(Chunk, Locked,	 stripe_chunk, CHUNK_LOCKED)
+BITOPS(Chunk, MustIo,	 stripe_chunk, CHUNK_MUST_IO)
+BITOPS(Chunk, Unlock,	 stripe_chunk, CHUNK_UNLOCK)
+BITOPS(Chunk, Uptodate,	 stripe_chunk, CHUNK_UPTODATE)
+
+/*
+ * Stripe linked list indexes. Keep order, because the stripe
+ * and the stripe cache rely on the first 3!
+ */
+enum list_types {
+	LIST_FLUSH,	/* Stripes to flush for io. */
+	LIST_ENDIO,	/* Stripes to endio. */
+	LIST_LRU,	/* Least recently used stripes. */
+	SC_NR_LISTS,	/* # of lists in stripe cache. */
+	LIST_HASH = SC_NR_LISTS,	/* Hashed stripes. */
+	LIST_RECOVER = LIST_HASH, /* For recovery type stripes only. */
+	STRIPE_NR_LISTS,/* To size array in struct stripe. */
+};
+
+/* Adressing region recovery. */
+struct recover_addr {
+	struct dm_region *reg;	/* Actual region to recover. */
+	sector_t pos;	/* Position within region to recover. */
+	sector_t end;	/* End of region to recover. */
+};
+
+/* A stripe: the io object to handle all reads and writes to a RAID set. */
+struct stripe {
+	atomic_t cnt;			/* Reference count. */
+	struct stripe_cache *sc;	/* Backpointer to stripe cache. */
+
+	/*
+	 * 4 linked lists:
+	 *   o io list to flush io
+	 *   o endio list
+	 *   o LRU list to put stripes w/o reference count on
+	 *   o stripe cache hash
+	 */
+	struct list_head lists[STRIPE_NR_LISTS];
+
+	sector_t key;	 /* Hash key. */
+	region_t region; /* Region stripe is mapped to. */
+
+	struct {
+		unsigned long flags;	/* Stripe state flags (see below). */
+
+		/*
+		 * Pending ios in flight:
+		 *
+		 * used to control move of stripe to endio list
+		 */
+		atomic_t pending;
+
+		/* Sectors to read and write for multi page stripe sets. */
+		unsigned size;
+	} io;
+
+	/* Address region recovery. */
+	struct recover_addr *recover;
+
+	/* Lock on stripe (Future: for clustering). */
+	void *lock;
+
+	struct {
+		unsigned short parity;	/* Parity chunk index. */
+		short recover;		/* Recovery chunk index. */
+	} idx;
+
+	/*
+	 * This stripe's memory cache object (dm-mem-cache);
+	 * i.e. the io chunk pages.
+	 */
+	struct dm_mem_cache_object *obj;
+
+	/* Array of stripe sets (dynamically allocated). */
+	struct stripe_chunk chunk[0];
+};
+
+/* States stripes can be in (flags field). */
+enum stripe_states {
+	STRIPE_ERROR,		/* io error on stripe. */
+	STRIPE_MERGED,		/* Writes got merged to be written. */
+	STRIPE_RBW,		/* Read-before-write stripe. */
+	STRIPE_RECONSTRUCT,	/* Reconstruct of a missing chunk required. */
+	STRIPE_RECONSTRUCTED,	/* Reconstructed of a missing chunk. */
+	STRIPE_RECOVER,		/* Stripe used for RAID set recovery. */
+};
+
+/* Define stripe bit operations. */
+BITOPS(Stripe, Error,	      stripe, STRIPE_ERROR)
+BITOPS(Stripe, Merged,        stripe, STRIPE_MERGED)
+BITOPS(Stripe, RBW,	      stripe, STRIPE_RBW)
+BITOPS(Stripe, Reconstruct,   stripe, STRIPE_RECONSTRUCT)
+BITOPS(Stripe, Reconstructed, stripe, STRIPE_RECONSTRUCTED)
+BITOPS(Stripe, Recover,	      stripe, STRIPE_RECOVER)
+
+/* A stripe hash. */
+struct stripe_hash {
+	struct list_head *hash;
+	unsigned buckets;
+	unsigned mask;
+	unsigned prime;
+	unsigned shift;
+};
+
+enum sc_lock_types {
+	LOCK_ENDIO,	/* Protect endio list. */
+	NR_LOCKS,       /* To size array in struct stripe_cache. */
+};
+
+/* A stripe cache. */
+struct stripe_cache {
+	/* Stripe hash. */
+	struct stripe_hash hash;
+
+	spinlock_t locks[NR_LOCKS];	/* Locks to protect lists. */
+
+	/* Stripes with io to flush, stripes to endio and LRU lists. */
+	struct list_head lists[SC_NR_LISTS];
+
+	/* Slab cache to allocate stripes from. */
+	struct {
+		struct kmem_cache *cache;	/* Cache itself. */
+		char name[32];	/* Unique name. */
+	} kc;
+
+	struct dm_io_client *dm_io_client; /* dm-io client resource context. */
+
+	/* dm-mem-cache client resource context. */
+	struct dm_mem_cache_client *mem_cache_client;
+
+	int stripes_parm;	    /* # stripes parameter from constructor. */
+	atomic_t stripes;	    /* actual # of stripes in cache. */
+	atomic_t stripes_to_set;    /* # of stripes to resize cache to. */
+	atomic_t stripes_last;	    /* last # of stripes in cache. */
+	atomic_t active_stripes;    /* actual # of active stripes in cache. */
+
+	/* REMOVEME: */
+	atomic_t active_stripes_max; /* actual # of active stripes in cache. */
+};
+
+/* Flag specs for raid_dev */ ;
+enum raid_dev_flags {
+	DEV_FAILED,	/* Device failed. */
+	DEV_IO_QUEUED,	/* Io got queued to device. */
+};
+
+/* The raid device in a set. */
+struct raid_dev {
+	struct dm_dev *dev;
+	sector_t start;		/* Offset to map to. */
+	struct {	/* Using struct to be able to BITOPS(). */
+		unsigned long flags;	/* raid_dev_flags. */
+	} io;
+};
+
+BITOPS(Dev, Failed,   raid_dev, DEV_FAILED)
+BITOPS(Dev, IoQueued, raid_dev, DEV_IO_QUEUED)
+
+/* Flags spec for raid_set. */
+enum raid_set_flags {
+	RS_CHECK_OVERWRITE,	/* Check for chunk overwrites. */
+	RS_DEAD,		/* RAID set inoperational. */
+	RS_DEAD_ENDIO_MESSAGE,	/* RAID set dead endio one-off message. */
+	RS_DEGRADED,		/* Io errors on RAID device. */
+	RS_DEVEL_STATS,		/* REMOVEME: display status information. */
+	RS_ENFORCE_PARITY_CREATION,/* Enforce parity creation. */
+	RS_RECOVER,		/* Do recovery. */
+	RS_RECOVERY_BANDWIDTH,	/* Allow recovery bandwidth (delayed bios). */
+	RS_SC_BUSY,		/* Stripe cache busy -> send an event. */
+	RS_SUSPEND,		/* Suspend RAID set. */
+};
+
+/* REMOVEME: devel stats counters. */
+enum stats_types {
+	S_BIOS_READ,
+	S_BIOS_ADDED_READ,
+	S_BIOS_ENDIO_READ,
+	S_BIOS_WRITE,
+	S_BIOS_ADDED_WRITE,
+	S_BIOS_ENDIO_WRITE,
+	S_CAN_MERGE,
+	S_CANT_MERGE,
+	S_CONGESTED,
+	S_DM_IO_READ,
+	S_DM_IO_WRITE,
+	S_BANDWIDTH,
+	S_BARRIER,
+	S_BIO_COPY_PL_NEXT,
+	S_DEGRADED,
+	S_DELAYED_BIOS,
+	S_FLUSHS,
+	S_HITS_1ST,
+	S_IOS_POST,
+	S_INSCACHE,
+	S_MAX_LOOKUP,
+	S_CHUNK_LOCKED,
+	S_NO_BANDWIDTH,
+	S_NOT_CONGESTED,
+	S_NO_RW,
+	S_NOSYNC,
+	S_OVERWRITE,
+	S_PROHIBITCHUNKIO,
+	S_RECONSTRUCT_EI,
+	S_RECONSTRUCT_DEV,
+	S_RECONSTRUCT_SET,
+	S_RECONSTRUCTED,
+	S_REQUEUE,
+	S_STRIPE_ERROR,
+	S_SUM_DELAYED_BIOS,
+	S_XORS,
+	S_NR_STATS,	/* # of stats counters. Must be last! */
+};
+
+/* Status type -> string mappings. */
+struct stats_map {
+	const enum stats_types type;
+	const char *str;
+};
+
+static struct stats_map stats_map[] = {
+	{ S_BIOS_READ, "r=" },
+	{ S_BIOS_ADDED_READ, "/" },
+	{ S_BIOS_ENDIO_READ, "/" },
+	{ S_BIOS_WRITE, " w=" },
+	{ S_BIOS_ADDED_WRITE, "/" },
+	{ S_BIOS_ENDIO_WRITE, "/" },
+	{ S_DM_IO_READ, " rc=" },
+	{ S_DM_IO_WRITE, " wc=" },
+	{ S_BANDWIDTH, "\nbw=" },
+	{ S_NO_BANDWIDTH, " no_bw=" },
+	{ S_BARRIER, "\nbarrier=" },
+	{ S_BIO_COPY_PL_NEXT, "\nbio_cp_next=" },
+	{ S_CAN_MERGE, "\nmerge=" },
+	{ S_CANT_MERGE, "/no_merge=" },
+	{ S_CHUNK_LOCKED, "\nchunk_locked=" },
+	{ S_CONGESTED, "\ncgst=" },
+	{ S_NOT_CONGESTED, "/not_cgst=" },
+	{ S_DEGRADED, "\ndegraded=" },
+	{ S_DELAYED_BIOS, "\ndel_bios=" },
+	{ S_SUM_DELAYED_BIOS, "/sum_del_bios=" },
+	{ S_FLUSHS, "\nflushs=" },
+	{ S_HITS_1ST, "\nhits_1st=" },
+	{ S_IOS_POST, " ios_post=" },
+	{ S_INSCACHE, " inscache=" },
+	{ S_MAX_LOOKUP, " maxlookup=" },
+	{ S_NO_RW, "\nno_rw=" },
+	{ S_NOSYNC, " nosync=" },
+	{ S_OVERWRITE, " ovr=" },
+	{ S_PROHIBITCHUNKIO, " prhbt_io=" },
+	{ S_RECONSTRUCT_EI, "\nrec_ei=" },
+	{ S_RECONSTRUCT_DEV, " rec_dev=" },
+	{ S_RECONSTRUCT_SET, " rec_set=" },
+	{ S_RECONSTRUCTED, " rec=" },
+	{ S_REQUEUE, " requeue=" },
+	{ S_STRIPE_ERROR, " stripe_err=" },
+	{ S_XORS, " xors=" },
+};
+
+/*
+ * A RAID set.
+ */
+#define	dm_rh_client	dm_region_hash
+enum count_type { IO_WORK = 0, IO_RECOVER, IO_NR_COUNT };
+typedef void (*xor_function_t)(unsigned count, unsigned long **data);
+struct raid_set {
+	struct dm_target *ti;	/* Target pointer. */
+
+	struct {
+		unsigned long flags;	/* State flags. */
+		struct mutex in_lock;	/* Protects central input list below. */
+		struct bio_list in;	/* Pending ios (central input list). */
+		struct bio_list work;	/* ios work set. */
+		wait_queue_head_t suspendq;	/* suspend synchronization. */
+		atomic_t in_process;	/* counter of queued bios (suspendq). */
+		atomic_t in_process_max;/* counter of queued bios max. */
+
+		/* io work. */
+		struct workqueue_struct *wq;
+		struct delayed_work dws_do_raid;	/* For main worker. */
+		struct work_struct ws_do_table_event;	/* For event worker. */
+	} io;
+
+	/* Stripe locking abstraction. */
+	struct dm_raid45_locking_type *locking;
+
+	struct stripe_cache sc;	/* Stripe cache for this set. */
+
+	/* Xor optimization. */
+	struct {
+		struct xor_func *f;
+		unsigned chunks;
+		unsigned speed;
+	} xor;
+
+	/* Recovery parameters. */
+	struct recover {
+		struct dm_dirty_log *dl;	/* Dirty log. */
+		struct dm_rh_client *rh;	/* Region hash. */
+
+		struct dm_io_client *dm_io_client; /* recovery dm-io client. */
+		/* dm-mem-cache client resource context for recovery stripes. */
+		struct dm_mem_cache_client *mem_cache_client;
+
+		struct list_head stripes;	/* List of recovery stripes. */
+
+		region_t nr_regions;
+		region_t nr_regions_to_recover;
+		region_t nr_regions_recovered;
+		unsigned long start_jiffies;
+		unsigned long end_jiffies;
+
+		unsigned bandwidth;	 /* Recovery bandwidth [%]. */
+		unsigned bandwidth_work; /* Recovery bandwidth [factor]. */
+		unsigned bandwidth_parm; /*  " constructor parm. */
+		unsigned io_size;        /* recovery io size <= region size. */
+		unsigned io_size_parm;   /* recovery io size ctr parameter. */
+		unsigned recovery;	 /* Recovery allowed/prohibited. */
+		unsigned recovery_stripes; /* # of parallel recovery stripes. */
+
+		/* recovery io throttling. */
+		atomic_t io_count[IO_NR_COUNT];	/* counter recover/regular io.*/
+		unsigned long last_jiffies;
+	} recover;
+
+	/* RAID set parameters. */
+	struct {
+		struct raid_type *raid_type;	/* RAID type (eg, RAID4). */
+		unsigned raid_parms;	/* # variable raid parameters. */
+
+		unsigned chunk_size;	/* Sectors per chunk. */
+		unsigned chunk_size_parm;
+		unsigned chunk_shift;	/* rsector chunk size shift. */
+
+		unsigned io_size;	/* Sectors per io. */
+		unsigned io_size_parm;
+		unsigned io_mask;	/* Mask for bio_copy_page_list(). */
+		unsigned io_inv_mask;	/* Mask for raid_address(). */
+
+		sector_t sectors_per_dev;	/* Sectors per device. */
+
+		atomic_t failed_devs;		/* Amount of devices failed. */
+
+		/* Index of device to initialize. */
+		int dev_to_init;
+		int dev_to_init_parm;
+
+		/* Raid devices dynamically allocated. */
+		unsigned raid_devs;	/* # of RAID devices below. */
+		unsigned data_devs;	/* # of RAID data devices. */
+
+		int ei;		/* index of failed RAID device. */
+
+		/* Index of dedicated parity device (i.e. RAID4). */
+		int pi;
+		int pi_parm;	/* constructor parm for status output. */
+	} set;
+
+	/* REMOVEME: devel stats counters. */
+	atomic_t stats[S_NR_STATS];
+
+	/* Dynamically allocated temporary pointers for xor(). */
+	unsigned long **data;
+
+	/* Dynamically allocated RAID devices. Alignment? */
+	struct raid_dev dev[0];
+};
+
+/* Define RAID set bit operations. */
+BITOPS(RS, Bandwidth, raid_set, RS_RECOVERY_BANDWIDTH)
+BITOPS(RS, CheckOverwrite, raid_set, RS_CHECK_OVERWRITE)
+BITOPS(RS, Dead, raid_set, RS_DEAD)
+BITOPS(RS, DeadEndioMessage, raid_set, RS_DEAD_ENDIO_MESSAGE)
+BITOPS(RS, Degraded, raid_set, RS_DEGRADED)
+BITOPS(RS, DevelStats, raid_set, RS_DEVEL_STATS)
+BITOPS(RS, EnforceParityCreation, raid_set, RS_ENFORCE_PARITY_CREATION)
+BITOPS(RS, Recover, raid_set, RS_RECOVER)
+BITOPS(RS, ScBusy, raid_set, RS_SC_BUSY)
+BITOPS(RS, Suspend, raid_set, RS_SUSPEND)
+#undef BITOPS
+
+/*-----------------------------------------------------------------
+ * Raid-4/5 set structures.
+ *---------------------------------------------------------------*/
+/* RAID level definitions. */
+enum raid_level {
+	raid4,
+	raid5,
+};
+
+/* Symmetric/Asymmetric, Left/Right parity rotating algorithms. */
+enum raid_algorithm {
+	none,
+	left_asym,
+	right_asym,
+	left_sym,
+	right_sym,
+};
+
+struct raid_type {
+	const char *name;		/* RAID algorithm. */
+	const char *descr;		/* Descriptor text for logging. */
+	const unsigned parity_devs;	/* # of parity devices. */
+	const unsigned minimal_devs;	/* minimal # of devices in set. */
+	const enum raid_level level;		/* RAID level. */
+	const enum raid_algorithm algorithm;	/* RAID algorithm. */
+};
+
+/* Supported raid types and properties. */
+static struct raid_type raid_types[] = {
+	{"raid4",    "RAID4 (dedicated parity disk)", 1, 3, raid4, none},
+	{"raid5_la", "RAID5 (left asymmetric)",       1, 3, raid5, left_asym},
+	{"raid5_ra", "RAID5 (right asymmetric)",      1, 3, raid5, right_asym},
+	{"raid5_ls", "RAID5 (left symmetric)",        1, 3, raid5, left_sym},
+	{"raid5_rs", "RAID5 (right symmetric)",       1, 3, raid5, right_sym},
+};
+
+/* Address as calculated by raid_address(). */
+struct raid_address {
+	sector_t key;		/* Hash key (address of stripe % chunk_size). */
+	unsigned di, pi;	/* Data and parity disks index. */
+};
+
+/* REMOVEME: reset statistics counters. */
+static void stats_reset(struct raid_set *rs)
+{
+	unsigned s = S_NR_STATS;
+
+	while (s--)
+		atomic_set(rs->stats + s, 0);
+}
+
+/*----------------------------------------------------------------
+ * RAID set management routines.
+ *--------------------------------------------------------------*/
+/*
+ * Begin small helper functions.
+ */
+/* No need to be called from region hash indirectly at dm_rh_dec(). */
+static void wake_dummy(void *context) {}
+
+/* Return # of io reference. */
+static int io_ref(struct raid_set *rs)
+{
+	return atomic_read(&rs->io.in_process);
+}
+
+/* Get an io reference. */
+static void io_get(struct raid_set *rs)
+{
+	int p = atomic_inc_return(&rs->io.in_process);
+
+	if (p > atomic_read(&rs->io.in_process_max))
+		atomic_set(&rs->io.in_process_max, p); /* REMOVEME: max. */
+}
+
+/* Put the io reference and conditionally wake io waiters. */
+static void io_put(struct raid_set *rs)
+{
+	/* Intel: rebuild data corrupter? */
+	if (atomic_dec_and_test(&rs->io.in_process))
+		wake_up(&rs->io.suspendq);
+	else
+		BUG_ON(io_ref(rs) < 0);
+}
+
+/* Wait until all io has been processed. */
+static void wait_ios(struct raid_set *rs)
+{
+	wait_event(rs->io.suspendq, !io_ref(rs));
+}
+
+/* Queue (optionally delayed) io work. */
+static void wake_do_raid_delayed(struct raid_set *rs, unsigned long delay)
+{
+	queue_delayed_work(rs->io.wq, &rs->io.dws_do_raid, delay);
+}
+
+/* Queue io work immediately (called from region hash too). */
+static void wake_do_raid(void *context)
+{
+	struct raid_set *rs = context;
+
+	queue_work(rs->io.wq, &rs->io.dws_do_raid.work);
+}
+
+/* Calculate device sector offset. */
+static sector_t _sector(struct raid_set *rs, struct bio *bio)
+{
+	sector_t sector = bio->bi_sector;
+
+	sector_div(sector, rs->set.data_devs);
+	return sector;
+}
+
+/* Return # of active stripes in stripe cache. */
+static int sc_active(struct stripe_cache *sc)
+{
+	return atomic_read(&sc->active_stripes);
+}
+
+/* Stripe cache busy indicator. */
+static int sc_busy(struct raid_set *rs)
+{
+	return sc_active(&rs->sc) >
+	       atomic_read(&rs->sc.stripes) - (STRIPES_MIN / 2);
+}
+
+/* Set chunks states. */
+enum chunk_dirty_type { CLEAN, DIRTY, ERROR };
+static void chunk_set(struct stripe_chunk *chunk, enum chunk_dirty_type type)
+{
+	switch (type) {
+	case CLEAN:
+		ClearChunkDirty(chunk);
+		break;
+	case DIRTY:
+		SetChunkDirty(chunk);
+		break;
+	case ERROR:
+		SetChunkError(chunk);
+		SetStripeError(chunk->stripe);
+		return;
+	default:
+		BUG();
+	}
+
+	SetChunkUptodate(chunk);
+	SetChunkIo(chunk);
+	ClearChunkError(chunk);
+}
+
+/* Return region state for a sector. */
+static int region_state(struct raid_set *rs, sector_t sector, 
+			enum dm_rh_region_states state)
+{
+	struct dm_rh_client *rh = rs->recover.rh;
+	region_t region = dm_rh_sector_to_region(rh, sector);
+
+	return !!(dm_rh_get_state(rh, region, 1) & state);
+}
+
+/*
+ * Return true in case a chunk should be read/written
+ *
+ * Conditions to read/write:
+ *	o chunk not uptodate
+ *	o chunk dirty
+ *
+ * Conditios to avoid io:
+ *	o io already ongoing on chunk
+ *	o io explitely prohibited
+ */
+static int chunk_io(struct stripe_chunk *chunk)
+{
+	/* 2nd run optimization (flag set below on first run). */
+	if (TestClearChunkMustIo(chunk))
+		return 1;
+
+	/* Avoid io if prohibited or a locked chunk. */
+	if (!ChunkIo(chunk) || ChunkLocked(chunk))
+		return 0;
+
+	if (!ChunkUptodate(chunk) || ChunkDirty(chunk)) {
+		SetChunkMustIo(chunk); /* 2nd run optimization. */
+		return 1;
+	}
+
+	return 0;
+}
+
+/* Call a function on each chunk needing io unless device failed. */
+static unsigned for_each_io_dev(struct stripe *stripe,
+			        void (*f_io)(struct stripe *stripe, unsigned p))
+{
+	struct raid_set *rs = RS(stripe->sc);
+	unsigned p, r = 0;
+
+	for (p = 0; p < rs->set.raid_devs; p++) {
+		if (chunk_io(CHUNK(stripe, p)) && !DevFailed(rs->dev + p)) {
+			f_io(stripe, p);
+			r++;
+		}
+	}
+
+	return r;
+}
+
+/*
+ * Index of device to calculate parity on.
+ *
+ * Either the parity device index *or* the selected
+ * device to init after a spare replacement.
+ */
+static int dev_for_parity(struct stripe *stripe, int *sync)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	int r = region_state(rs, stripe->key, DM_RH_NOSYNC | DM_RH_RECOVERING);
+
+	*sync = !r;
+
+	/* Reconstruct a particular device ?. */
+	if (r && rs->set.dev_to_init > -1)
+		return rs->set.dev_to_init;
+	else if (rs->set.raid_type->level == raid4)
+		return rs->set.pi;
+	else if (!StripeRecover(stripe))
+		return stripe->idx.parity;
+	else
+		return -1;
+}
+
+/* RAID set congested function. */
+static int rs_congested(void *congested_data, int bdi_bits)
+{
+	int r;
+	unsigned p;
+	struct raid_set *rs = congested_data;
+
+	if (sc_busy(rs) || RSSuspend(rs))
+		r = 1;
+	else for (r = 0, p = rs->set.raid_devs; !r && p--; ) {
+		/* If any of our component devices are overloaded. */
+		struct request_queue *q = bdev_get_queue(rs->dev[p].dev->bdev);
+
+		r |= bdi_congested(&q->backing_dev_info, bdi_bits);
+	}
+
+	/* REMOVEME: statistics. */
+	atomic_inc(rs->stats + (r ? S_CONGESTED : S_NOT_CONGESTED));
+	return r;
+}
+
+/* RAID device degrade check. */
+static void rs_check_degrade_dev(struct raid_set *rs,
+				 struct stripe *stripe, unsigned p)
+{
+	if (TestSetDevFailed(rs->dev + p))
+		return;
+
+	/* Through an event in case of member device errors. */
+	if ((atomic_inc_return(&rs->set.failed_devs) >
+	     rs->set.raid_type->parity_devs) &&
+	     !TestSetRSDead(rs)) {
+		/* Display RAID set dead message once. */
+		unsigned p;
+		char buf[BDEVNAME_SIZE];
+
+		DMERR("FATAL: too many devices failed -> RAID set broken");
+		for (p = 0; p < rs->set.raid_devs; p++) {
+			if (DevFailed(rs->dev + p))
+				DMERR("device /dev/%s failed",
+				      bdevname(rs->dev[p].dev->bdev, buf));
+		}
+	}
+
+	/* Only log the first member error. */
+	if (!TestSetRSDegraded(rs)) {
+		char buf[BDEVNAME_SIZE];
+
+		/* Store index for recovery. */
+		rs->set.ei = p;
+		DMERR("CRITICAL: %sio error on device /dev/%s "
+		      "in region=%llu; DEGRADING RAID set\n",
+		      stripe ? "" : "FAKED ",
+		      bdevname(rs->dev[p].dev->bdev, buf),
+		      (unsigned long long) (stripe ? stripe->key : 0));
+		DMERR("further device error messages suppressed");
+	}
+
+	schedule_work(&rs->io.ws_do_table_event);
+}
+
+/* RAID set degrade check. */
+static void rs_check_degrade(struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	unsigned p = rs->set.raid_devs;
+
+	while (p--) {
+		if (ChunkError(CHUNK(stripe, p)))
+			rs_check_degrade_dev(rs, stripe, p);
+	}
+}
+
+/* Lookup a RAID device by name or by major:minor number. */
+static int raid_dev_lookup(struct raid_set *rs, struct raid_dev *dev_lookup)
+{
+	unsigned p;
+	struct raid_dev *dev;
+
+	/*
+	 * Must be an incremental loop, because the device array
+	 * can have empty slots still on calls from raid_ctr()
+	 */
+	for (dev = rs->dev, p = 0;
+	     dev->dev && p < rs->set.raid_devs;
+	     dev++, p++) {
+		if (dev_lookup->dev->bdev->bd_dev == dev->dev->bdev->bd_dev)
+			return p;
+	}
+
+	return -ENODEV;
+}
+/*
+ * End small helper functions.
+ */
+
+/*
+ * Stripe hash functions
+ */
+/* Initialize/destroy stripe hash. */
+static int hash_init(struct stripe_hash *hash, unsigned stripes)
+{
+	unsigned buckets = 2, max_buckets = stripes >> 1;
+	static unsigned hash_primes[] = {
+		/* Table of primes for hash_fn/table size optimization. */
+		1, 2, 3, 7, 13, 27, 53, 97, 193, 389, 769,
+		1543, 3079, 6151, 12289, 24593, 49157, 98317,
+	};
+
+	/* Calculate number of buckets (2^^n <= stripes / 2). */
+	while (buckets < max_buckets)
+		buckets <<= 1;
+
+	/* Allocate stripe hash buckets. */
+	hash->hash = vmalloc(buckets * sizeof(*hash->hash));
+	if (!hash->hash)
+		return -ENOMEM;
+
+	hash->buckets = buckets;
+	hash->mask = buckets - 1;
+	hash->shift = ffs(buckets);
+	if (hash->shift > ARRAY_SIZE(hash_primes))
+		hash->shift = ARRAY_SIZE(hash_primes) - 1;
+
+	BUG_ON(hash->shift < 2);
+	hash->prime = hash_primes[hash->shift];
+
+	/* Initialize buckets. */
+	while (buckets--)
+		INIT_LIST_HEAD(hash->hash + buckets);
+	return 0;
+}
+
+static void hash_exit(struct stripe_hash *hash)
+{
+	if (hash->hash) {
+		vfree(hash->hash);
+		hash->hash = NULL;
+	}
+}
+
+static unsigned hash_fn(struct stripe_hash *hash, sector_t key)
+{
+	return (unsigned) (((key * hash->prime) >> hash->shift) & hash->mask);
+}
+
+static struct list_head *hash_bucket(struct stripe_hash *hash, sector_t key)
+{
+	return hash->hash + hash_fn(hash, key);
+}
+
+/* Insert an entry into a hash. */
+static void stripe_insert(struct stripe_hash *hash, struct stripe *stripe)
+{
+	list_add(stripe->lists + LIST_HASH, hash_bucket(hash, stripe->key));
+}
+
+/* Lookup an entry in the stripe hash. */
+static struct stripe *stripe_lookup(struct stripe_cache *sc, sector_t key)
+{
+	unsigned look = 0;
+	struct stripe *stripe;
+	struct list_head *bucket = hash_bucket(&sc->hash, key);
+
+	list_for_each_entry(stripe, bucket, lists[LIST_HASH]) {
+		look++;
+
+		if (stripe->key == key) {
+			/* REMOVEME: statisics. */
+			if (look > atomic_read(RS(sc)->stats + S_MAX_LOOKUP))
+				atomic_set(RS(sc)->stats + S_MAX_LOOKUP, look);
+			return stripe;
+		}
+	}
+
+	return NULL;
+}
+
+/* Resize the stripe cache hash on size changes. */
+static int sc_hash_resize(struct stripe_cache *sc)
+{
+	/* Resize indicated ? */
+	if (atomic_read(&sc->stripes) != atomic_read(&sc->stripes_last)) {
+		int r;
+		struct stripe_hash hash;
+
+		r = hash_init(&hash, atomic_read(&sc->stripes));
+		if (r)
+			return r;
+
+		if (sc->hash.hash) {
+			unsigned b = sc->hash.buckets;
+			struct list_head *pos, *tmp;
+
+			/* Walk old buckets and insert into new. */
+			while (b--) {
+				list_for_each_safe(pos, tmp, sc->hash.hash + b)
+				    stripe_insert(&hash,
+						  list_entry(pos, struct stripe,
+							     lists[LIST_HASH]));
+			}
+
+		}
+
+		hash_exit(&sc->hash);
+		memcpy(&sc->hash, &hash, sizeof(sc->hash));
+		atomic_set(&sc->stripes_last, atomic_read(&sc->stripes));
+	}
+
+	return 0;
+}
+/* End hash stripe hash function. */
+
+/* List add, delete, push and pop functions. */
+/* Add stripe to flush list. */
+#define	DEL_LIST(lh) \
+	if (!list_empty(lh)) \
+		list_del_init(lh);
+
+/* Delete stripe from hash. */
+static void stripe_hash_del(struct stripe *stripe)
+{
+	DEL_LIST(stripe->lists + LIST_HASH);
+}
+
+/* Return stripe reference count. */
+static inline int stripe_ref(struct stripe *stripe)
+{
+	return atomic_read(&stripe->cnt);
+}
+
+static void stripe_flush_add(struct stripe *stripe)
+{
+	struct stripe_cache *sc = stripe->sc;
+	struct list_head *lh = stripe->lists + LIST_FLUSH;
+
+	if (!StripeReconstruct(stripe) && list_empty(lh))
+		list_add_tail(lh, sc->lists + LIST_FLUSH);
+}
+
+/*
+ * Add stripe to LRU (inactive) list.
+ *
+ * Need lock, because of concurrent access from message interface.
+ */
+static void stripe_lru_add(struct stripe *stripe)
+{
+	if (!StripeRecover(stripe)) {
+		struct list_head *lh = stripe->lists + LIST_LRU;
+
+		if (list_empty(lh))
+			list_add_tail(lh, stripe->sc->lists + LIST_LRU);
+	}
+}
+
+#define POP_LIST(list) \
+	do { \
+		if (list_empty(sc->lists + (list))) \
+			stripe = NULL; \
+		else { \
+			stripe = list_first_entry(sc->lists + (list), \
+						  struct stripe, \
+						  lists[(list)]); \
+			list_del_init(stripe->lists + (list)); \
+		} \
+	} while (0);
+
+/* Pop an available stripe off the LRU list. */
+static struct stripe *stripe_lru_pop(struct stripe_cache *sc)
+{
+	struct stripe *stripe;
+
+	POP_LIST(LIST_LRU);
+	return stripe;
+}
+
+/* Pop an available stripe off the io list. */
+static struct stripe *stripe_io_pop(struct stripe_cache *sc)
+{
+	struct stripe *stripe;
+
+	POP_LIST(LIST_FLUSH);
+	return stripe;
+}
+
+/* Push a stripe safely onto the endio list to be handled by do_endios(). */
+static void stripe_endio_push(struct stripe *stripe)
+{
+	unsigned long flags;
+	struct stripe_cache *sc = stripe->sc;
+	struct list_head *stripe_list = stripe->lists + LIST_ENDIO,
+			 *sc_list = sc->lists + LIST_ENDIO;
+	spinlock_t *lock = sc->locks + LOCK_ENDIO;
+
+	/* This runs in parallel with do_endios(). */
+	spin_lock_irqsave(lock, flags);
+	if (list_empty(stripe_list))
+		list_add_tail(stripe_list, sc_list);
+	spin_unlock_irqrestore(lock, flags);
+
+	wake_do_raid(RS(sc)); /* Wake myself. */
+}
+
+/* Pop a stripe off safely off the endio list. */
+static struct stripe *stripe_endio_pop(struct stripe_cache *sc)
+{
+	struct stripe *stripe;
+	spinlock_t *lock = sc->locks + LOCK_ENDIO;
+
+	/* This runs in parallel with endio(). */
+	spin_lock_irq(lock);
+	POP_LIST(LIST_ENDIO)
+	spin_unlock_irq(lock);
+	return stripe;
+}
+#undef POP_LIST
+
+/*
+ * Stripe cache locking functions
+ */
+/* Dummy lock function for single host RAID4+5. */
+static void *no_lock(sector_t key, enum dm_lock_type type)
+{
+	return &no_lock;
+}
+
+/* Dummy unlock function for single host RAID4+5. */
+static void no_unlock(void *lock_handle)
+{
+}
+
+/* No locking (for single host RAID 4+5). */
+static struct dm_raid45_locking_type locking_none = {
+	.lock = no_lock,
+	.unlock = no_unlock,
+};
+
+/* Lock a stripe (for clustering). */
+static int
+stripe_lock(struct stripe *stripe, int rw, sector_t key)
+{
+	stripe->lock = RS(stripe->sc)->locking->lock(key, rw == READ ? DM_RAID45_SHARED : DM_RAID45_EX);
+	return stripe->lock ? 0 : -EPERM;
+}
+
+/* Unlock a stripe (for clustering). */
+static void stripe_unlock(struct stripe *stripe)
+{
+	RS(stripe->sc)->locking->unlock(stripe->lock);
+	stripe->lock = NULL;
+}
+
+/* Test io pending on stripe. */
+static int stripe_io_ref(struct stripe *stripe)
+{
+	return atomic_read(&stripe->io.pending);
+}
+
+static void stripe_io_get(struct stripe *stripe)
+{
+	if (atomic_inc_return(&stripe->io.pending) == 1)
+		/* REMOVEME: statistics */
+		atomic_inc(&stripe->sc->active_stripes);
+	else
+		BUG_ON(stripe_io_ref(stripe) < 0);
+}
+
+static void stripe_io_put(struct stripe *stripe)
+{
+	if (atomic_dec_and_test(&stripe->io.pending)) {
+		if (unlikely(StripeRecover(stripe)))
+			/* Don't put recovery stripe on endio list. */
+			wake_do_raid(RS(stripe->sc));
+		else
+			/* Add regular stripe to endio list and wake daemon. */
+			stripe_endio_push(stripe);
+
+		/* REMOVEME: statistics */
+		atomic_dec(&stripe->sc->active_stripes);
+	} else
+		BUG_ON(stripe_io_ref(stripe) < 0);
+}
+
+/* Take stripe reference out. */
+static int stripe_get(struct stripe *stripe)
+{
+	int r;
+	struct list_head *lh = stripe->lists + LIST_LRU;
+
+	/* Delete stripe from LRU (inactive) list if on. */
+	DEL_LIST(lh);
+	BUG_ON(stripe_ref(stripe) < 0);
+
+	/* Lock stripe on first reference */
+	r = (atomic_inc_return(&stripe->cnt) == 1) ?
+	    stripe_lock(stripe, WRITE, stripe->key) : 0;
+
+	return r;
+}
+#undef DEL_LIST
+
+/* Return references on a chunk. */
+static int chunk_ref(struct stripe_chunk *chunk)
+{
+	return atomic_read(&chunk->cnt);
+}
+
+/* Take out reference on a chunk. */
+static int chunk_get(struct stripe_chunk *chunk)
+{
+	return atomic_inc_return(&chunk->cnt);
+}
+
+/* Drop reference on a chunk. */
+static void chunk_put(struct stripe_chunk *chunk)
+{
+	BUG_ON(atomic_dec_return(&chunk->cnt) < 0);
+}
+
+/*
+ * Drop reference on a stripe.
+ *
+ * Move it to list of LRU stripes if zero.
+ */
+static void stripe_put(struct stripe *stripe)
+{
+	if (atomic_dec_and_test(&stripe->cnt)) {
+		BUG_ON(stripe_io_ref(stripe));
+		stripe_unlock(stripe);
+	} else
+		BUG_ON(stripe_ref(stripe) < 0);
+}
+
+/* Helper needed by for_each_io_dev(). */
+static void stripe_get_references(struct stripe *stripe, unsigned p)
+{
+
+	/*
+	 * Another one to reference the stripe in
+	 * order to protect vs. LRU list moves.
+	 */
+	io_get(RS(stripe->sc));	/* Global io references. */
+	stripe_get(stripe);
+	stripe_io_get(stripe);	/* One for each chunk io. */
+}
+
+/* Helper for endio() to put all take references. */
+static void stripe_put_references(struct stripe *stripe)
+{
+	stripe_io_put(stripe);	/* One for each chunk io. */
+	stripe_put(stripe);
+	io_put(RS(stripe->sc));
+}
+
+/*
+ * Stripe cache functions.
+ */
+/*
+ * Invalidate all chunks (i.e. their pages)  of a stripe.
+ *
+ * I only keep state for the whole chunk.
+ */
+static inline void stripe_chunk_invalidate(struct stripe_chunk *chunk)
+{
+	chunk->io.flags = 0;
+}
+
+static void
+stripe_chunks_invalidate(struct stripe *stripe)
+{
+	unsigned p = RS(stripe->sc)->set.raid_devs;
+
+	while (p--)
+		stripe_chunk_invalidate(CHUNK(stripe, p));
+}
+
+/* Prepare stripe for (re)use. */
+static void stripe_invalidate(struct stripe *stripe)
+{
+	stripe->io.flags = 0;
+	stripe->idx.parity = stripe->idx.recover = -1;
+	stripe_chunks_invalidate(stripe);
+}
+
+/*
+ * Allow io on all chunks of a stripe.
+ * If not set, IO will not occur; i.e. it's prohibited.
+ *
+ * Actual IO submission for allowed chunks depends
+ * on their !uptodate or dirty state.
+ */
+static void stripe_allow_io(struct stripe *stripe)
+{
+	unsigned p = RS(stripe->sc)->set.raid_devs;
+
+	while (p--)
+		SetChunkIo(CHUNK(stripe, p));
+}
+
+/* Initialize a stripe. */
+static void stripe_init(struct stripe_cache *sc, struct stripe *stripe)
+{
+	unsigned i, p = RS(sc)->set.raid_devs;
+
+	/* Work all io chunks. */
+	while (p--) {
+		struct stripe_chunk *chunk = CHUNK(stripe, p);
+
+		atomic_set(&chunk->cnt, 0);
+		chunk->stripe = stripe;
+		i = ARRAY_SIZE(chunk->bl);
+		while (i--)
+			bio_list_init(chunk->bl + i);
+	}
+
+	stripe->sc = sc;
+
+	i = ARRAY_SIZE(stripe->lists);
+	while (i--)
+		INIT_LIST_HEAD(stripe->lists + i);
+
+	stripe->io.size = RS(sc)->set.io_size;
+	atomic_set(&stripe->cnt, 0);
+	atomic_set(&stripe->io.pending, 0);
+	stripe_invalidate(stripe);
+}
+
+/* Number of pages per chunk. */
+static inline unsigned chunk_pages(unsigned sectors)
+{
+	return dm_div_up(sectors, SECTORS_PER_PAGE);
+}
+
+/* Number of pages per stripe. */
+static inline unsigned stripe_pages(struct raid_set *rs, unsigned io_size)
+{
+	return chunk_pages(io_size) * rs->set.raid_devs;
+}
+
+/* Initialize part of page_list (recovery). */
+static void stripe_zero_pl_part(struct stripe *stripe, int p,
+				unsigned start, unsigned count)
+{
+	unsigned o = start / SECTORS_PER_PAGE, pages = chunk_pages(count);
+	/* Get offset into the page_list. */
+	struct page_list *pl = pl_elem(PL(stripe, p), o);
+
+	BUG_ON(!pl);
+	while (pl && pages--) {
+		BUG_ON(!pl->page);
+		memset(page_address(pl->page), 0, PAGE_SIZE);
+		pl = pl->next;
+	}
+}
+
+/* Initialize parity chunk of stripe. */
+static void stripe_zero_chunk(struct stripe *stripe, int p)
+{
+	if (p > -1)
+		stripe_zero_pl_part(stripe, p, 0, stripe->io.size);
+}
+
+/* Return dynamic stripe structure size. */
+static size_t stripe_size(struct raid_set *rs)
+{
+	return sizeof(struct stripe) +
+		      rs->set.raid_devs * sizeof(struct stripe_chunk);
+}
+
+/* Allocate a stripe and its memory object. */
+/* XXX adjust to cope with stripe cache and recovery stripe caches. */
+enum grow { SC_GROW, SC_KEEP };
+static struct stripe *stripe_alloc(struct stripe_cache *sc,
+				   struct dm_mem_cache_client *mc,
+				   enum grow grow)
+{
+	int r;
+	struct stripe *stripe;
+
+	stripe = kmem_cache_zalloc(sc->kc.cache, GFP_KERNEL);
+	if (stripe) {
+		/* Grow the dm-mem-cache by one object. */
+		if (grow == SC_GROW) {
+			r = dm_mem_cache_grow(mc, 1);
+			if (r)
+				goto err_free;
+		}
+
+		stripe->obj = dm_mem_cache_alloc(mc);
+		if (IS_ERR(stripe->obj))
+			goto err_shrink;
+
+		stripe_init(sc, stripe);
+	}
+
+	return stripe;
+
+err_shrink:
+	if (grow == SC_GROW)
+		dm_mem_cache_shrink(mc, 1);
+err_free:
+	kmem_cache_free(sc->kc.cache, stripe);
+	return NULL;
+}
+
+/*
+ * Free a stripes memory object, shrink the
+ * memory cache and free the stripe itself.
+ */
+static void stripe_free(struct stripe *stripe, struct dm_mem_cache_client *mc)
+{
+	dm_mem_cache_free(mc, stripe->obj);
+	dm_mem_cache_shrink(mc, 1);
+	kmem_cache_free(stripe->sc->kc.cache, stripe);
+}
+
+/* Free the recovery stripe. */
+static void stripe_recover_free(struct raid_set *rs)
+{
+	struct recover *rec = &rs->recover;
+	struct dm_mem_cache_client *mc;
+
+	mc = rec->mem_cache_client;
+	rec->mem_cache_client = NULL;
+	if (mc) {
+		struct stripe *stripe;
+
+		while (!list_empty(&rec->stripes)) {
+			stripe = list_first_entry(&rec->stripes, struct stripe,
+						  lists[LIST_RECOVER]);
+			list_del(stripe->lists + LIST_RECOVER);
+			kfree(stripe->recover);
+			stripe_free(stripe, mc);
+		}
+	
+		dm_mem_cache_client_destroy(mc);
+		dm_io_client_destroy(rec->dm_io_client);
+		rec->dm_io_client = NULL;
+	}
+}
+
+/* Grow stripe cache. */
+static int sc_grow(struct stripe_cache *sc, unsigned stripes, enum grow grow)
+{
+	int r = 0;
+
+	/* Try to allocate this many (additional) stripes. */
+	while (stripes--) {
+		struct stripe *stripe =
+			stripe_alloc(sc, sc->mem_cache_client, grow);
+
+		if (likely(stripe)) {
+			stripe_lru_add(stripe);
+			atomic_inc(&sc->stripes);
+		} else {
+			r = -ENOMEM;
+			break;
+		}
+	}
+
+	return r ? r : sc_hash_resize(sc);
+}
+
+/* Shrink stripe cache. */
+static int sc_shrink(struct stripe_cache *sc, unsigned stripes)
+{
+	int r = 0;
+
+	/* Try to get unused stripe from LRU list. */
+	while (stripes--) {
+		struct stripe *stripe;
+
+		stripe = stripe_lru_pop(sc);
+		if (stripe) {
+			/* An LRU stripe may never have ios pending! */
+			BUG_ON(stripe_io_ref(stripe));
+			BUG_ON(stripe_ref(stripe));
+			atomic_dec(&sc->stripes);
+			/* Remove from hash if on before deletion. */
+			stripe_hash_del(stripe);
+			stripe_free(stripe, sc->mem_cache_client);
+		} else {
+			r = -ENOENT;
+			break;
+		}
+	}
+
+	/* Check if stats are still sane. */
+	if (atomic_read(&sc->active_stripes_max) >
+	    atomic_read(&sc->stripes))
+		atomic_set(&sc->active_stripes_max, 0);
+
+	if (r)
+		return r;
+
+	return atomic_read(&sc->stripes) ? sc_hash_resize(sc) : 0;
+}
+
+/* Create stripe cache and recovery. */
+static int sc_init(struct raid_set *rs, unsigned stripes)
+{
+	unsigned i, r, rstripes;
+	struct stripe_cache *sc = &rs->sc;
+	struct stripe *stripe;
+	struct recover *rec = &rs->recover;
+	struct mapped_device *md;
+	struct gendisk *disk;
+
+
+	/* Initialize lists and locks. */
+	i = ARRAY_SIZE(sc->lists);
+	while (i--)
+		INIT_LIST_HEAD(sc->lists + i);
+
+	INIT_LIST_HEAD(&rec->stripes);
+
+	/* Initialize endio and LRU list locks. */
+	i = NR_LOCKS;
+	while (i--)
+		spin_lock_init(sc->locks + i);
+
+	/* Initialize atomic variables. */
+	atomic_set(&sc->stripes, 0);
+	atomic_set(&sc->stripes_to_set, 0);
+	atomic_set(&sc->active_stripes, 0);
+	atomic_set(&sc->active_stripes_max, 0);	/* REMOVEME: statistics. */
+
+	/*
+	 * We need a runtime unique # to suffix the kmem cache name
+	 * because we'll have one for each active RAID set.
+	 */
+	md = dm_table_get_md(rs->ti->table);
+	disk = dm_disk(md);
+	snprintf(sc->kc.name, sizeof(sc->kc.name), "%s-%d.%d", TARGET,
+		 disk->first_minor, atomic_inc_return(&_stripe_sc_nr));
+	dm_put(md);
+	sc->kc.cache = kmem_cache_create(sc->kc.name, stripe_size(rs),
+					 0, 0, NULL);
+	if (!sc->kc.cache)
+		return -ENOMEM;
+
+	/* Create memory cache client context for RAID stripe cache. */
+	sc->mem_cache_client =
+		dm_mem_cache_client_create(stripes, rs->set.raid_devs,
+					   chunk_pages(rs->set.io_size));
+	if (IS_ERR(sc->mem_cache_client))
+		return PTR_ERR(sc->mem_cache_client);
+
+	/* Create memory cache client context for RAID recovery stripe(s). */
+	rstripes = rec->recovery_stripes;
+	rec->mem_cache_client =
+		dm_mem_cache_client_create(rstripes, rs->set.raid_devs,
+					   chunk_pages(rec->io_size));
+	if (IS_ERR(rec->mem_cache_client))
+		return PTR_ERR(rec->mem_cache_client);
+
+	/* Create dm-io client context for IO stripes. */
+	sc->dm_io_client =
+		dm_io_client_create((stripes > 32 ? 32 : stripes) *
+				    rs->set.raid_devs *
+				    chunk_pages(rs->set.io_size));
+	if (IS_ERR(sc->dm_io_client))
+		return PTR_ERR(sc->dm_io_client);
+
+	/* FIXME: intermingeled with stripe cache initialization. */
+	/* Create dm-io client context for recovery stripes. */
+	rec->dm_io_client =
+		dm_io_client_create(rstripes * rs->set.raid_devs *
+				    chunk_pages(rec->io_size));
+	if (IS_ERR(rec->dm_io_client))
+		return PTR_ERR(rec->dm_io_client);
+
+	/* Allocate stripes for set recovery. */
+	while (rstripes--) {
+		stripe = stripe_alloc(sc, rec->mem_cache_client, SC_KEEP);
+		if (!stripe)
+			return -ENOMEM;
+
+		stripe->recover = kzalloc(sizeof(*stripe->recover), GFP_KERNEL);
+		if (!stripe->recover) {
+			stripe_free(stripe, rec->mem_cache_client);
+			return -ENOMEM;
+		}
+
+		SetStripeRecover(stripe);
+		stripe->io.size = rec->io_size;
+		list_add_tail(stripe->lists + LIST_RECOVER, &rec->stripes);
+		/* Don't add recovery stripes to LRU list! */
+	}
+
+	/*
+	 * Allocate the stripe objetcs from the
+	 * cache and add them to the LRU list.
+	 */
+	r = sc_grow(sc, stripes, SC_KEEP);
+	if (!r)
+		atomic_set(&sc->stripes_last, stripes);
+
+	return r;
+}
+
+/* Destroy the stripe cache. */
+static void sc_exit(struct stripe_cache *sc)
+{
+	struct raid_set *rs = RS(sc);
+
+	if (sc->kc.cache) {
+		stripe_recover_free(rs);
+		BUG_ON(sc_shrink(sc, atomic_read(&sc->stripes)));
+		kmem_cache_destroy(sc->kc.cache);
+		sc->kc.cache = NULL;
+
+		if (sc->mem_cache_client && !IS_ERR(sc->mem_cache_client))
+			dm_mem_cache_client_destroy(sc->mem_cache_client);
+
+		if (sc->dm_io_client && !IS_ERR(sc->dm_io_client))
+			dm_io_client_destroy(sc->dm_io_client);
+
+		hash_exit(&sc->hash);
+	}
+}
+
+/*
+ * Calculate RAID address
+ *
+ * Delivers tuple with the index of the data disk holding the chunk
+ * in the set, the parity disks index and the start of the stripe
+ * within the address space of the set (used as the stripe cache hash key).
+ */
+/* thx MD. */
+static struct raid_address *raid_address(struct raid_set *rs, sector_t sector,
+					 struct raid_address *addr)
+{
+	sector_t stripe, tmp;
+
+	/*
+	 * chunk_number = sector / chunk_size
+	 * stripe_number = chunk_number / data_devs
+	 * di = stripe % data_devs;
+	 */
+	stripe = sector >> rs->set.chunk_shift;
+	addr->di = sector_div(stripe, rs->set.data_devs);
+
+	switch (rs->set.raid_type->level) {
+	case raid4:
+		addr->pi = rs->set.pi;
+		goto check_shift_di;
+	case raid5:
+		tmp = stripe;
+		addr->pi = sector_div(tmp, rs->set.raid_devs);
+
+		switch (rs->set.raid_type->algorithm) {
+		case left_asym:		/* Left asymmetric. */
+			addr->pi = rs->set.data_devs - addr->pi;
+		case right_asym:	/* Right asymmetric. */
+check_shift_di:
+			if (addr->di >= addr->pi)
+				addr->di++;
+			break;
+		case left_sym:		/* Left symmetric. */
+			addr->pi = rs->set.data_devs - addr->pi;
+		case right_sym:		/* Right symmetric. */
+			addr->di = (addr->pi + addr->di + 1) %
+				   rs->set.raid_devs;
+			break;
+		case none: /* Ain't happen: RAID4 algorithm placeholder. */
+			BUG();
+		}
+	}
+
+	/*
+	 * Start offset of the stripes chunk on any single device of the RAID
+	 * set, adjusted in case io size differs from chunk size.
+	 */
+	addr->key = (stripe << rs->set.chunk_shift) +
+		    (sector & rs->set.io_inv_mask);
+	return addr;
+}
+
+/*
+ * Copy data across between stripe pages and bio vectors.
+ *
+ * Pay attention to data alignment in stripe and bio pages.
+ */
+static void bio_copy_page_list(int rw, struct stripe *stripe,
+			       struct page_list *pl, struct bio *bio)
+{
+	unsigned i, page_offset;
+	void *page_addr;
+	struct raid_set *rs = RS(stripe->sc);
+	struct bio_vec *bv;
+
+	/* Get start page in page list for this sector. */
+	i = (bio->bi_sector & rs->set.io_mask) / SECTORS_PER_PAGE;
+	pl = pl_elem(pl, i);
+	BUG_ON(!pl);
+	BUG_ON(!pl->page);
+
+	page_addr = page_address(pl->page);
+	page_offset = to_bytes(bio->bi_sector & (SECTORS_PER_PAGE - 1));
+
+	/* Walk all segments and copy data across between bio_vecs and pages. */
+	bio_for_each_segment(bv, bio, i) {
+		int len = bv->bv_len, size;
+		unsigned bio_offset = 0;
+		void *bio_addr = __bio_kmap_atomic(bio, i, KM_USER0);
+redo:
+		size = (page_offset + len > PAGE_SIZE) ?
+		       PAGE_SIZE - page_offset : len;
+
+		if (rw == READ)
+			memcpy(bio_addr + bio_offset,
+			       page_addr + page_offset, size);
+		else
+			memcpy(page_addr + page_offset,
+			       bio_addr + bio_offset, size);
+
+		page_offset += size;
+		if (page_offset == PAGE_SIZE) {
+			/*
+			 * We reached the end of the chunk page ->
+			 * need to refer to the next one to copy more data.
+			 */
+			len -= size;
+			if (len) {
+				/* Get next page. */
+				pl = pl->next;
+				BUG_ON(!pl);
+				BUG_ON(!pl->page);
+				page_addr = page_address(pl->page);
+				page_offset = 0;
+				bio_offset += size;
+				/* REMOVEME: statistics. */
+				atomic_inc(rs->stats + S_BIO_COPY_PL_NEXT);
+				goto redo;
+			}
+		}
+
+		__bio_kunmap_atomic(bio_addr, KM_USER0);
+	}
+}
+
+/*
+ * Xor optimization macros.
+ */
+/* Xor data pointer declaration and initialization macros. */
+#define DECLARE_2	unsigned long *d0 = data[0], *d1 = data[1]
+#define DECLARE_3	DECLARE_2, *d2 = data[2]
+#define DECLARE_4	DECLARE_3, *d3 = data[3]
+#define DECLARE_5	DECLARE_4, *d4 = data[4]
+#define DECLARE_6	DECLARE_5, *d5 = data[5]
+#define DECLARE_7	DECLARE_6, *d6 = data[6]
+#define DECLARE_8	DECLARE_7, *d7 = data[7]
+
+/* Xor unrole macros. */
+#define D2(n)	d0[n] = d0[n] ^ d1[n]
+#define D3(n)	D2(n) ^ d2[n]
+#define D4(n)	D3(n) ^ d3[n]
+#define D5(n)	D4(n) ^ d4[n]
+#define D6(n)	D5(n) ^ d5[n]
+#define D7(n)	D6(n) ^ d6[n]
+#define D8(n)	D7(n) ^ d7[n]
+
+#define	X_2(macro, offset)	macro(offset); macro(offset + 1);
+#define	X_4(macro, offset)	X_2(macro, offset); X_2(macro, offset + 2);
+#define	X_8(macro, offset)	X_4(macro, offset); X_4(macro, offset + 4);
+#define	X_16(macro, offset)	X_8(macro, offset); X_8(macro, offset + 8);
+#define	X_32(macro, offset)	X_16(macro, offset); X_16(macro, offset + 16);
+#define	X_64(macro, offset)	X_32(macro, offset); X_32(macro, offset + 32);
+
+/* Define a _xor_#chunks_#xors_per_run() function. */
+#define	_XOR(chunks, xors_per_run) \
+static void _xor ## chunks ## _ ## xors_per_run(unsigned long **data) \
+{ \
+	unsigned end = XOR_SIZE / sizeof(data[0]), i; \
+	DECLARE_ ## chunks; \
+\
+	for (i = 0; i < end; i += xors_per_run) { \
+		X_ ## xors_per_run(D ## chunks, i); \
+	} \
+}
+
+/* Define xor functions for 2 - 8 chunks and xors per run. */
+#define	MAKE_XOR_PER_RUN(xors_per_run) \
+	_XOR(2, xors_per_run); _XOR(3, xors_per_run); \
+	_XOR(4, xors_per_run); _XOR(5, xors_per_run); \
+	_XOR(6, xors_per_run); _XOR(7, xors_per_run); \
+	_XOR(8, xors_per_run);
+
+MAKE_XOR_PER_RUN(8)	/* Define _xor_*_8() functions. */
+MAKE_XOR_PER_RUN(16)	/* Define _xor_*_16() functions. */
+MAKE_XOR_PER_RUN(32)	/* Define _xor_*_32() functions. */
+MAKE_XOR_PER_RUN(64)	/* Define _xor_*_64() functions. */
+
+#define MAKE_XOR(xors_per_run) \
+struct { \
+	void (*f)(unsigned long **); \
+} static xor_funcs ## xors_per_run[] = { \
+	{ NULL }, /* NULL pointers to optimize indexing in xor(). */ \
+	{ NULL }, \
+	{ _xor2_ ## xors_per_run }, \
+	{ _xor3_ ## xors_per_run }, \
+	{ _xor4_ ## xors_per_run }, \
+	{ _xor5_ ## xors_per_run }, \
+	{ _xor6_ ## xors_per_run }, \
+	{ _xor7_ ## xors_per_run }, \
+	{ _xor8_ ## xors_per_run }, \
+}; \
+\
+static void xor_ ## xors_per_run(unsigned n, unsigned long **data) \
+{ \
+	/* Call respective function for amount of chunks. */ \
+	xor_funcs ## xors_per_run[n].f(data); \
+}
+
+/* Define xor_8() - xor_64 functions. */
+MAKE_XOR(8)
+MAKE_XOR(16)
+MAKE_XOR(32)
+MAKE_XOR(64)
+/*
+ * END xor optimization macros.
+ */
+
+/* Maximum number of chunks, which can be xor'ed in one go. */
+#define	XOR_CHUNKS_MAX	(ARRAY_SIZE(xor_funcs8) - 1)
+
+/* xor_blocks wrapper to allow for using that crypto library function. */
+static void xor_blocks_wrapper(unsigned n, unsigned long **data)
+{
+	BUG_ON(n < 2 || n > MAX_XOR_BLOCKS + 1);
+	xor_blocks(n - 1, XOR_SIZE, (void *) data[0], (void **) data + 1);
+}
+
+struct xor_func {
+	xor_function_t f;
+	const char *name;
+} static xor_funcs[] = {
+	{ xor_8,   "xor_8"  },
+	{ xor_16,  "xor_16" },
+	{ xor_32,  "xor_32" },
+	{ xor_64,  "xor_64" },
+	{ xor_blocks_wrapper, "xor_blocks" },
+};
+
+/*
+ * Check, if chunk has to be xored in/out:
+ *
+ * o if writes are queued
+ * o if writes are merged
+ * o if stripe is to be reconstructed
+ * o if recovery stripe
+ */
+static inline int chunk_must_xor(struct stripe_chunk *chunk)
+{
+	if (ChunkUptodate(chunk)) {
+		BUG_ON(!bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)) &&
+		       !bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED)));
+
+		if (!bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)) ||
+		    !bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED)))
+			return 1;
+
+		if (StripeReconstruct(chunk->stripe) ||
+		    StripeRecover(chunk->stripe))
+			return 1;
+	}
+
+	return 0;
+}
+
+/*
+ * Calculate crc.
+ *
+ * This indexes into the chunks of a stripe and their pages.
+ *
+ * All chunks will be xored into the indexed (@pi)
+ * chunk in maximum groups of xor.chunks.
+ *
+ */
+static void xor(struct stripe *stripe, unsigned pi, unsigned sector)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	unsigned max_chunks = rs->xor.chunks, n = 1,
+		 o = sector / SECTORS_PER_PAGE, /* Offset into the page_list. */
+		 p = rs->set.raid_devs;
+	unsigned long **d = rs->data;
+	xor_function_t xor_f = rs->xor.f->f;
+
+	BUG_ON(sector > stripe->io.size);
+
+	/* Address of parity page to xor into. */
+	d[0] = page_address(pl_elem(PL(stripe, pi), o)->page);
+
+	while (p--) {
+		/* Preset pointers to data pages. */
+		if (p != pi && chunk_must_xor(CHUNK(stripe, p)))
+			d[n++] = page_address(pl_elem(PL(stripe, p), o)->page);
+
+		/* If max chunks -> xor. */
+		if (n == max_chunks) {
+			xor_f(n, d);
+			n = 1;
+		}
+	}
+
+	/* If chunks -> xor. */
+	if (n > 1)
+		xor_f(n, d);
+}
+
+/* Common xor loop through all stripe page lists. */
+static void common_xor(struct stripe *stripe, sector_t count,
+		       unsigned off, unsigned pi)
+{
+	unsigned sector;
+
+	BUG_ON(!count);
+	for (sector = off; sector < count; sector += SECTORS_PER_PAGE)
+		xor(stripe, pi, sector);
+
+	/* Set parity page uptodate and clean. */
+	chunk_set(CHUNK(stripe, pi), CLEAN);
+	atomic_inc(RS(stripe->sc)->stats + S_XORS); /* REMOVEME: statistics. */
+}
+
+/*
+ * Calculate parity sectors on intact stripes.
+ *
+ * Need to calculate raid address for recover stripe, because its
+ * chunk sizes differs and is typically larger than io chunk size.
+ */
+static void parity_xor(struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	int size_differs = stripe->io.size != rs->set.io_size;
+	unsigned chunk_size = rs->set.chunk_size, io_size = stripe->io.size,
+		 xor_size = chunk_size > io_size ? io_size : chunk_size;
+	sector_t off;
+
+	/* This can be the recover stripe with a larger io size. */
+	for (off = 0; off < io_size; off += xor_size) {
+		/*
+		 * Recover stripe is likely bigger than regular io
+		 * ones and has no precalculated parity disk index ->
+		 * need to calculate RAID address.
+		 */
+		if (unlikely(size_differs)) {
+			struct raid_address addr;
+
+			raid_address(rs, (stripe->key + off) *
+					 rs->set.data_devs, &addr);
+			stripe->idx.parity = addr.pi;
+			stripe_zero_pl_part(stripe, addr.pi, off, xor_size);
+		}
+
+		common_xor(stripe, xor_size, off, stripe->idx.parity);
+		chunk_set(CHUNK(stripe, stripe->idx.parity), DIRTY);
+	}
+}
+
+/* Reconstruct missing chunk. */
+static void stripe_reconstruct(struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	int p = rs->set.raid_devs, pr = stripe->idx.recover;
+
+	BUG_ON(pr < 0);
+
+	/* Check if all but the chunk to be reconstructed are uptodate. */
+	while (p--)
+		BUG_ON(p != pr && !ChunkUptodate(CHUNK(stripe, p)));
+
+	/* REMOVEME: statistics. */
+	atomic_inc(rs->stats + (RSDegraded(rs) ? S_RECONSTRUCT_EI :
+						 S_RECONSTRUCT_DEV));
+	/* Zero chunk to be reconstructed. */
+	stripe_zero_chunk(stripe, pr);
+	common_xor(stripe, stripe->io.size, 0, pr);
+}
+
+/*
+ * Recovery io throttling
+ */
+/* Conditionally reset io counters. */
+static int recover_io_reset(struct raid_set *rs)
+{
+	unsigned long j = jiffies;
+
+	/* Pay attention to jiffies overflows. */
+	if (j > rs->recover.last_jiffies + HZ ||
+	    j < rs->recover.last_jiffies) {
+		atomic_set(rs->recover.io_count + IO_WORK, 0);
+		atomic_set(rs->recover.io_count + IO_RECOVER, 0);
+		rs->recover.last_jiffies = j;
+		return 1;
+	}
+
+	return 0;
+}
+
+/* Count ios. */
+static void recover_io_count(struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+
+	atomic_inc(rs->recover.io_count +
+		   (StripeRecover(stripe) ? IO_RECOVER : IO_WORK));
+}
+
+/* Try getting a stripe either from the hash or from the LRU list. */
+static struct stripe *stripe_find(struct raid_set *rs,
+				  struct raid_address *addr)
+{
+	int r;
+	struct stripe_cache *sc = &rs->sc;
+	struct stripe *stripe;
+
+	/* Try stripe from hash. */
+	stripe = stripe_lookup(sc, addr->key);
+	if (stripe) {
+		r = stripe_get(stripe);
+		if (r)
+			goto get_lock_failed;
+
+		atomic_inc(rs->stats + S_HITS_1ST); /* REMOVEME: statistics. */
+	} else {
+		/* Not in hash -> try to get an LRU stripe. */
+		stripe = stripe_lru_pop(sc);
+		if (stripe) {
+			/*
+			 * An LRU stripe may not be referenced
+			 * and may never have ios pending!
+			 */
+			BUG_ON(stripe_ref(stripe));
+			BUG_ON(stripe_io_ref(stripe));
+
+			/* Remove from hash if on before reuse. */
+			stripe_hash_del(stripe);
+
+			/* Invalidate before reinserting with changed key. */
+			stripe_invalidate(stripe);
+
+			stripe->key = addr->key;
+			stripe->region = dm_rh_sector_to_region(rs->recover.rh,
+								addr->key);
+			stripe->idx.parity = addr->pi;
+			r = stripe_get(stripe);
+			if (r)
+				goto get_lock_failed;
+
+			/* Insert stripe into the stripe hash. */
+			stripe_insert(&sc->hash, stripe);
+			/* REMOVEME: statistics. */
+			atomic_inc(rs->stats + S_INSCACHE);
+		}
+	}
+
+	return stripe;
+
+get_lock_failed:
+	stripe_put(stripe);
+	return NULL;
+}
+
+/*
+ * Process end io
+ *
+ * I need to do it here because I can't in interrupt
+ */
+/* End io all bios on a bio list. */
+static void bio_list_endio(struct stripe *stripe, struct bio_list *bl,
+			   int p, int error)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	struct bio *bio;
+	struct page_list *pl = PL(stripe, p);
+	struct stripe_chunk *chunk = CHUNK(stripe, p);
+
+	/* Update region counters. */
+	while ((bio = bio_list_pop(bl))) {
+		if (bio_data_dir(bio) == WRITE)
+			/* Drop io pending count for any writes. */
+			dm_rh_dec(rs->recover.rh, stripe->region);
+		else if (!error)
+			/* Copy data accross. */
+			bio_copy_page_list(READ, stripe, pl, bio);
+
+		bio_endio(bio, error);
+
+		/* REMOVEME: statistics. */
+		atomic_inc(rs->stats + (bio_data_dir(bio) == READ ?
+			   S_BIOS_ENDIO_READ : S_BIOS_ENDIO_WRITE));
+
+		chunk_put(chunk);
+		stripe_put(stripe);
+		io_put(rs);	/* Wake any suspend waiters on last bio. */
+	}
+}
+
+/*
+ * End io all reads/writes on a stripe copying
+ * read data accross from stripe to bios and
+ * decrementing region counters for writes.
+ *
+ * Processing of ios depeding on state:
+ * o no chunk error -> endio ok
+ * o degraded:
+ *   - chunk error and read -> ignore to be requeued
+ *   - chunk error and write -> endio ok
+ * o dead (more than parity_devs failed) and chunk_error-> endio failed
+ */
+static void stripe_endio(int rw, struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	unsigned p = rs->set.raid_devs;
+	int write = (rw != READ);
+
+	while (p--) {
+		struct stripe_chunk *chunk = CHUNK(stripe, p);
+		struct bio_list *bl;
+
+		BUG_ON(ChunkLocked(chunk));
+
+		bl = BL_CHUNK(chunk, rw);
+		if (bio_list_empty(bl))
+			continue;
+
+		if (unlikely(ChunkError(chunk) || !ChunkUptodate(chunk))) {
+			/* RAID set dead. */
+			if (unlikely(RSDead(rs)))
+				bio_list_endio(stripe, bl, p, -EIO);
+			/* RAID set degraded. */
+			else if (write)
+				bio_list_endio(stripe, bl, p, 0);
+		} else {
+			BUG_ON(!RSDegraded(rs) && ChunkDirty(chunk));
+			bio_list_endio(stripe, bl, p, 0);
+		}
+	}
+}
+
+/* Fail all ios hanging off all bio lists of a stripe. */
+static void stripe_fail_io(struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	unsigned p = rs->set.raid_devs;
+
+	while (p--) {
+		struct stripe_chunk *chunk = CHUNK(stripe, p);
+		int i = ARRAY_SIZE(chunk->bl);
+
+		/* Fail all bios on all bio lists of the stripe. */
+		while (i--) {
+			struct bio_list *bl = chunk->bl + i;
+
+			if (!bio_list_empty(bl))
+				bio_list_endio(stripe, bl, p, -EIO);
+		}
+	}
+
+	/* Put stripe on LRU list. */
+	BUG_ON(stripe_io_ref(stripe));
+	BUG_ON(stripe_ref(stripe));
+}
+
+/* Unlock all required chunks. */
+static void stripe_chunks_unlock(struct stripe *stripe)
+{
+	unsigned p = RS(stripe->sc)->set.raid_devs;
+	struct stripe_chunk *chunk;
+
+	while (p--) {
+		chunk = CHUNK(stripe, p);
+
+		if (TestClearChunkUnlock(chunk))
+			ClearChunkLocked(chunk);
+	}
+}
+
+/*
+ * Queue reads and writes to a stripe by hanging
+ * their bios off the stripesets read/write lists.
+ */
+static int stripe_queue_bio(struct raid_set *rs, struct bio *bio,
+			    struct bio_list *reject)
+{
+	struct raid_address addr;
+	struct stripe *stripe;
+
+	stripe = stripe_find(rs, raid_address(rs, bio->bi_sector, &addr));
+	if (stripe) {
+		int r = 0, rw = bio_data_dir(bio);
+
+		/* Distinguish reads and writes. */
+		bio_list_add(BL(stripe, addr.di, rw), bio);
+	
+		if (rw == READ)
+			/* REMOVEME: statistics. */
+			atomic_inc(rs->stats + S_BIOS_ADDED_READ);
+		else {
+			/* Inrement pending write count on region. */
+			dm_rh_inc(rs->recover.rh, stripe->region);
+			r = 1;
+
+			/* REMOVEME: statistics. */
+			atomic_inc(rs->stats + S_BIOS_ADDED_WRITE);
+		}
+
+		/*
+		 * Put on io (flush) list in case of
+		 * initial bio queued to chunk.
+		 */
+		if (chunk_get(CHUNK(stripe, addr.di)) == 1)
+			stripe_flush_add(stripe);
+
+		return r;
+	}
+
+	/* Got no stripe from cache or failed to lock it -> reject bio. */
+	bio_list_add(reject, bio);
+	atomic_inc(rs->stats + S_IOS_POST); /* REMOVEME: statistics. */
+	return 0;
+}
+
+/*
+ * Handle all stripes by handing them to the daemon, because we can't
+ * map their chunk pages to copy the data in interrupt context.
+ *
+ * We don't want to handle them here either, while interrupts are disabled.
+ */
+
+/* Read/write endio function for dm-io (interrupt context). */
+static void endio(unsigned long error, void *context)
+{
+	struct stripe_chunk *chunk = context;
+
+	if (unlikely(error)) {
+		chunk_set(chunk, ERROR);
+		/* REMOVEME: statistics. */
+		atomic_inc(RS(chunk->stripe->sc)->stats + S_STRIPE_ERROR);
+	} else
+		chunk_set(chunk, CLEAN);
+
+	/*
+	 * For recovery stripes, I need to reset locked locked
+	 * here, because those aren't processed in do_endios().
+	 */
+	if (unlikely(StripeRecover(chunk->stripe)))
+		ClearChunkLocked(chunk);
+	else
+		SetChunkUnlock(chunk);
+
+	/* Indirectly puts stripe on cache's endio list via stripe_io_put(). */
+	stripe_put_references(chunk->stripe);
+}
+
+/* Read/Write a chunk asynchronously. */
+static void stripe_chunk_rw(struct stripe *stripe, unsigned p)
+{
+	struct stripe_cache *sc = stripe->sc;
+	struct raid_set *rs = RS(sc);
+	struct dm_mem_cache_object *obj = stripe->obj + p;
+	struct page_list *pl = obj->pl;
+	struct stripe_chunk *chunk = CHUNK(stripe, p);
+	struct raid_dev *dev = rs->dev + p;
+	struct dm_io_region io = {
+		.bdev = dev->dev->bdev,
+		.sector = stripe->key,
+		.count = stripe->io.size,
+	};
+	struct dm_io_request control = {
+		.bi_rw = ChunkDirty(chunk) ? WRITE : READ,
+		.mem = {
+			.type = DM_IO_PAGE_LIST,
+			.ptr.pl = pl,
+			.offset = 0,
+		},
+		.notify = {
+			.fn = endio,
+			.context = chunk,
+		},
+		.client = StripeRecover(stripe) ? rs->recover.dm_io_client :
+						  sc->dm_io_client,
+	};
+
+	BUG_ON(ChunkLocked(chunk));
+	BUG_ON(!ChunkUptodate(chunk) && ChunkDirty(chunk));
+	BUG_ON(ChunkUptodate(chunk) && !ChunkDirty(chunk));
+
+	/*
+	 * Don't rw past end of device, which can happen, because
+	 * typically sectors_per_dev isn't divisible by io_size.
+	 */
+	if (unlikely(io.sector + io.count > rs->set.sectors_per_dev))
+		io.count = rs->set.sectors_per_dev - io.sector;
+
+	BUG_ON(!io.count);
+	io.sector += dev->start;	/* Add <offset>. */
+	if (RSRecover(rs))
+		recover_io_count(stripe);	/* Recovery io accounting. */
+
+	/* REMOVEME: statistics. */
+	atomic_inc(rs->stats + (ChunkDirty(chunk) ? S_DM_IO_WRITE :
+						    S_DM_IO_READ));
+	SetChunkLocked(chunk);
+	SetDevIoQueued(dev);
+	BUG_ON(dm_io(&control, 1, &io, NULL));
+}
+
+/*
+ * Write dirty or read not uptodate page lists of a stripe.
+ */
+static int stripe_chunks_rw(struct stripe *stripe)
+{
+	int r;
+	struct raid_set *rs = RS(stripe->sc);
+
+	/*
+	 * Increment the pending count on the stripe
+	 * first, so that we don't race in endio().
+	 *
+	 * An inc (IO) is needed for any chunk unless !ChunkIo(chunk):
+	 *
+	 * o not uptodate
+	 * o dirtied by writes merged
+	 * o dirtied by parity calculations
+	 */
+	r = for_each_io_dev(stripe, stripe_get_references);
+	if (r) {
+		/* Io needed: chunks are either not uptodate or dirty. */
+		int max;	/* REMOVEME: */
+		struct stripe_cache *sc = &rs->sc;
+
+		/* Submit actual io. */
+		for_each_io_dev(stripe, stripe_chunk_rw);
+
+		/* REMOVEME: statistics */
+		max = sc_active(sc);
+		if (atomic_read(&sc->active_stripes_max) < max)
+			atomic_set(&sc->active_stripes_max, max);
+
+		atomic_inc(rs->stats + S_FLUSHS);
+		/* END REMOVEME: statistics */
+	}
+
+	return r;
+}
+
+/* Merge in all writes hence dirtying respective chunks. */
+static void stripe_merge_writes(struct stripe *stripe)
+{
+	unsigned p = RS(stripe->sc)->set.raid_devs;
+
+	while (p--) {
+		struct stripe_chunk *chunk = CHUNK(stripe, p);
+		struct bio_list *write = BL_CHUNK(chunk, WRITE_QUEUED);
+	
+		if (!bio_list_empty(write)) {
+			struct bio *bio;
+			struct page_list *pl = stripe->obj[p].pl;
+
+			/*
+			 * We can play with the lists without holding a lock,
+			 * because it is just us accessing them anyway.
+			 */
+			bio_list_for_each(bio, write)
+				bio_copy_page_list(WRITE, stripe, pl, bio);
+
+			bio_list_merge(BL_CHUNK(chunk, WRITE_MERGED), write);
+			bio_list_init(write);
+			chunk_set(chunk, DIRTY);
+		}
+	}
+}
+
+/* Queue all writes to get merged. */
+static int stripe_queue_writes(struct stripe *stripe)
+{
+	int r = 0;
+	unsigned p = RS(stripe->sc)->set.raid_devs;
+
+	while (p--) {
+		struct stripe_chunk *chunk = CHUNK(stripe, p);
+		struct bio_list *write = BL_CHUNK(chunk, WRITE);
+
+		if (!bio_list_empty(write)) {
+			bio_list_merge(BL_CHUNK(chunk, WRITE_QUEUED), write);
+			bio_list_init(write);
+SetChunkIo(chunk);
+			r = 1;
+		}
+	}
+
+	return r;
+}
+
+
+/* Check, if a chunk gets completely overwritten. */
+static int stripe_check_chunk_overwrite(struct stripe *stripe, unsigned p)
+{
+	unsigned sectors = 0;
+	struct bio *bio;
+	struct bio_list *bl = BL(stripe, p, WRITE_QUEUED);
+
+	bio_list_for_each(bio, bl)
+		sectors += bio_sectors(bio);
+
+	BUG_ON(sectors > RS(stripe->sc)->set.io_size);
+	return sectors == RS(stripe->sc)->set.io_size;
+}
+
+/*
+ * Avoid io on broken/reconstructed drive in order to
+ * reconstruct date on endio.
+ *
+ * (*1*) We set StripeReconstruct() in here, so that _do_endios()
+ *	 will trigger a reconstruct call before resetting it.
+ */
+static int stripe_chunk_set_io_flags(struct stripe *stripe, int pr)
+{
+	struct stripe_chunk *chunk = CHUNK(stripe, pr);
+
+	/*
+	 * Allow io on all chunks but the indexed one,
+	 * because we're either degraded or prohibit it
+	 * on the one for later reconstruction.
+	 */
+	/* Includes ClearChunkIo(), ClearChunkUptodate(). */
+	stripe_chunk_invalidate(chunk);
+	stripe->idx.recover = pr;
+	SetStripeReconstruct(stripe);
+
+	/* REMOVEME: statistics. */
+	atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
+	return -EPERM;
+}
+
+/* Chunk locked/uptodate and device failed tests. */
+static struct stripe_chunk *
+stripe_chunk_check(struct stripe *stripe, unsigned p, unsigned *chunks_uptodate)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	struct stripe_chunk *chunk = CHUNK(stripe, p);
+
+	/* Can't access active chunks. */
+	if (ChunkLocked(chunk)) {
+		/* REMOVEME: statistics. */
+		atomic_inc(rs->stats + S_CHUNK_LOCKED);
+		return NULL;
+	}
+
+	/* Can't access broken devive. */
+	if (ChunkError(chunk) || DevFailed(rs->dev + p))
+		return NULL;
+
+	/* Can access uptodate chunks. */
+	if (ChunkUptodate(chunk)) {
+		(*chunks_uptodate)++;
+		return NULL;
+	}
+
+	return chunk;
+}
+
+/*
+ * Degraded/reconstruction mode.
+ *
+ * Check stripe state to figure which chunks don't need IO.
+ *
+ * Returns 0 for fully operational, -EPERM for degraded/resynchronizing.
+ */
+static int stripe_check_reconstruct(struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+
+	if (RSDead(rs)) {
+		ClearStripeReconstruct(stripe);
+		ClearStripeReconstructed(stripe);
+		stripe_allow_io(stripe);
+		return 0;
+	}
+
+	/* Avoid further reconstruction setting, when already set. */
+	if (StripeReconstruct(stripe)) {
+		/* REMOVEME: statistics. */
+		atomic_inc(rs->stats + S_RECONSTRUCT_SET);
+		return -EBUSY;
+	}
+
+	/* Initially allow io on all chunks. */
+	stripe_allow_io(stripe);
+
+	/* Return if stripe is already reconstructed. */
+	if (StripeReconstructed(stripe)) {
+		atomic_inc(rs->stats + S_RECONSTRUCTED);
+		return 0;
+	}
+
+	/*
+	 * Degraded/reconstruction mode (device failed) ->
+	 * avoid io on the failed device.
+	 */
+	if (unlikely(RSDegraded(rs))) {
+		/* REMOVEME: statistics. */
+		atomic_inc(rs->stats + S_DEGRADED);
+		/* Allow IO on all devices but the dead one. */
+		BUG_ON(rs->set.ei < 0);
+		return stripe_chunk_set_io_flags(stripe, rs->set.ei);
+	} else {
+		int sync, pi = dev_for_parity(stripe, &sync);
+
+		/*
+		 * Reconstruction mode (ie. a particular (replaced) device or
+		 * some (rotating) parity chunk is being resynchronized) ->
+		 *   o make sure all needed chunks are read in
+		 *   o cope with 3/4 disk array special case where it
+		 *     doesn't make a difference to read in parity
+		 *     to xor data in/out
+		 */
+		if (RSEnforceParityCreation(rs) || !sync) {
+			/* REMOVEME: statistics. */
+			atomic_inc(rs->stats + S_NOSYNC);
+			/* Allow IO on all devs but the one to reconstruct. */
+			return stripe_chunk_set_io_flags(stripe, pi);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Check, if stripe is ready to merge writes.
+ * I.e. if all chunks present to allow to merge bios.
+ *
+ * We prohibit io on:
+ *
+ * o chunks without bios
+ * o chunks which get completely written over
+ */
+static int stripe_merge_possible(struct stripe *stripe, int nosync)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	unsigned chunks_overwrite = 0, chunks_prohibited = 0,
+		 chunks_uptodate = 0, p = rs->set.raid_devs;
+
+	/* Walk all chunks. */
+	while (p--) {
+		struct stripe_chunk *chunk;
+
+		/* Prohibit io on broken devices. */
+		if (DevFailed(rs->dev + p)) {
+			chunk = CHUNK(stripe, p);
+			goto prohibit_io;
+		}
+
+		/* We can't optimize any further if no chunk. */
+		chunk = stripe_chunk_check(stripe, p, &chunks_uptodate);
+		if (!chunk || nosync)
+			continue;
+
+		/*
+		 * We have a chunk, which is not uptodate.
+		 *
+		 * If this is not parity and we don't have
+		 * reads queued, we can optimize further.
+		 */
+		if (p != stripe->idx.parity &&
+		    bio_list_empty(BL_CHUNK(chunk, READ)) &&
+		    bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED))) {
+			if (bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)))
+				goto prohibit_io;
+			else if (RSCheckOverwrite(rs) &&
+				 stripe_check_chunk_overwrite(stripe, p))
+				/* Completely overwritten chunk. */
+				chunks_overwrite++;
+		}
+
+		/* Allow io for chunks with bios and overwritten ones. */
+		SetChunkIo(chunk);
+		continue;
+
+prohibit_io:
+		/* No io for broken devices or for chunks w/o bios. */
+		ClearChunkIo(chunk);
+		chunks_prohibited++;
+		/* REMOVEME: statistics. */
+		atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
+	}
+
+	/* All data chunks will get written over. */
+	if (chunks_overwrite == rs->set.data_devs)
+		atomic_inc(rs->stats + S_OVERWRITE); /* REMOVEME: statistics.*/
+	else if (chunks_uptodate + chunks_prohibited < rs->set.raid_devs) {
+		/* We don't have enough chunks to merge. */
+		atomic_inc(rs->stats + S_CANT_MERGE); /* REMOVEME: statistics.*/
+		return -EPERM;
+	}
+
+	/*
+	 * If we have all chunks up to date or overwrite them, we
+	 * just zero the parity chunk and let stripe_rw() recreate it.
+	 */
+	if (chunks_uptodate == rs->set.raid_devs ||
+	    chunks_overwrite == rs->set.data_devs) {
+		stripe_zero_chunk(stripe, stripe->idx.parity);
+		BUG_ON(StripeReconstruct(stripe));
+		SetStripeReconstruct(stripe);	/* Enforce xor in caller. */
+	} else {
+		/*
+		 * With less chunks, we xor parity out.
+		 *
+		 * (*4*) We rely on !StripeReconstruct() in chunk_must_xor(),
+		 *	 so that only chunks with queued or merged writes 
+		 *	 are being xored.
+		 */
+		parity_xor(stripe);
+	}
+
+	/*
+	 * We do have enough chunks to merge.
+	 * All chunks are uptodate or get written over.
+	 */
+	atomic_inc(rs->stats + S_CAN_MERGE); /* REMOVEME: statistics. */
+	return 0;
+}
+
+/*
+ * Avoid reading chunks in case we're fully operational.
+ *
+ * We prohibit io on any chunks without bios but the parity chunk.
+ */
+static void stripe_avoid_reads(struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	unsigned dummy = 0, p = rs->set.raid_devs;
+
+	/* Walk all chunks. */
+	while (p--) {
+		struct stripe_chunk *chunk =
+			stripe_chunk_check(stripe, p, &dummy);
+
+		if (!chunk)
+			continue;
+
+		/* If parity or any bios pending -> allow io. */
+		if (chunk_ref(chunk) || p == stripe->idx.parity)
+			SetChunkIo(chunk);
+		else {
+			ClearChunkIo(chunk);
+			/* REMOVEME: statistics. */
+			atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
+		}
+	}
+}
+
+/*
+ * Read/write a stripe.
+ *
+ * All stripe read/write activity goes through this function
+ * unless recovery, which has to call stripe_chunk_rw() directly.
+ *
+ * Make sure we don't try already merged stripes in order
+ * to avoid data corruption.
+ *
+ * Check the state of the RAID set and if degraded (or
+ * resynchronizing for reads), read in all other chunks but
+ * the one on the dead/resynchronizing device in order to be
+ * able to reconstruct the missing one in _do_endios().
+ *
+ * Can be called on active stripes in order
+ * to dispatch new io on inactive chunks.
+ *
+ * States to cover:
+ *   o stripe to read and/or write
+ *   o stripe with error to reconstruct
+ */
+static int stripe_rw(struct stripe *stripe)
+{
+	int nosync, r;
+	struct raid_set *rs = RS(stripe->sc);
+
+	/*
+ 	 * Check, if a chunk needs to be reconstructed
+ 	 * because of a degraded set or a region out of sync.
+ 	 */
+	nosync = stripe_check_reconstruct(stripe);
+	switch (nosync) {
+	case -EBUSY:
+		return 0; /* Wait for stripe reconstruction to finish. */
+	case -EPERM:
+		goto io;
+	}
+
+	/*
+	 * If we don't have merged writes pending, we can schedule
+	 * queued writes to be merged next without corrupting data.
+	 */
+	if (!StripeMerged(stripe)) {
+		r = stripe_queue_writes(stripe);
+		if (r)
+			/* Writes got queued -> flag RBW. */
+			SetStripeRBW(stripe);
+	}
+
+	/*
+	 * Merge all writes hanging off uptodate/overwritten
+	 * chunks of the stripe.
+	 */
+	if (StripeRBW(stripe)) {
+		r = stripe_merge_possible(stripe, nosync);
+		if (!r) { /* Merge possible. */
+			struct stripe_chunk *chunk;
+
+			/*
+			 * I rely on valid parity in order
+			 * to xor a fraction of chunks out
+			 * of parity and back in.
+			 */
+			stripe_merge_writes(stripe);	/* Merge writes in. */
+			parity_xor(stripe);		/* Update parity. */
+			ClearStripeReconstruct(stripe);	/* Reset xor enforce. */
+			SetStripeMerged(stripe);	/* Writes merged. */
+			ClearStripeRBW(stripe);		/* Disable RBW. */
+
+			/*
+			 * REMOVEME: sanity check on parity chunk
+			 * 	     states after writes got merged.
+			 */
+			chunk = CHUNK(stripe, stripe->idx.parity);
+			BUG_ON(ChunkLocked(chunk));
+			BUG_ON(!ChunkUptodate(chunk));
+			BUG_ON(!ChunkDirty(chunk));
+			BUG_ON(!ChunkIo(chunk));
+		}
+	} else if (!nosync && !StripeMerged(stripe))
+		/* Read avoidance if not degraded/resynchronizing/merged. */
+		stripe_avoid_reads(stripe);
+
+io:
+	/* Now submit any reads/writes for non-uptodate or dirty chunks. */
+	r = stripe_chunks_rw(stripe);
+	if (!r) {
+		/*
+		 * No io submitted because of chunk io
+		 * prohibited or locked chunks/failed devices
+		 * -> push to end io list for processing.
+		 */
+		stripe_endio_push(stripe);
+		atomic_inc(rs->stats + S_NO_RW); /* REMOVEME: statistics. */
+	}
+
+	return r;
+}
+
+/*
+ * Recovery functions
+ */
+/* Read a stripe off a raid set for recovery. */
+static int stripe_recover_read(struct stripe *stripe, int pi)
+{
+	BUG_ON(stripe_io_ref(stripe));
+
+	/* Invalidate all chunks so that they get read in. */
+	stripe_chunks_invalidate(stripe);
+	stripe_allow_io(stripe); /* Allow io on all recovery chunks. */
+
+	/*
+	 * If we are reconstructing a perticular device, we can avoid
+ 	 * reading the respective chunk in, because we're going to
+	 * reconstruct it anyway.
+	 *
+	 * We can't do that for resynchronization of rotating parity,
+	 * because the recovery stripe chunk size is typically larger
+	 * than the sets chunk size.
+	 */
+	if (pi > -1)
+		ClearChunkIo(CHUNK(stripe, pi));
+
+	return stripe_chunks_rw(stripe);
+}
+
+/* Write a stripe to a raid set for recovery. */
+static int stripe_recover_write(struct stripe *stripe, int pi)
+{
+	BUG_ON(stripe_io_ref(stripe));
+
+	/*
+	 * If this is a reconstruct of a particular device, then
+	 * reconstruct the respective chunk, else create parity chunk.
+	 */
+	if (pi > -1) {
+		stripe_zero_chunk(stripe, pi);
+		common_xor(stripe, stripe->io.size, 0, pi);
+		chunk_set(CHUNK(stripe, pi), DIRTY);
+	} else
+		parity_xor(stripe);
+
+	return stripe_chunks_rw(stripe);
+}
+
+/* Read/write a recovery stripe. */
+static int stripe_recover_rw(struct stripe *stripe)
+{
+	int r = 0, sync = 0;
+
+	/* Read/write flip-flop. */
+	if (TestClearStripeRBW(stripe)) {
+		SetStripeMerged(stripe);
+		stripe->key = stripe->recover->pos;
+		r = stripe_recover_read(stripe, dev_for_parity(stripe, &sync));
+		BUG_ON(!r);
+	} else if (TestClearStripeMerged(stripe)) {
+		r = stripe_recover_write(stripe, dev_for_parity(stripe, &sync));
+		BUG_ON(!r);
+	}
+
+	BUG_ON(sync);
+	return r;
+}
+
+/* Recover bandwidth available ?. */
+static int recover_bandwidth(struct raid_set *rs)
+{
+	int r, work;
+
+	/* On reset or when bios delayed -> allow recovery. */
+	r = recover_io_reset(rs);
+	if (r || RSBandwidth(rs))
+		goto out;
+
+	work = atomic_read(rs->recover.io_count + IO_WORK);
+	if (work) {
+		/* Pay attention to larger recover stripe size. */
+		int recover = atomic_read(rs->recover.io_count + IO_RECOVER) *
+					  rs->recover.io_size / rs->set.io_size;
+
+		/*
+		 * Don't use more than given bandwidth
+		 * of the work io for recovery.
+		 */
+		if (recover > work / rs->recover.bandwidth_work) {
+			/* REMOVEME: statistics. */
+			atomic_inc(rs->stats + S_NO_BANDWIDTH);
+			return 0;
+		}
+	}
+
+out:
+	atomic_inc(rs->stats + S_BANDWIDTH);	/* REMOVEME: statistics. */
+	return 1;
+}
+
+/* Try to get a region to recover. */
+static int stripe_recover_get_region(struct stripe *stripe)
+{
+	struct raid_set *rs = RS(stripe->sc);
+	struct recover *rec = &rs->recover;
+	struct recover_addr *addr = stripe->recover;
+	struct dm_dirty_log *dl = rec->dl;
+	struct dm_rh_client *rh = rec->rh;
+
+	BUG_ON(!dl);
+	BUG_ON(!rh);
+
+	/* Return, that we have region first to finish it during suspension. */
+	if (addr->reg)
+		return 1;
+
+	if (RSSuspend(rs))
+		return -EPERM;
+
+	if (dl->type->get_sync_count(dl) >= rec->nr_regions)
+		return -ENOENT;
+
+	/* If we don't have enough bandwidth, we don't proceed recovering. */
+	if (!recover_bandwidth(rs))
+		return -EAGAIN;
+
+	/* Start quiescing a region. */
+	dm_rh_recovery_prepare(rh);
+	addr->reg = dm_rh_recovery_start(rh);
+	if (!addr->reg)
+		return -EAGAIN;
+
+	addr->pos = dm_rh_region_to_sector(rh, dm_rh_get_region_key(addr->reg));
+	addr->end = addr->pos + dm_rh_get_region_size(rh);
+
+	/*
+	 * Take one global io reference out for the
+	 * whole region, which is going to be released
+	 * when the region is completely done with.
+	 */
+	io_get(rs);
+	return 0;
+}
+
+/* Update region hash state. */
+enum recover_type { REC_FAILURE = 0, REC_SUCCESS = 1 };
+static void recover_rh_update(struct stripe *stripe, enum recover_type success)
+{
+	struct recover_addr *addr = stripe->recover;
+	struct raid_set *rs = RS(stripe->sc);
+	struct recover *rec = &rs->recover;
+
+	if (!addr->reg) {
+		DMERR("%s- Called w/o region", __func__);
+		return;
+	}
+
+	dm_rh_recovery_end(addr->reg, success);
+	if (success)
+		rec->nr_regions_recovered++;
+
+	addr->reg = NULL;
+
+	/*
+	 * Completely done with this region ->
+	 * release the 1st io reference.
+	 */
+	io_put(rs);
+}
+
+/* Set start of recovery state. */
+static void set_start_recovery(struct raid_set *rs)
+{
+	/* Initialize recovery. */
+	rs->recover.start_jiffies = jiffies;
+	rs->recover.end_jiffies = 0;
+}
+
+/* Set end of recovery state. */
+static void set_end_recovery(struct raid_set *rs)
+{
+	ClearRSRecover(rs);
+/* Achtung: nicht mehr zurück setzten -> 'i' belibt in status output und userpace könnte sich darauf verlassen, das es verschiwndet!!!! */
+	rs->set.dev_to_init = -1;
+
+	/* Check for jiffies overrun. */
+	rs->recover.end_jiffies = jiffies;
+	if (rs->recover.end_jiffies < rs->recover.start_jiffies)
+		rs->recover.end_jiffies = ~0;
+}
+
+/* Handle recovery on one recovery stripe. */
+static int _do_recovery(struct stripe *stripe)
+{
+	int r;
+	struct raid_set *rs = RS(stripe->sc);
+	struct recover_addr *addr = stripe->recover;
+
+	/* If recovery is active -> return. */
+	if (stripe_io_ref(stripe))
+		return 1;
+
+	/* IO error is fatal for recovery -> stop it. */
+	if (unlikely(StripeError(stripe)))
+		goto err;
+
+	/* Recovery end required. */
+	if (unlikely(RSDegraded(rs)))
+		goto err;
+
+	/* Get a region to recover. */
+	r = stripe_recover_get_region(stripe);
+	switch (r) {
+	case 0:	/* Got a new region: flag initial read before write. */
+		SetStripeRBW(stripe);
+	case 1:	/* Have a region in the works. */
+		break;
+	case -EAGAIN:
+		/* No bandwidth/quiesced region yet, try later. */
+		if (!io_ref(rs))
+			wake_do_raid_delayed(rs, HZ / 4);
+	case -EPERM:
+		/* Suspend. */
+		return 1;
+	case -ENOENT:	/* No more regions to recover. */
+		schedule_work(&rs->io.ws_do_table_event);
+		return 0;
+	default:
+		BUG();
+	}
+
+	/* Read/write a recover stripe. */
+	r = stripe_recover_rw(stripe);
+	if (r)
+		/* IO initiated. */
+		return 1;
+
+	/* Read and write finished-> update recovery position within region. */
+	addr->pos += stripe->io.size;
+
+	/* If we're at end of region, update region hash. */
+	if (addr->pos >= addr->end ||
+	    addr->pos >= rs->set.sectors_per_dev)
+		recover_rh_update(stripe, REC_SUCCESS);
+	else
+		/* Prepare to read next region segment. */
+		SetStripeRBW(stripe);
+
+	/* Schedule myself for another round... */
+	wake_do_raid(rs);
+	return 1;
+
+err:
+	/* FIXME: rather try recovering other regions on error? */
+	rs_check_degrade(stripe);
+	recover_rh_update(stripe, REC_FAILURE);
+
+	/* Check state of partially recovered array. */
+	if (RSDegraded(rs) && !RSDead(rs) &&
+	    rs->set.dev_to_init != -1 &&
+	    rs->set.ei != rs->set.dev_to_init) {
+		/* Broken drive != drive to recover -> FATAL. */
+		SetRSDead(rs);
+		DMERR("FATAL: failed device != device to initialize -> "
+		      "RAID set broken");
+	}
+
+	if (StripeError(stripe) || RSDegraded(rs)) {
+		char buf[BDEVNAME_SIZE];
+
+		DMERR("stopping recovery due to "
+		      "ERROR on /dev/%s, stripe at offset %llu",
+		      bdevname(rs->dev[rs->set.ei].dev->bdev, buf),
+		      (unsigned long long) stripe->key);
+
+	}
+
+	/* Make sure, that all quiesced regions get released. */
+	while (addr->reg) {
+		dm_rh_recovery_end(addr->reg, -EIO);
+		addr->reg = dm_rh_recovery_start(rs->recover.rh);
+	}
+
+	return 0;
+}
+
+/* Called by main io daemon to recover regions. */
+static int do_recovery(struct raid_set *rs)
+{
+	if (RSRecover(rs)) {
+		int r = 0;
+		struct stripe *stripe;
+
+		list_for_each_entry(stripe, &rs->recover.stripes,
+				    lists[LIST_RECOVER])
+			r += _do_recovery(stripe);
+
+		if (r)
+			return r;
+
+		set_end_recovery(rs);
+		stripe_recover_free(rs);
+	}
+
+	return 0;
+}
+
+/*
+ * END recovery functions
+ */
+
+/* End io process all stripes handed in by endio() callback. */
+static void _do_endios(struct raid_set *rs, struct stripe *stripe,
+		       struct list_head *flush_list)
+{
+	/* First unlock all required chunks. */
+	stripe_chunks_unlock(stripe);
+
+	/*
+	 * If an io error on a stripe occured, degrade the RAID set
+	 * and try to endio as many bios as possible. If any bios can't
+	 * be endio processed, requeue the stripe (stripe_ref() != 0).
+	 */
+	if (TestClearStripeError(stripe)) {
+		/*
+		 * FIXME: if read, rewrite the failed chunk after reconstruction
+		 *        in order to trigger disk bad sector relocation.
+		 */
+		rs_check_degrade(stripe); /* Resets ChunkError(). */
+		ClearStripeReconstruct(stripe);
+		ClearStripeReconstructed(stripe);
+	}
+
+	/* Got to reconstruct a missing chunk. */
+	if (StripeReconstruct(stripe)) {
+		/*
+		 * (*2*) We use StripeReconstruct() to allow for
+		 *	 all chunks to be xored into the reconstructed
+		 *	 one (see chunk_must_xor()).
+		 */
+		stripe_reconstruct(stripe);
+
+		/*
+		 * (*3*) Now we reset StripeReconstruct() and flag
+		 * 	 StripeReconstructed() to show to stripe_rw(),
+		 * 	 that we have reconstructed a missing chunk.
+		 */
+		ClearStripeReconstruct(stripe);
+		SetStripeReconstructed(stripe);
+
+		/* FIXME: reschedule to be written in case of read. */
+		// if (!RSDead && RSDegraded(rs) !StripeRBW(stripe)) {
+		// 	chunk_set(CHUNK(stripe, stripe->idx.recover), DIRTY);
+		// 	stripe_chunks_rw(stripe);
+		// }
+
+		stripe->idx.recover = -1;
+	}
+
+	/*
+	 * Now that we eventually got a complete stripe, we
+	 * can process the rest of the end ios on reads.
+	 */
+	stripe_endio(READ, stripe);
+
+	/* End io all merged writes. */
+	if (TestClearStripeMerged(stripe))
+		stripe_endio(WRITE_MERGED, stripe);
+
+	/* If RAID set is dead -> fail any ios to dead drives. */
+	if (RSDead(rs)) {
+		if (!TestSetRSDeadEndioMessage(rs))
+			DMERR("RAID set dead: failing ios to dead devices");
+
+		stripe_fail_io(stripe);
+	}
+
+	/*
+	 * We have stripe references still,
+	 * beacuse of read before writes or IO errors ->
+	 * got to put on flush list for processing.
+	 */
+	if (stripe_ref(stripe)) {
+		BUG_ON(!list_empty(stripe->lists + LIST_LRU));
+		list_add_tail(stripe->lists + LIST_FLUSH, flush_list);
+		atomic_inc(rs->stats + S_REQUEUE); /* REMOVEME: statistics. */
+	} else
+		stripe_lru_add(stripe);
+}
+
+/* Pop any endio stripes off of the endio list and belabour them. */
+static void do_endios(struct raid_set *rs)
+{
+	struct stripe_cache *sc = &rs->sc;
+	struct stripe *stripe;
+	/* IO flush list for sorted requeued stripes. */
+	struct list_head flush_list;
+
+	INIT_LIST_HEAD(&flush_list);
+
+	while ((stripe = stripe_endio_pop(sc))) {
+		/* Avoid endio on stripes with newly io'ed chunks. */
+		if (!stripe_io_ref(stripe))
+			_do_endios(rs, stripe, &flush_list);
+	}
+
+	/*
+	 * Insert any requeued stripes in the proper
+	 * order at the beginning of the io (flush) list.
+	 */
+	list_splice(&flush_list, sc->lists + LIST_FLUSH);
+}
+
+/* Flush any stripes on the io list. */
+static int do_flush(struct raid_set *rs)
+{
+	int r = 0;
+	struct stripe *stripe;
+
+	while ((stripe = stripe_io_pop(&rs->sc)))
+		r += stripe_rw(stripe); /* Read/write stripe. */
+
+	return r;
+}
+
+/* Stripe cache resizing. */
+static void do_sc_resize(struct raid_set *rs)
+{
+	unsigned set = atomic_read(&rs->sc.stripes_to_set);
+
+	if (set) {
+		unsigned cur = atomic_read(&rs->sc.stripes);
+		int r = (set > cur) ? sc_grow(&rs->sc, set - cur, SC_GROW) :
+				      sc_shrink(&rs->sc, cur - set);
+
+		/* Flag end of resizeing if ok. */
+		if (!r)
+			atomic_set(&rs->sc.stripes_to_set, 0);
+	}
+}
+
+/*
+ * Process all ios
+ *
+ * We do different things with the io depending
+ * on the state of the region that it is in:
+ *
+ * o reads: hang off stripe cache or postpone if full
+ *
+ * o writes:
+ *
+ *  CLEAN/DIRTY/NOSYNC:	increment pending and hang io off stripe's stripe set.
+ *			In case stripe cache is full or busy, postpone the io.
+ *
+ *  RECOVERING:		delay the io until recovery of the region completes.
+ *
+ */
+static void do_ios(struct raid_set *rs, struct bio_list *ios)
+{
+	int r;
+	unsigned flush = 0, delay = 0;
+	sector_t sector;
+	struct dm_rh_client *rh = rs->recover.rh;
+	struct bio *bio;
+	struct bio_list reject;
+
+	bio_list_init(&reject);
+
+	/*
+	 * Classify each io:
+	 *    o delay writes to recovering regions (let reads go through)
+	 *    o queue io to all other regions
+	 */
+	while ((bio = bio_list_pop(ios))) {
+		/*
+		 * In case we get a barrier bio, push it back onto
+		 * the input queue unless all work queues are empty
+		 * and the stripe cache is inactive.
+		 */
+		if (unlikely(bio_barrier(bio))) {
+			/* REMOVEME: statistics. */
+			atomic_inc(rs->stats + S_BARRIER);
+			if (delay ||
+			    !list_empty(rs->sc.lists + LIST_FLUSH) ||
+			    !bio_list_empty(&reject) ||
+			    sc_active(&rs->sc)) {
+				bio_list_push(ios, bio);
+				break;
+			}
+		}
+
+		/* Check for recovering regions. */
+		sector = _sector(rs, bio);
+		r = region_state(rs, sector, DM_RH_RECOVERING);
+		if (unlikely(r && bio_data_dir(bio) == WRITE)) {
+			delay++;
+			/* Wait writing to recovering regions. */
+			dm_rh_delay_by_region(rh, bio,
+					      dm_rh_sector_to_region(rh,
+								     sector));
+			/* REMOVEME: statistics.*/
+			atomic_inc(rs->stats + S_DELAYED_BIOS);
+			atomic_inc(rs->stats + S_SUM_DELAYED_BIOS);
+
+			/* Force bandwidth tests in recovery. */
+			SetRSBandwidth(rs);
+		} else {
+			/*
+			 * Process ios to non-recovering regions by queueing
+			 * them to stripes (does dm_rh_inc()) for writes).
+			 */
+			flush += stripe_queue_bio(rs, bio, &reject);
+		}
+	}
+
+	if (flush) {
+		/* FIXME: better error handling. */
+		r = dm_rh_flush(rh); /* Writes got queued -> flush dirty log. */
+		if (r)
+			DMERR_LIMIT("dirty log flush");
+	}
+
+	/* Merge any rejected bios back to the head of the input list. */
+	bio_list_merge_head(ios, &reject);
+}
+
+/* Unplug: let any queued io role on the sets devices. */
+static void do_unplug(struct raid_set *rs)
+{
+	struct raid_dev *dev = rs->dev + rs->set.raid_devs;
+
+	while (dev-- > rs->dev) {
+		/* Only call any device unplug function, if io got queued. */
+		if (TestClearDevIoQueued(dev))
+			blk_unplug(bdev_get_queue(dev->dev->bdev));
+	}
+}
+
+/* Send an event in case we're getting too busy. */
+static void do_busy_event(struct raid_set *rs)
+{
+	if (sc_busy(rs)) {
+		if (!TestSetRSScBusy(rs))
+			schedule_work(&rs->io.ws_do_table_event);
+	} else
+		ClearRSScBusy(rs);
+}
+
+/* Throw an event. */
+static void do_table_event(struct work_struct *ws)
+{
+	struct raid_set *rs = container_of(ws, struct raid_set,
+					   io.ws_do_table_event);
+	dm_table_event(rs->ti->table);
+}
+
+
+/*-----------------------------------------------------------------
+ * RAID daemon
+ *---------------------------------------------------------------*/
+/*
+ * o belabour all end ios
+ * o update the region hash states
+ * o optionally shrink the stripe cache
+ * o optionally do recovery
+ * o unplug any component raid devices with queued bios
+ * o grab the input queue
+ * o work an all requeued or new ios and perform stripe cache flushs
+ * o unplug any component raid devices with queued bios
+ * o check, if the stripe cache gets too busy and throw an event if so
+ */
+static void do_raid(struct work_struct *ws)
+{
+	int r;
+	struct raid_set *rs = container_of(ws, struct raid_set,
+					   io.dws_do_raid.work);
+	struct bio_list *ios = &rs->io.work, *ios_in = &rs->io.in;
+
+	/*
+	 * We always need to end io, so that ios can get errored in
+	 * case the set failed and the region counters get decremented
+	 * before we update region hash states and go any further.
+	 */
+	do_endios(rs);
+	dm_rh_update_states(rs->recover.rh, 1);
+
+	/*
+	 * Now that we've end io'd, which may have put stripes on the LRU list
+	 * to allow for shrinking, we resize the stripe cache if requested.
+	 */
+	do_sc_resize(rs);
+
+	/* Try to recover regions. */
+	r = do_recovery(rs);
+	if (r)
+		do_unplug(rs);	/* Unplug the sets device queues. */
+
+	/* Quickly grab all new ios queued and add them to the work list. */
+	mutex_lock(&rs->io.in_lock);
+	bio_list_merge(ios, ios_in);
+	bio_list_init(ios_in);
+	mutex_unlock(&rs->io.in_lock);
+
+	if (!bio_list_empty(ios))
+		do_ios(rs, ios); /* Got ios to work into the cache. */
+
+	r = do_flush(rs);		/* Flush any stripes on io list. */
+	if (r)
+		do_unplug(rs);		/* Unplug the sets device queues. */
+
+	do_busy_event(rs);	/* Check if we got too busy. */
+}
+
+/*
+ * Callback for region hash to dispatch
+ * delayed bios queued to recovered regions
+ * (gets called via dm_rh_update_states()).
+ */
+static void dispatch_delayed_bios(void *context, struct bio_list *bl)
+{
+	struct raid_set *rs = context;
+	struct bio *bio;
+
+	/* REMOVEME: statistics; decrement pending delayed bios counter. */
+	bio_list_for_each(bio, bl)
+		atomic_dec(rs->stats + S_DELAYED_BIOS);
+
+	/* Merge region hash private list to work list. */
+	bio_list_merge_head(&rs->io.work, bl);
+	bio_list_init(bl);
+	ClearRSBandwidth(rs);
+}
+
+/*************************************************************
+ * Constructor helpers
+ *************************************************************/
+/* Calculate MB/sec. */
+static unsigned mbpers(struct raid_set *rs, unsigned speed)
+{
+	return to_bytes(speed * rs->set.data_devs *
+			rs->recover.io_size * HZ >> 10) >> 10;
+}
+
+/*
+ * Discover fastest xor algorithm and # of chunks combination.
+ */
+/* Calculate speed for algorithm and # of chunks. */
+static unsigned xor_speed(struct stripe *stripe)
+{
+	unsigned r = 0;
+	unsigned long j;
+
+	/* Wait for next tick. */
+	for (j = jiffies; j == jiffies; )
+		;
+
+	/* Do xors for a full tick. */
+	for (j = jiffies; j == jiffies; ) {
+		mb();
+		common_xor(stripe, stripe->io.size, 0, 0);
+		mb();
+		r++;
+	}
+
+	return r;
+}
+
+/* Optimize xor algorithm for this RAID set. */
+static unsigned xor_optimize(struct raid_set *rs)
+{
+	unsigned chunks_max = 2, p = rs->set.raid_devs, speed_max = 0;
+	struct xor_func *f = ARRAY_END(xor_funcs), *f_max = NULL;
+	struct stripe *stripe;
+
+	BUG_ON(list_empty(&rs->recover.stripes));
+	stripe = list_first_entry(&rs->recover.stripes, struct stripe,
+				  lists[LIST_RECOVER]);
+
+	/* Must set uptodate so that xor() will belabour chunks. */
+	while (p--)
+		SetChunkUptodate(CHUNK(stripe, p));
+
+	/* Try all xor functions. */
+	while (f-- > xor_funcs) {
+		unsigned speed;
+
+		/* Set actual xor function for common_xor(). */
+		rs->xor.f = f;
+		rs->xor.chunks = (f->f == xor_blocks_wrapper ?
+				  (MAX_XOR_BLOCKS + 1) : XOR_CHUNKS_MAX) + 1;
+
+		while (rs->xor.chunks-- > 2) {
+			speed = xor_speed(stripe);
+			if (speed > speed_max) {
+				speed_max = speed;
+				chunks_max = rs->xor.chunks;
+				f_max = f;
+			}
+		}
+	}
+
+	/* Memorize optimum parameters. */
+	rs->xor.f = f_max;
+	rs->xor.chunks = chunks_max;
+	return speed_max;
+}
+
+/*
+ * Allocate a RAID context (a RAID set)
+ */
+/* Structure for variable RAID parameters. */
+struct variable_parms {
+	int bandwidth;
+	int bandwidth_parm;
+	int chunk_size;
+	int chunk_size_parm;
+	int io_size;
+	int io_size_parm;
+	int stripes;
+	int stripes_parm;
+	int recover_io_size;
+	int recover_io_size_parm;
+	int raid_parms;
+	int recovery;
+	int recovery_stripes;
+	int recovery_stripes_parm;
+};
+
+static struct raid_set *
+context_alloc(struct raid_type *raid_type, struct variable_parms *p,
+	      unsigned raid_devs, sector_t sectors_per_dev,
+	      struct dm_target *ti, unsigned dl_parms, char **argv)
+{
+	int r;
+	size_t len;
+	sector_t region_size, ti_len;
+	struct raid_set *rs = NULL;
+	struct dm_dirty_log *dl;
+	struct recover *rec;
+
+	/*
+	 * Create the dirty log
+	 *
+	 * We need to change length for the dirty log constructor,
+	 * because we want an amount of regions for all stripes derived
+	 * from the single device size, so that we can keep region
+	 * size = 2^^n independant of the number of devices
+	 */
+	ti_len = ti->len;
+	ti->len = sectors_per_dev;
+	dl = dm_dirty_log_create(argv[0], ti, dl_parms, argv + 2);
+	ti->len = ti_len;
+	if (!dl)
+		goto bad_dirty_log;
+
+	/* Chunk size *must* be smaller than region size. */
+	region_size = dl->type->get_region_size(dl);
+	if (p->chunk_size > region_size)
+		goto bad_chunk_size;
+
+	/* Recover io size *must* be smaller than region size as well. */
+	if (p->recover_io_size > region_size)
+		goto bad_recover_io_size;
+
+	/* Size and allocate the RAID set structure. */
+	len = sizeof(*rs->data) + sizeof(*rs->dev);
+	if (dm_array_too_big(sizeof(*rs), len, raid_devs))
+		goto bad_array;
+
+	len = sizeof(*rs) + raid_devs * len;
+	rs = kzalloc(len, GFP_KERNEL);
+	if (!rs)
+		goto bad_alloc;
+
+	rec = &rs->recover;
+	atomic_set(&rs->io.in_process, 0);
+	atomic_set(&rs->io.in_process_max, 0);
+	rec->io_size = p->recover_io_size;
+
+	/* Pointer to data array. */
+	rs->data = (unsigned long **)
+		   ((void *) rs->dev + raid_devs * sizeof(*rs->dev));
+	rec->dl = dl;
+	rs->set.raid_devs = raid_devs;
+	rs->set.data_devs = raid_devs - raid_type->parity_devs;
+	rs->set.raid_type = raid_type;
+
+	rs->set.raid_parms = p->raid_parms;
+	rs->set.chunk_size_parm = p->chunk_size_parm;
+	rs->set.io_size_parm = p->io_size_parm;
+	rs->sc.stripes_parm = p->stripes_parm;
+	rec->io_size_parm = p->recover_io_size_parm;
+	rec->bandwidth_parm = p->bandwidth_parm;
+	rec->recovery = p->recovery;
+	rec->recovery_stripes = p->recovery_stripes;
+
+	/*
+	 * Set chunk and io size and respective shifts
+	 * (used to avoid divisions)
+	 */
+	rs->set.chunk_size = p->chunk_size;
+	rs->set.chunk_shift = ffs(p->chunk_size) - 1;
+
+	rs->set.io_size = p->io_size;
+	rs->set.io_mask = p->io_size - 1;
+	/* Mask to adjust address key in case io_size != chunk_size. */
+	rs->set.io_inv_mask = (p->chunk_size - 1) & ~rs->set.io_mask;
+
+	rs->set.sectors_per_dev = sectors_per_dev;
+
+	rs->set.ei = -1;	/* Indicate no failed device. */
+	atomic_set(&rs->set.failed_devs, 0);
+
+	rs->ti = ti;
+
+	atomic_set(rec->io_count + IO_WORK, 0);
+	atomic_set(rec->io_count + IO_RECOVER, 0);
+
+	/* Initialize io lock and queues. */
+	mutex_init(&rs->io.in_lock);
+	bio_list_init(&rs->io.in);
+	bio_list_init(&rs->io.work);
+
+	init_waitqueue_head(&rs->io.suspendq);	/* Suspend waiters (dm-io). */
+
+	rec->nr_regions = dm_sector_div_up(sectors_per_dev, region_size);
+	rec->rh = dm_region_hash_create(rs, dispatch_delayed_bios,
+			wake_dummy, wake_do_raid, 0, p->recovery_stripes,
+			dl, region_size, rec->nr_regions);
+	if (IS_ERR(rec->rh))
+		goto bad_rh;
+
+	/* Initialize stripe cache. */
+	r = sc_init(rs, p->stripes);
+	if (r)
+		goto bad_sc;
+
+	/* REMOVEME: statistics. */
+	stats_reset(rs);
+	ClearRSDevelStats(rs);	/* Disnable development status. */
+	return rs;
+
+bad_dirty_log:
+	TI_ERR_RET("Error creating dirty log", ERR_PTR(-ENOMEM));
+
+bad_chunk_size:
+	dm_dirty_log_destroy(dl);
+	TI_ERR_RET("Chunk size larger than region size", ERR_PTR(-EINVAL));
+
+bad_recover_io_size:
+	dm_dirty_log_destroy(dl);
+	TI_ERR_RET("Recover stripe io size larger than region size",
+			ERR_PTR(-EINVAL));
+
+bad_array:
+	dm_dirty_log_destroy(dl);
+	TI_ERR_RET("Arry too big", ERR_PTR(-EINVAL));
+
+bad_alloc:
+	dm_dirty_log_destroy(dl);
+	TI_ERR_RET("Cannot allocate raid context", ERR_PTR(-ENOMEM));
+
+bad_rh:
+	dm_dirty_log_destroy(dl);
+	ti->error = DM_MSG_PREFIX "Error creating dirty region hash";
+	goto free_rs;
+
+bad_sc:
+	dm_region_hash_destroy(rec->rh); /* Destroys dirty log too. */
+	sc_exit(&rs->sc);
+	ti->error = DM_MSG_PREFIX "Error creating stripe cache";
+free_rs:
+	kfree(rs);
+	return ERR_PTR(-ENOMEM);
+}
+
+/* Free a RAID context (a RAID set). */
+static void context_free(struct raid_set *rs, unsigned p)
+{
+	while (p--)
+		dm_put_device(rs->ti, rs->dev[p].dev);
+
+	sc_exit(&rs->sc);
+	dm_region_hash_destroy(rs->recover.rh); /* Destroys dirty log too. */
+	kfree(rs);
+}
+
+/* Create work queue and initialize delayed work. */
+static int rs_workqueue_init(struct raid_set *rs)
+{
+	struct dm_target *ti = rs->ti;
+
+	rs->io.wq = create_singlethread_workqueue(DAEMON);
+	if (!rs->io.wq)
+		TI_ERR_RET("failed to create " DAEMON, -ENOMEM);
+
+	INIT_DELAYED_WORK(&rs->io.dws_do_raid, do_raid);
+	INIT_WORK(&rs->io.ws_do_table_event, do_table_event);
+	return 0;
+}
+
+/* Return pointer to raid_type structure for raid name. */
+static struct raid_type *get_raid_type(char *name)
+{
+	struct raid_type *r = ARRAY_END(raid_types);
+
+	while (r-- > raid_types) {
+		if (!strcmp(r->name, name))
+			return r;
+	}
+
+	return NULL;
+}
+
+/* FIXME: factor out to dm core. */
+static int multiple(sector_t a, sector_t b, sector_t *n)
+{
+	sector_t r = a;
+
+	sector_div(r, b);
+	*n = r;
+	return a == r * b;
+}
+
+/* Log RAID set information to kernel log. */
+static void rs_log(struct raid_set *rs, unsigned speed)
+{
+	unsigned p;
+	char buf[BDEVNAME_SIZE];
+
+	for (p = 0; p < rs->set.raid_devs; p++)
+		DMINFO("/dev/%s is raid disk %u%s",
+				bdevname(rs->dev[p].dev->bdev, buf), p,
+				(p == rs->set.pi) ? " (parity)" : "");
+
+	DMINFO("%d/%d/%d sectors chunk/io/recovery size, %u stripes\n"
+	       "algorithm \"%s\", %u chunks with %uMB/s\n"
+	       "%s set with net %u/%u devices",
+	       rs->set.chunk_size, rs->set.io_size, rs->recover.io_size,
+	       atomic_read(&rs->sc.stripes),
+	       rs->xor.f->name, rs->xor.chunks, mbpers(rs, speed),
+	       rs->set.raid_type->descr, rs->set.data_devs, rs->set.raid_devs);
+}
+
+/* Get all devices and offsets. */
+static int dev_parms(struct raid_set *rs, char **argv, int *p)
+{
+	struct dm_target *ti = rs->ti;
+
+	for (*p = 0; *p < rs->set.raid_devs; (*p)++, argv += 2) {
+		int r;
+		unsigned long long tmp;
+		struct raid_dev *dev = rs->dev + *p;
+
+		/* Get offset and device. */
+		if (sscanf(argv[1], "%llu", &tmp) != 1 ||
+		    tmp > rs->set.sectors_per_dev)
+			TI_ERR("Invalid RAID device offset parameter");
+
+		dev->start = tmp;
+		r = dm_get_device(ti, *argv, dev->start,
+				  rs->set.sectors_per_dev,
+				  dm_table_get_mode(ti->table), &dev->dev);
+		if (r)
+			TI_ERR_RET("RAID device lookup failure", r);
+
+		r = raid_dev_lookup(rs, dev);
+		if (r != -ENODEV && r < *p) {
+			(*p)++;	/* Ensure dm_put_device() on actual device. */
+			TI_ERR_RET("Duplicate RAID device", -ENXIO);
+		}
+	}
+
+	return 0;
+}
+
+/* Set recovery bandwidth. */
+static void
+recover_set_bandwidth(struct raid_set *rs, unsigned bandwidth)
+{
+	rs->recover.bandwidth = bandwidth;
+	rs->recover.bandwidth_work = 100 / bandwidth;
+}
+
+/* Handle variable number of RAID parameters. */
+static int get_raid_variable_parms(struct dm_target *ti, char **argv, 
+				   struct variable_parms *vp)
+{
+	int p, value;
+	struct {
+		int action; /* -1: skip, 0: no power2 check, 1: power2 check */
+		char *errmsg;
+		int min, max;
+		int *var, *var2, *var3;
+	} argctr[] = {
+		{ 1,
+		  "Invalid chunk size; must be -1 or 2^^n and <= 16384",
+ 		  IO_SIZE_MIN, CHUNK_SIZE_MAX,
+		  &vp->chunk_size_parm, &vp->chunk_size, &vp->io_size },
+		{ 0,
+		  "Invalid number of stripes: must be -1 or >= 8 and <= 16384",
+		  STRIPES_MIN, STRIPES_MAX,
+		  &vp->stripes_parm, &vp->stripes, NULL },
+		{ 1,
+		  "Invalid io size; must -1 or >= 8, 2^^n and less equal "
+		  "min(BIO_MAX_SECTORS/2, chunk size)",
+		  IO_SIZE_MIN, 0, /* Needs to be updated in loop below. */
+		  &vp->io_size_parm, &vp->io_size, NULL },
+		{ 1,
+		  "Invalid recovery io size; must be -1 or "
+		  "2^^n and less equal BIO_MAX_SECTORS/2",
+		  RECOVER_IO_SIZE_MIN, BIO_MAX_SECTORS / 2,
+		  &vp->recover_io_size_parm, &vp->recover_io_size, NULL },
+		{ 0,
+		  "Invalid recovery bandwidth percentage; "
+		  "must be -1 or > 0 and <= 100",
+		  BANDWIDTH_MIN, BANDWIDTH_MAX,
+		  &vp->bandwidth_parm, &vp->bandwidth, NULL },
+		/* Handle sync argument seperately in loop. */
+		{ -1,
+		  "Invalid recovery switch; must be \"sync\" or \"nosync\"" },
+		{ 0,
+		  "Invalid number of recovery stripes;"
+		  "must be -1, > 0 and <= 16384",
+		  RECOVERY_STRIPES_MIN, RECOVERY_STRIPES_MAX,
+		  &vp->recovery_stripes_parm, &vp->recovery_stripes, NULL },
+	}, *varp;
+
+	/* Fetch # of variable raid parameters. */
+	if (sscanf(*(argv++), "%d", &vp->raid_parms) != 1 ||
+	    !range_ok(vp->raid_parms, 0, 7))
+		TI_ERR("Bad variable raid parameters number");
+
+	/* Preset variable RAID parameters. */
+	vp->chunk_size = CHUNK_SIZE_DEFAULT;
+	vp->io_size = IO_SIZE_DEFAULT;
+	vp->stripes = STRIPES_DEFAULT;
+	vp->recover_io_size = RECOVER_IO_SIZE_DEFAULT;
+	vp->bandwidth = BANDWIDTH_DEFAULT;
+	vp->recovery = 1;
+	vp->recovery_stripes = RECOVERY_STRIPES_DEFAULT;
+
+	/* Walk the array of argument constraints for all given ones. */
+	for (p = 0, varp = argctr; p < vp->raid_parms; p++, varp++) {
+	     	BUG_ON(varp >= ARRAY_END(argctr));
+
+		/* Special case for "[no]sync" string argument. */
+		if (varp->action < 0) {
+			if (!strcmp(*argv, "sync"))
+				;
+			else if (!strcmp(*argv, "nosync"))
+				vp->recovery = 0;
+			else
+				TI_ERR(varp->errmsg);
+
+			argv++;
+			continue;
+		}
+
+		/*
+		 * Special case for io_size depending
+		 * on previously set chunk size.
+		 */
+		if (p == 2)
+			varp->max = min(BIO_MAX_SECTORS / 2, vp->chunk_size);
+
+		if (sscanf(*(argv++), "%d", &value) != 1 ||
+		    (value != -1 &&
+		     ((varp->action && !POWER_OF_2(value)) ||
+		      !range_ok(value, varp->min, varp->max))))
+			TI_ERR(varp->errmsg);
+
+		*varp->var = value;
+		if (value != -1) {
+			if (varp->var2)
+				*varp->var2 = value;
+			if (varp->var3)
+				*varp->var3 = value;
+		}
+	}
+
+	return 0;
+}
+
+/* Parse optional locking parameters. */
+static int get_raid_locking_parms(struct dm_target *ti, char **argv,
+				  int *locking_parms,
+				  struct dm_raid45_locking_type **locking_type)
+{
+	if (!strnicmp(argv[0], "locking", strlen(argv[0]))) {
+		char *lckstr = argv[1];
+		size_t lcksz = strlen(lckstr);
+
+		if (!strnicmp(lckstr, "none", lcksz)) {
+			*locking_type = &locking_none;
+			*locking_parms = 2;
+		} else if (!strnicmp(lckstr, "cluster", lcksz)) {
+			DMERR("locking type \"%s\" not yet implemented",
+			      lckstr);
+			return -EINVAL;
+		} else {
+			DMERR("unknown locking type \"%s\"", lckstr);
+			return -EINVAL;
+		}
+	}
+
+	*locking_parms = 0;
+	*locking_type = &locking_none;
+	return 0;
+}
+
+/* Set backing device read ahead properties of RAID set. */
+static void rs_set_read_ahead(struct raid_set *rs,
+			      unsigned sectors, unsigned stripes)
+{
+	unsigned ra_pages = dm_div_up(sectors, SECTORS_PER_PAGE);
+	struct mapped_device *md = dm_table_get_md(rs->ti->table);
+	struct backing_dev_info *bdi = &dm_disk(md)->queue->backing_dev_info;
+
+	/* Set read-ahead for the RAID set and the component devices. */
+	if (ra_pages) {
+		unsigned p = rs->set.raid_devs;
+
+		bdi->ra_pages = stripes * ra_pages * rs->set.data_devs;
+
+		while (p--) {
+			struct request_queue *q =
+				bdev_get_queue(rs->dev[p].dev->bdev);
+
+			q->backing_dev_info.ra_pages = ra_pages;
+		}
+	}
+
+	dm_put(md);
+}
+
+/* Set congested function. */
+static void rs_set_congested_fn(struct raid_set *rs)
+{
+	struct mapped_device *md = dm_table_get_md(rs->ti->table);
+	struct backing_dev_info *bdi = &dm_disk(md)->queue->backing_dev_info;
+
+	/* Set congested function and data. */
+	bdi->congested_fn = rs_congested;
+	bdi->congested_data = rs;
+	dm_put(md);
+}
+
+/*
+ * Construct a RAID4/5 mapping:
+ *
+ * log_type #log_params <log_params> \
+ * raid_type [#parity_dev] #raid_variable_params <raid_params> \
+ * [locking "none"/"cluster"]
+ * #raid_devs #dev_to_initialize [<dev_path> <offset>]{3,}
+ *
+ * log_type = "core"/"disk",
+ * #log_params = 1-3 (1-2 for core dirty log type, 3 for disk dirty log only)
+ * log_params = [dirty_log_path] region_size [[no]sync])
+ *
+ * raid_type = "raid4", "raid5_la", "raid5_ra", "raid5_ls", "raid5_rs"
+ *
+ * #parity_dev = N if raid_type = "raid4"
+ * o N = -1: pick default = last device
+ * o N >= 0 and < #raid_devs: parity device index
+ *
+ * #raid_variable_params = 0-7; raid_params (-1 = default):
+ *   [chunk_size [#stripes [io_size [recover_io_size \
+ *    [%recovery_bandwidth [recovery_switch [#recovery_stripes]]]]]]]
+ *   o chunk_size (unit to calculate drive addresses; must be 2^^n, > 8
+ *     and <= CHUNK_SIZE_MAX)
+ *   o #stripes is number of stripes allocated to stripe cache
+ *     (must be > 1 and < STRIPES_MAX)
+ *   o io_size (io unit size per device in sectors; must be 2^^n and > 8)
+ *   o recover_io_size (io unit size per device for recovery in sectors;
+ must be 2^^n, > SECTORS_PER_PAGE and <= region_size)
+ *   o %recovery_bandwith is the maximum amount spend for recovery during
+ *     application io (1-100%)
+ *   o recovery switch = [sync|nosync]
+ *   o #recovery_stripes is the number of recovery stripes used for
+ *     parallel recovery of the RAID set
+ * If raid_variable_params = 0, defaults will be used.
+ * Any raid_variable_param can be set to -1 to apply a default
+ *
+ * #raid_devs = N (N >= 3)
+ *
+ * #dev_to_initialize = N
+ * -1: initialize parity on all devices
+ * >= 0 and < #raid_devs: initialize raid_path; used to force reconstruction
+ * of a failed devices content after replacement
+ *
+ * <dev_path> = device_path (eg, /dev/sdd1)
+ * <offset>   = begin at offset on <dev_path>
+ *
+ */
+#define	MIN_PARMS	13
+static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int dev_to_init, dl_parms, i, locking_parms,
+	    parity_parm, pi = -1, r, raid_devs;
+	unsigned speed;
+	sector_t tmp, sectors_per_dev;
+	struct dm_raid45_locking_type *locking;
+	struct raid_set *rs;
+	struct raid_type *raid_type;
+	struct variable_parms parms;
+
+	/* Ensure minimum number of parameters. */
+	if (argc < MIN_PARMS)
+		TI_ERR("Not enough parameters");
+
+	/* Fetch # of dirty log parameters. */
+	if (sscanf(argv[1], "%d", &dl_parms) != 1 ||
+	    !range_ok(dl_parms, 1, 4711)) /* ;-) */
+		TI_ERR("Bad dirty log parameters number");
+
+	/* Check raid_type. */
+	raid_type = get_raid_type(argv[dl_parms + 2]);
+	if (!raid_type)
+		TI_ERR("Bad raid type");
+
+	/* In case of RAID4, parity drive is selectable. */
+	parity_parm = !!(raid_type->level == raid4);
+
+	/* Handle variable number of RAID parameters. */
+	r = get_raid_variable_parms(ti, argv + dl_parms + parity_parm + 3,
+				    &parms);
+	if (r)
+		return r;
+
+	/* Handle any locking parameters. */
+	r = get_raid_locking_parms(ti,
+				   argv + dl_parms + parity_parm +
+				   parms.raid_parms + 4,
+				   &locking_parms, &locking);
+	if (r)
+		return r;
+
+	/* # of raid devices. */
+	i = dl_parms + parity_parm + parms.raid_parms + locking_parms + 4;
+	if (sscanf(argv[i], "%d", &raid_devs) != 1 ||
+	    raid_devs < raid_type->minimal_devs)
+		TI_ERR("Invalid number of raid devices");
+
+	/* In case of RAID4, check parity drive index is in limits. */
+	if (raid_type->level == raid4) {
+		/* Fetch index of parity device. */
+		if (sscanf(argv[dl_parms + 3], "%d", &pi) != 1 ||
+		    (pi != -1 && !range_ok(pi, 0, raid_devs - 1)))
+			TI_ERR("Invalid RAID4 parity device index");
+	}
+
+	/*
+	 * Index of device to initialize starts at 0
+	 *
+	 * o -1 -> don't initialize a selected device;
+	 *         initialize parity conforming to algorithm
+	 * o 0..raid_devs-1 -> initialize respective device
+	 *   (used for reconstruction of a replaced device)
+	 */
+	if (sscanf(argv[dl_parms + parity_parm + parms.raid_parms +
+		   locking_parms + 5], "%d", &dev_to_init) != 1 ||
+	    !range_ok(dev_to_init, -1, raid_devs - 1))
+		TI_ERR("Invalid number for raid device to initialize");
+
+	/* Check # of raid device arguments. */
+	if (argc - dl_parms - parity_parm - parms.raid_parms - 6 !=
+	    2 * raid_devs)
+		TI_ERR("Wrong number of raid device/offset arguments");
+
+	/*
+	 * Check that the table length is devisable
+	 * w/o rest by (raid_devs - parity_devs)
+	 */
+	if (!multiple(ti->len, raid_devs - raid_type->parity_devs,
+		      &sectors_per_dev))
+		TI_ERR("Target length not divisible by number of data devices");
+
+	/*
+	 * Check that the device size is
+	 * devisable w/o rest by chunk size
+	 */
+	if (!multiple(sectors_per_dev, parms.chunk_size, &tmp))
+		TI_ERR("Device length not divisible by chunk_size");
+
+	/****************************************************************
+	 * Now that we checked the constructor arguments ->
+	 * let's allocate the RAID set
+	 ****************************************************************/
+	rs = context_alloc(raid_type, &parms, raid_devs, sectors_per_dev,
+			   ti, dl_parms, argv);
+	if (IS_ERR(rs))
+		return PTR_ERR(rs);
+
+
+	rs->set.dev_to_init = rs->set.dev_to_init_parm = dev_to_init;
+	rs->set.pi = rs->set.pi_parm = pi;
+
+	/* Set RAID4 parity drive index. */
+	if (raid_type->level == raid4)
+		rs->set.pi = (pi == -1) ? rs->set.data_devs : pi;
+
+	recover_set_bandwidth(rs, parms.bandwidth);
+
+	/* Use locking type to lock stripe access. */
+	rs->locking = locking;
+
+	/* Get the device/offset tupels. */
+	argv += dl_parms + 6 + parity_parm + parms.raid_parms;
+	r = dev_parms(rs, argv, &i);
+	if (r)
+		goto err;
+
+	/* Set backing device information (eg. read ahead). */
+	rs_set_read_ahead(rs, 2 * rs->set.chunk_size /* sectors per device */,
+			      2 /* # of stripes */);
+	rs_set_congested_fn(rs); /* Set congested function. */
+	SetRSCheckOverwrite(rs); /* Allow chunk overwrite checks. */
+	speed = xor_optimize(rs); /* Select best xor algorithm. */
+
+	/* Set for recovery of any nosync regions. */
+	if (parms.recovery)
+		SetRSRecover(rs);
+	else {
+		/*
+		 * Need to free recovery stripe(s) here in case
+		 * of nosync, because xor_optimize uses one.
+		 */
+		set_start_recovery(rs);
+		set_end_recovery(rs);
+		stripe_recover_free(rs);
+	}
+
+	/*
+	 * Enable parity chunk creation enformcement for
+	 * little numbers of array members where it doesn'ti
+	 * gain us performance to xor parity out and back in as
+	 * with larger array member numbers.
+	 */
+	if (rs->set.raid_devs <= rs->set.raid_type->minimal_devs + 1)
+		SetRSEnforceParityCreation(rs);
+
+	/*
+	 * Make sure that dm core only hands maximum io size
+	 * length down and pays attention to io boundaries.
+	 */
+	ti->split_io = rs->set.io_size;
+	ti->private = rs;
+
+	/* Initialize work queue to handle this RAID set's io. */
+	r = rs_workqueue_init(rs);
+	if (r)
+		goto err;
+
+	rs_log(rs, speed); /* Log information about RAID set. */
+	return 0;
+
+err:
+	context_free(rs, i);
+	return r;
+}
+
+/*
+ * Destruct a raid mapping
+ */
+static void raid_dtr(struct dm_target *ti)
+{
+	struct raid_set *rs = ti->private;
+
+	destroy_workqueue(rs->io.wq);
+	context_free(rs, rs->set.raid_devs);
+}
+
+/* Raid mapping function. */
+static int raid_map(struct dm_target *ti, struct bio *bio,
+		    union map_info *map_context)
+{
+	/* I don't want to waste stripe cache capacity. */
+	if (bio_rw(bio) == READA)
+		return -EIO;
+	else {
+		struct raid_set *rs = ti->private;
+
+		/*
+		 * Get io reference to be waiting for to drop
+		 * to zero on device suspension/destruction.
+		 */
+		io_get(rs);
+		bio->bi_sector -= ti->begin;	/* Remap sector. */
+
+		/* Queue io to RAID set. */
+		mutex_lock(&rs->io.in_lock);
+		bio_list_add(&rs->io.in, bio);
+		mutex_unlock(&rs->io.in_lock);
+
+		/* Wake daemon to process input list. */
+		wake_do_raid(rs);
+
+		/* REMOVEME: statistics. */
+		atomic_inc(rs->stats + (bio_data_dir(bio) == READ ?
+				        S_BIOS_READ : S_BIOS_WRITE));
+		return DM_MAPIO_SUBMITTED;	/* Handle later. */
+	}
+}
+
+/* Device suspend. */
+static void raid_presuspend(struct dm_target *ti)
+{
+	struct raid_set *rs = ti->private;
+	struct dm_dirty_log *dl = rs->recover.dl;
+
+	SetRSSuspend(rs);
+
+	if (RSRecover(rs))
+		dm_rh_stop_recovery(rs->recover.rh);
+
+	cancel_delayed_work(&rs->io.dws_do_raid);
+	flush_workqueue(rs->io.wq);
+	wait_ios(rs);	/* Wait for completion of all ios being processed. */
+
+	if (dl->type->presuspend && dl->type->presuspend(dl))
+		/* FIXME: need better error handling. */
+		DMWARN("log presuspend failed");
+}
+
+static void raid_postsuspend(struct dm_target *ti)
+{
+	struct raid_set *rs = ti->private;
+	struct dm_dirty_log *dl = rs->recover.dl;
+
+	if (dl->type->postsuspend && dl->type->postsuspend(dl))
+		/* FIXME: need better error handling. */
+		DMWARN("log postsuspend failed");
+
+}
+
+/* Device resume. */
+static void raid_resume(struct dm_target *ti)
+{
+	struct raid_set *rs = ti->private;
+	struct recover *rec = &rs->recover;
+	struct dm_dirty_log *dl = rec->dl;
+
+	if (dl->type->resume && dl->type->resume(dl))
+		/* Resume dirty log. */
+		/* FIXME: need better error handling. */
+		DMWARN("log resume failed");
+
+	rec->nr_regions_to_recover =
+		rec->nr_regions - dl->type->get_sync_count(dl);
+
+	/* Restart any unfinished recovery. */
+	if (RSRecover(rs)) {
+		set_start_recovery(rs);
+		dm_rh_start_recovery(rec->rh);
+	}
+
+	ClearRSSuspend(rs);
+	wake_do_raid(rs);
+}
+
+/* Return stripe cache size. */
+static unsigned sc_size(struct raid_set *rs)
+{
+	return to_sector(atomic_read(&rs->sc.stripes) *
+			 (sizeof(struct stripe) +
+			  (sizeof(struct stripe_chunk) +
+			   (sizeof(struct page_list) +
+			    to_bytes(rs->set.io_size) *
+			    rs->set.raid_devs)) +
+			  (rs->recover.end_jiffies ?
+			   0 : rs->recover.recovery_stripes *
+			   to_bytes(rs->set.raid_devs * rs->recover.io_size))));
+}
+
+/* REMOVEME: status output for development. */
+static void raid_devel_stats(struct dm_target *ti, char *result,
+			     unsigned *size, unsigned maxlen)
+{
+	unsigned sz = *size;
+	unsigned long j;
+	char buf[BDEVNAME_SIZE], *p;
+	struct stats_map *sm;
+	struct raid_set *rs = ti->private;
+	struct recover *rec = &rs->recover;
+	struct timespec ts;
+
+	DMEMIT("%s %s=%u\n", version, rs->xor.f->name, rs->xor.chunks);
+	DMEMIT("act_ios=%d ", io_ref(rs));
+	DMEMIT("act_ios_max=%d\n", atomic_read(&rs->io.in_process_max));
+	DMEMIT("act_stripes=%d ", sc_active(&rs->sc));
+	DMEMIT("act_stripes_max=%d\n",
+	       atomic_read(&rs->sc.active_stripes_max));
+
+	for (sm = stats_map; sm < ARRAY_END(stats_map); sm++)
+		DMEMIT("%s%d", sm->str, atomic_read(rs->stats + sm->type));
+
+	DMEMIT(" checkovr=%s\n", RSCheckOverwrite(rs) ? "on" : "off");
+	DMEMIT("sc=%u/%u/%u/%u/%u/%u/%u\n", rs->set.chunk_size,
+	       atomic_read(&rs->sc.stripes), rs->set.io_size,
+	       rec->recovery_stripes, rec->io_size, rs->sc.hash.buckets,
+	       sc_size(rs));
+
+	j = (rec->end_jiffies ? rec->end_jiffies : jiffies) -
+	    rec->start_jiffies;
+	jiffies_to_timespec(j, &ts);
+	sprintf(buf, "%ld.%ld", ts.tv_sec, ts.tv_nsec);
+	p = strchr(buf, '.');
+	p[3] = 0;
+
+	DMEMIT("rg=%llu/%llu/%llu/%u %s\n",
+	       (unsigned long long) rec->nr_regions_recovered,
+	       (unsigned long long) rec->nr_regions_to_recover,
+	       (unsigned long long) rec->nr_regions, rec->bandwidth, buf);
+
+	*size = sz;
+}
+
+static int raid_status(struct dm_target *ti, status_type_t type,
+		       char *result, unsigned maxlen)
+{
+	unsigned p, sz = 0;
+	char buf[BDEVNAME_SIZE];
+	struct raid_set *rs = ti->private;
+	struct dm_dirty_log *dl = rs->recover.dl;
+	int raid_parms[] = {
+		rs->set.chunk_size_parm,
+		rs->sc.stripes_parm,
+		rs->set.io_size_parm,
+		rs->recover.io_size_parm,
+		rs->recover.bandwidth_parm,
+		-2,
+		rs->recover.recovery_stripes,
+	};
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		/* REMOVEME: statistics. */
+		if (RSDevelStats(rs))
+			raid_devel_stats(ti, result, &sz, maxlen);
+
+		DMEMIT("%u ", rs->set.raid_devs);
+
+		for (p = 0; p < rs->set.raid_devs; p++)
+			DMEMIT("%s ",
+			       format_dev_t(buf, rs->dev[p].dev->bdev->bd_dev));
+
+		DMEMIT("2 ");
+		for (p = 0; p < rs->set.raid_devs; p++) {
+			DMEMIT("%c", !DevFailed(rs->dev + p) ? 'A' : 'D');
+
+			if (p == rs->set.pi)
+				DMEMIT("p");
+
+			if (p == rs->set.dev_to_init)
+				DMEMIT("i");
+		}
+
+		DMEMIT(" %llu/%llu ",
+		      (unsigned long long) dl->type->get_sync_count(dl),
+		      (unsigned long long) rs->recover.nr_regions);
+
+		sz += dl->type->status(dl, type, result+sz, maxlen-sz);
+		break;
+	case STATUSTYPE_TABLE:
+		sz = rs->recover.dl->type->status(rs->recover.dl, type,
+						  result, maxlen);
+		DMEMIT("%s %u ", rs->set.raid_type->name, rs->set.raid_parms);
+
+		for (p = 0; p < rs->set.raid_parms; p++) {
+			if (raid_parms[p] > -2)
+				DMEMIT("%d ", raid_parms[p]);
+			else
+				DMEMIT("%s ", rs->recover.recovery ?
+					      "sync" : "nosync");
+		}
+
+		DMEMIT("%u %d ", rs->set.raid_devs, rs->set.dev_to_init);
+
+		for (p = 0; p < rs->set.raid_devs; p++)
+			DMEMIT("%s %llu ",
+			       format_dev_t(buf, rs->dev[p].dev->bdev->bd_dev),
+			       (unsigned long long) rs->dev[p].start);
+	}
+
+	return 0;
+}
+
+/*
+ * Message interface
+ */
+enum raid_msg_actions {
+	act_bw,			/* Recovery bandwidth switch. */
+	act_dev,		/* Device failure switch. */
+	act_overwrite,		/* Stripe overwrite check. */
+	act_stats,		/* Development statistics switch. */
+	act_sc,			/* Stripe cache switch. */
+
+	act_on,			/* Set entity on. */
+	act_off,		/* Set entity off. */
+	act_reset,		/* Reset entity. */
+
+	act_set = act_on,	/* Set # absolute. */
+	act_grow = act_off,	/* Grow # by an amount. */
+	act_shrink = act_reset,	/* Shrink # by an amount. */
+};
+
+/* Turn a delta into an absolute value. */
+static int _absolute(unsigned long action, int act, int r)
+{
+	/* Make delta absolute. */
+	if (test_bit(act_set, &action))
+		;
+	else if (test_bit(act_grow, &action))
+		r += act;
+	else if (test_bit(act_shrink, &action))
+		r = act - r;
+	else
+		r = -EINVAL;
+
+	return r;
+}
+
+ /* Change recovery io bandwidth. */
+static int bandwidth_change(struct dm_msg *msg, void *context)
+{
+	struct raid_set *rs = context;
+	int act = rs->recover.bandwidth;
+	int bandwidth = DM_MSG_INT_ARG(msg);
+
+	if (range_ok(bandwidth, BANDWIDTH_MIN, BANDWIDTH_MAX)) {
+		/* Make delta bandwidth absolute. */
+		bandwidth = _absolute(msg->action, act, bandwidth);
+
+		/* Check range. */
+		if (range_ok(bandwidth, BANDWIDTH_MIN, BANDWIDTH_MAX)) {
+			recover_set_bandwidth(rs, bandwidth);
+			return 0;
+		}
+	}
+
+	set_bit(dm_msg_ret_arg, &msg->ret);
+	set_bit(dm_msg_ret_inval, &msg->ret);
+	return -EINVAL;
+}
+
+/* Set/reset development feature flags. */
+static int devel_flags(struct dm_msg *msg, void *context)
+{
+	struct raid_set *rs = context;
+
+	if (test_bit(act_on, &msg->action))
+		return test_and_set_bit(msg->spec->parm,
+					&rs->io.flags) ? -EPERM : 0;
+	else if (test_bit(act_off, &msg->action))
+		return test_and_clear_bit(msg->spec->parm,
+					  &rs->io.flags) ? 0 : -EPERM;
+	else if (test_bit(act_reset, &msg->action)) {
+		if (test_bit(act_stats, &msg->action)) {
+			stats_reset(rs);
+			goto on;
+		} else if (test_bit(act_overwrite, &msg->action)) {
+on:
+			set_bit(msg->spec->parm, &rs->io.flags);
+			return 0;
+		}
+	}
+
+	return -EINVAL;
+}
+
+/* Resize the stripe cache. */
+static int sc_resize(struct dm_msg *msg, void *context)
+{
+	int act, stripes;
+	struct raid_set *rs = context;
+
+	/* Deny permission in case the daemon is still resizing!. */
+	if (atomic_read(&rs->sc.stripes_to_set))
+		return -EPERM;
+
+	stripes = DM_MSG_INT_ARG(msg);
+	if (stripes > 0) {
+		act = atomic_read(&rs->sc.stripes);
+
+		/* Make delta stripes absolute. */
+		stripes = _absolute(msg->action, act, stripes);
+
+		/*
+		 * Check range and that the # of stripes changes.
+		 * We leave the resizing to the wroker.
+		 */
+		if (range_ok(stripes, STRIPES_MIN, STRIPES_MAX) &&
+		    stripes != atomic_read(&rs->sc.stripes)) {
+			atomic_set(&rs->sc.stripes_to_set, stripes);
+			wake_do_raid(rs);
+			return 0;
+		}
+	}
+
+	set_bit(dm_msg_ret_arg, &msg->ret);
+	set_bit(dm_msg_ret_inval, &msg->ret);
+	return -EINVAL;
+}
+
+/* Parse the RAID message action. */
+/*
+ * 'ba[ndwidth] {se[t],g[row],sh[rink]} #'	# e.g 'ba se 50'
+ * "o[verwrite]  {on,of[f],r[eset]}'		# e.g. 'o of'
+ * 'sta[tistics] {on,of[f],r[eset]}'		# e.g. 'stat of'
+ * 'str[ipecache] {se[t],g[row],sh[rink]} #'	# e.g. 'stripe set 1024'
+ *
+ */
+static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
+{
+	/* Variables to store the parsed parameters im. */
+	static int i[2];
+	static unsigned long *i_arg[] = {
+		(unsigned long *) i + 0,
+		(unsigned long *) i + 1,
+	};
+
+	/* Declare all message option strings. */
+	static char *str_sgs[] = { "set", "grow", "shrink" };
+	static char *str_oor[] = { "on", "off", "reset" };
+
+	/* Declare all actions. */
+	static unsigned long act_sgs[] = { act_set, act_grow, act_shrink };
+	static unsigned long act_oor[] = { act_on, act_off, act_reset };
+
+	/* Bandwidth option. */
+	static struct dm_message_option bw_opt = { 3, str_sgs, act_sgs };
+	static struct dm_message_argument bw_args = {
+		1, i_arg, { dm_msg_int_t }
+	};
+
+	static struct dm_message_argument null_args = {
+		0, NULL, { dm_msg_int_t }
+	};
+
+	/* Overwrite and statistics option. */
+	static struct dm_message_option ovr_stats_opt = { 3, str_oor, act_oor };
+
+	/* Sripecache option. */
+	static struct dm_message_option stripe_opt = { 3, str_sgs, act_sgs };
+
+	/* Declare messages. */
+	static struct dm_msg_spec specs[] = {
+		{ "bandwidth", act_bw, &bw_opt, &bw_args,
+		  0, bandwidth_change },
+		{ "overwrite", act_overwrite, &ovr_stats_opt, &null_args,
+		  RS_CHECK_OVERWRITE, devel_flags },
+		{ "statistics", act_stats, &ovr_stats_opt, &null_args,
+		  RS_DEVEL_STATS, devel_flags },
+		{ "stripecache", act_sc, &stripe_opt, &bw_args,
+		  0, sc_resize },
+	};
+
+	/* The message for the parser. */
+	struct dm_msg msg = {
+		.num_specs = ARRAY_SIZE(specs),
+		.specs = specs,
+	};
+
+	return dm_message_parse(TARGET, &msg, ti->private, argc, argv);
+}
+/*
+ * END message interface
+ */
+
+static struct target_type raid_target = {
+	.name = "raid45",
+	.version = {1, 0, 0},
+	.module = THIS_MODULE,
+	.ctr = raid_ctr,
+	.dtr = raid_dtr,
+	.map = raid_map,
+	.presuspend = raid_presuspend,
+	.postsuspend = raid_postsuspend,
+	.resume = raid_resume,
+	.status = raid_status,
+	.message = raid_message,
+};
+
+static void init_exit(const char *bad_msg, const char *good_msg, int r)
+{
+	if (r)
+		DMERR("Failed to %sregister target [%d]", bad_msg, r);
+	else
+		DMINFO("%s %s", good_msg, version);
+}
+
+static int __init dm_raid_init(void)
+{
+	int r = dm_register_target(&raid_target);
+
+	init_exit("", "initialized", r);
+	return r;
+}
+
+static void __exit dm_raid_exit(void)
+{
+	dm_unregister_target(&raid_target);
+	init_exit("un", "exit", 0);
+}
+
+/* Module hooks. */
+module_init(dm_raid_init);
+module_exit(dm_raid_exit);
+
+MODULE_DESCRIPTION(DM_NAME " raid4/5 target");
+MODULE_AUTHOR("Heinz Mauelshagen <hjm@xxxxxxxxxx>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("dm-raid4");
+MODULE_ALIAS("dm-raid5");

--
dm-devel mailing list
dm-devel@xxxxxxxxxx
https://www.redhat.com/mailman/listinfo/dm-devel

[Index of Archives]     [DM Crypt]     [Fedora Desktop]     [ATA RAID]     [Fedora Marketing]     [Fedora Packaging]     [Fedora SELinux]     [Yosemite Discussion]     [KDE Users]     [Fedora Docs]

  Powered by Linux