Quoting Mike Looijmans (2015-06-02 22:25:19) > This driver supports the TI CDCE925 programmable clock synthesizer. > The chip contains two PLLs with spread-spectrum clocking support and > five output dividers. The driver only supports the following setup, > and uses a fixed setting for the output muxes: > Y1 is derived from the input clock > Y2 and Y3 derive from PLL1 > Y4 and Y5 derive from PLL2 > Given a target output frequency, the driver will set the PLL and > divider to best approximate the desired output. > > Signed-off-by: Mike Looijmans <mike.looijmans@xxxxxxxx> Thanks for fixing it up. Applied to clk-next towards 4.2. Regards, Mike > --- > v2: Coding style check > Add devicetree binding documentation > v3: Remove clk-private.h and processed M.Turquette's feedback > Use "ti" prefix. Use of_clk_src_onecell_get to register. > v4: Fix dev_dbg format warning on 64-bit systems (as suggested by Paul Bolle) > > .../devicetree/bindings/clock/ti,cdce925.txt | 42 ++ > drivers/clk/Kconfig | 17 + > drivers/clk/Makefile | 1 + > drivers/clk/clk-cdce925.c | 749 +++++++++++++++++++++ > 4 files changed, 809 insertions(+) > create mode 100644 Documentation/devicetree/bindings/clock/ti,cdce925.txt > create mode 100644 drivers/clk/clk-cdce925.c > > diff --git a/Documentation/devicetree/bindings/clock/ti,cdce925.txt b/Documentation/devicetree/bindings/clock/ti,cdce925.txt > new file mode 100644 > index 0000000..4c7669a > --- /dev/null > +++ b/Documentation/devicetree/bindings/clock/ti,cdce925.txt > @@ -0,0 +1,42 @@ > +Binding for TO CDCE925 programmable I2C clock synthesizers. > + > +Reference > +This binding uses the common clock binding[1]. > + > +[1] Documentation/devicetree/bindings/clock/clock-bindings.txt > +[2] http://www.ti.com/product/cdce925 > + > +The driver provides clock sources for each output Y1 through Y5. > + > +Required properties: > + - compatible: Shall be "ti,cdce925" > + - reg: I2C device address. > + - clocks: Points to a fixed parent clock that provides the input frequency. > + - #clock-cells: From common clock bindings: Shall be 1. > + > +Optional properties: > + - xtal-load-pf: Crystal load-capacitor value to fine-tune performance on a > + board, or to compensate for external influences. > + > +For both PLL1 and PLL2 an optional child node can be used to specify spread > +spectrum clocking parameters for a board. > + - spread-spectrum: SSC mode as defined in the data sheet. > + - spread-spectrum-center: Use "centered" mode instead of "max" mode. When > + present, the clock runs at the requested frequency on average. Otherwise > + the requested frequency is the maximum value of the SCC range. > + > + > +Example: > + > + clockgen: cdce925pw@64 { > + compatible = "cdce925"; > + reg = <0x64>; > + clocks = <&xtal_27Mhz>; > + #clock-cells = <1>; > + xtal-load-pf = <5>; > + /* PLL options to get SSC 1% centered */ > + PLL2 { > + spread-spectrum = <4>; > + spread-spectrum-center; > + }; > + }; > diff --git a/drivers/clk/Kconfig b/drivers/clk/Kconfig > index 9897f35..1c31704 100644 > --- a/drivers/clk/Kconfig > +++ b/drivers/clk/Kconfig > @@ -78,6 +78,23 @@ config COMMON_CLK_SI570 > This driver supports Silicon Labs 570/571/598/599 programmable > clock generators. > > +config COMMON_CLK_CDCE925 > + tristate "Clock driver for TI CDCE925 devices" > + depends on I2C > + depends on OF > + select REGMAP_I2C > + help > + ---help--- > + This driver supports the TI CDCE925 programmable clock synthesizer. > + The chip contains two PLLs with spread-spectrum clocking support and > + five output dividers. The driver only supports the following setup, > + and uses a fixed setting for the output muxes. > + Y1 is derived from the input clock > + Y2 and Y3 derive from PLL1 > + Y4 and Y5 derive from PLL2 > + Given a target output frequency, the driver will set the PLL and > + divider to best approximate the desired output. > + > config COMMON_CLK_S2MPS11 > tristate "Clock driver for S2MPS1X/S5M8767 MFD" > depends on MFD_SEC_CORE > diff --git a/drivers/clk/Makefile b/drivers/clk/Makefile > index 3d00c25..49d38de 100644 > --- a/drivers/clk/Makefile > +++ b/drivers/clk/Makefile > @@ -38,6 +38,7 @@ obj-$(CONFIG_COMMON_CLK_RK808) += clk-rk808.o > obj-$(CONFIG_COMMON_CLK_S2MPS11) += clk-s2mps11.o > obj-$(CONFIG_COMMON_CLK_SI5351) += clk-si5351.o > obj-$(CONFIG_COMMON_CLK_SI570) += clk-si570.o > +obj-$(CONFIG_COMMON_CLK_CDCE925) += clk-cdce925.o > obj-$(CONFIG_CLK_TWL6040) += clk-twl6040.o > obj-$(CONFIG_ARCH_U300) += clk-u300.o > obj-$(CONFIG_ARCH_VT8500) += clk-vt8500.o > diff --git a/drivers/clk/clk-cdce925.c b/drivers/clk/clk-cdce925.c > new file mode 100644 > index 0000000..56b870d > --- /dev/null > +++ b/drivers/clk/clk-cdce925.c > @@ -0,0 +1,749 @@ > +/* > + * Driver for TI Dual PLL CDCE925 clock synthesizer > + * > + * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1 > + * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve > + * basis. Clients can directly request any frequency that the chip can > + * deliver using the standard clk framework. In addition, the device can > + * be configured and activated via the devicetree. > + * > + * Copyright (C) 2014, Topic Embedded Products > + * Licenced under GPL > + */ > +#include <linux/clk-provider.h> > +#include <linux/delay.h> > +#include <linux/module.h> > +#include <linux/i2c.h> > +#include <linux/regmap.h> > +#include <linux/slab.h> > +#include <linux/gcd.h> > + > +/* The chip has 2 PLLs which can be routed through dividers to 5 outputs. > + * Model this as 2 PLL clocks which are parents to the outputs. > + */ > +#define NUMBER_OF_PLLS 2 > +#define NUMBER_OF_OUTPUTS 5 > + > +#define CDCE925_REG_GLOBAL1 0x01 > +#define CDCE925_REG_Y1SPIPDIVH 0x02 > +#define CDCE925_REG_PDIVL 0x03 > +#define CDCE925_REG_XCSEL 0x05 > +/* PLL parameters start at 0x10, steps of 0x10 */ > +#define CDCE925_OFFSET_PLL 0x10 > +/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */ > +#define CDCE925_PLL_MUX_OUTPUTS 0x14 > +#define CDCE925_PLL_MULDIV 0x18 > + > +#define CDCE925_PLL_FREQUENCY_MIN 80000000ul > +#define CDCE925_PLL_FREQUENCY_MAX 230000000ul > +struct clk_cdce925_chip; > + > +struct clk_cdce925_output { > + struct clk_hw hw; > + struct clk_cdce925_chip *chip; > + u8 index; > + u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */ > +}; > +#define to_clk_cdce925_output(_hw) \ > + container_of(_hw, struct clk_cdce925_output, hw) > + > +struct clk_cdce925_pll { > + struct clk_hw hw; > + struct clk_cdce925_chip *chip; > + u8 index; > + u16 m; /* 1..511 */ > + u16 n; /* 1..4095 */ > +}; > +#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw) > + > +struct clk_cdce925_chip { > + struct regmap *regmap; > + struct i2c_client *i2c_client; > + struct clk_cdce925_pll pll[NUMBER_OF_PLLS]; > + struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS]; > + struct clk *dt_clk[NUMBER_OF_OUTPUTS]; > + struct clk_onecell_data onecell; > +}; > + > +/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */ > + > +static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate, > + u16 n, u16 m) > +{ > + if ((!m || !n) || (m == n)) > + return parent_rate; /* In bypass mode runs at same frequency */ > + return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m); > +} > + > +static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw, > + unsigned long parent_rate) > +{ > + /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */ > + struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); > + > + return cdce925_pll_calculate_rate(parent_rate, data->n, data->m); > +} > + > +static void cdce925_pll_find_rate(unsigned long rate, > + unsigned long parent_rate, u16 *n, u16 *m) > +{ > + unsigned long un; > + unsigned long um; > + unsigned long g; > + > + if (rate <= parent_rate) { > + /* Can always deliver parent_rate in bypass mode */ > + rate = parent_rate; > + *n = 0; > + *m = 0; > + } else { > + /* In PLL mode, need to apply min/max range */ > + if (rate < CDCE925_PLL_FREQUENCY_MIN) > + rate = CDCE925_PLL_FREQUENCY_MIN; > + else if (rate > CDCE925_PLL_FREQUENCY_MAX) > + rate = CDCE925_PLL_FREQUENCY_MAX; > + > + g = gcd(rate, parent_rate); > + um = parent_rate / g; > + un = rate / g; > + /* When outside hw range, reduce to fit (rounding errors) */ > + while ((un > 4095) || (um > 511)) { > + un >>= 1; > + um >>= 1; > + } > + if (un == 0) > + un = 1; > + if (um == 0) > + um = 1; > + > + *n = un; > + *m = um; > + } > +} > + > +static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long *parent_rate) > +{ > + u16 n, m; > + > + cdce925_pll_find_rate(rate, *parent_rate, &n, &m); > + return (long)cdce925_pll_calculate_rate(*parent_rate, n, m); > +} > + > +static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long parent_rate) > +{ > + struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); > + > + if (!rate || (rate == parent_rate)) { > + data->m = 0; /* Bypass mode */ > + data->n = 0; > + return 0; > + } > + > + if ((rate < CDCE925_PLL_FREQUENCY_MIN) || > + (rate > CDCE925_PLL_FREQUENCY_MAX)) { > + pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate); > + return -EINVAL; > + } > + > + if (rate < parent_rate) { > + pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__, > + rate, parent_rate); > + return -EINVAL; > + } > + > + cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m); > + return 0; > +} > + > + > +/* calculate p = max(0, 4 - int(log2 (n/m))) */ > +static u8 cdce925_pll_calc_p(u16 n, u16 m) > +{ > + u8 p; > + u16 r = n / m; > + > + if (r >= 16) > + return 0; > + p = 4; > + while (r > 1) { > + r >>= 1; > + --p; > + } > + return p; > +} > + > +/* Returns VCO range bits for VCO1_0_RANGE */ > +static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m) > +{ > + struct clk *parent = clk_get_parent(hw->clk); > + unsigned long rate = clk_get_rate(parent); > + > + rate = mult_frac(rate, (unsigned long)n, (unsigned long)m); > + if (rate >= 175000000) > + return 0x3; > + if (rate >= 150000000) > + return 0x02; > + if (rate >= 125000000) > + return 0x01; > + return 0x00; > +} > + > +/* I2C clock, hence everything must happen in (un)prepare because this > + * may sleep */ > +static int cdce925_pll_prepare(struct clk_hw *hw) > +{ > + struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); > + u16 n = data->n; > + u16 m = data->m; > + u16 r; > + u8 q; > + u8 p; > + u16 nn; > + u8 pll[4]; /* Bits are spread out over 4 byte registers */ > + u8 reg_ofs = data->index * CDCE925_OFFSET_PLL; > + unsigned i; > + > + if ((!m || !n) || (m == n)) { > + /* Set PLL mux to bypass mode, leave the rest as is */ > + regmap_update_bits(data->chip->regmap, > + reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80); > + } else { > + /* According to data sheet: */ > + /* p = max(0, 4 - int(log2 (n/m))) */ > + p = cdce925_pll_calc_p(n, m); > + /* nn = n * 2^p */ > + nn = n * BIT(p); > + /* q = int(nn/m) */ > + q = nn / m; > + if ((q < 16) || (1 > 64)) { > + pr_debug("%s invalid q=%d\n", __func__, q); > + return -EINVAL; > + } > + r = nn - (m*q); > + if (r > 511) { > + pr_debug("%s invalid r=%d\n", __func__, r); > + return -EINVAL; > + } > + pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__, > + n, m, p, q, r); > + /* encode into register bits */ > + pll[0] = n >> 4; > + pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F); > + pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07); > + pll[3] = ((q & 0x07) << 5) | (p << 2) | > + cdce925_pll_calc_range_bits(hw, n, m); > + /* Write to registers */ > + for (i = 0; i < ARRAY_SIZE(pll); ++i) > + regmap_write(data->chip->regmap, > + reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]); > + /* Enable PLL */ > + regmap_update_bits(data->chip->regmap, > + reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00); > + } > + > + return 0; > +} > + > +static void cdce925_pll_unprepare(struct clk_hw *hw) > +{ > + struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw); > + u8 reg_ofs = data->index * CDCE925_OFFSET_PLL; > + > + regmap_update_bits(data->chip->regmap, > + reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80); > +} > + > +static const struct clk_ops cdce925_pll_ops = { > + .prepare = cdce925_pll_prepare, > + .unprepare = cdce925_pll_unprepare, > + .recalc_rate = cdce925_pll_recalc_rate, > + .round_rate = cdce925_pll_round_rate, > + .set_rate = cdce925_pll_set_rate, > +}; > + > + > +static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv) > +{ > + switch (data->index) { > + case 0: > + regmap_update_bits(data->chip->regmap, > + CDCE925_REG_Y1SPIPDIVH, > + 0x03, (pdiv >> 8) & 0x03); > + regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF); > + break; > + case 1: > + regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv); > + break; > + case 2: > + regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv); > + break; > + case 3: > + regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv); > + break; > + case 4: > + regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv); > + break; > + } > +} > + > +static void cdce925_clk_activate(struct clk_cdce925_output *data) > +{ > + switch (data->index) { > + case 0: > + regmap_update_bits(data->chip->regmap, > + CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c); > + break; > + case 1: > + case 2: > + regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03); > + break; > + case 3: > + case 4: > + regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03); > + break; > + } > +} > + > +static int cdce925_clk_prepare(struct clk_hw *hw) > +{ > + struct clk_cdce925_output *data = to_clk_cdce925_output(hw); > + > + cdce925_clk_set_pdiv(data, data->pdiv); > + cdce925_clk_activate(data); > + return 0; > +} > + > +static void cdce925_clk_unprepare(struct clk_hw *hw) > +{ > + struct clk_cdce925_output *data = to_clk_cdce925_output(hw); > + > + /* Disable clock by setting divider to "0" */ > + cdce925_clk_set_pdiv(data, 0); > +} > + > +static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw, > + unsigned long parent_rate) > +{ > + struct clk_cdce925_output *data = to_clk_cdce925_output(hw); > + > + if (data->pdiv) > + return parent_rate / data->pdiv; > + return 0; > +} > + > +static u16 cdce925_calc_divider(unsigned long rate, > + unsigned long parent_rate) > +{ > + unsigned long divider; > + > + if (!rate) > + return 0; > + if (rate >= parent_rate) > + return 1; > + > + divider = DIV_ROUND_CLOSEST(parent_rate, rate); > + if (divider > 0x7F) > + divider = 0x7F; > + > + return (u16)divider; > +} > + > +static unsigned long cdce925_clk_best_parent_rate( > + struct clk_hw *hw, unsigned long rate) > +{ > + struct clk *pll = clk_get_parent(hw->clk); > + struct clk *root = clk_get_parent(pll); > + unsigned long root_rate = clk_get_rate(root); > + unsigned long best_rate_error = rate; > + u16 pdiv_min; > + u16 pdiv_max; > + u16 pdiv_best; > + u16 pdiv_now; > + > + if (root_rate % rate == 0) > + return root_rate; /* Don't need the PLL, use bypass */ > + > + pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate)); > + pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate); > + > + if (pdiv_min > pdiv_max) > + return 0; /* No can do? */ > + > + pdiv_best = pdiv_min; > + for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) { > + unsigned long target_rate = rate * pdiv_now; > + long pll_rate = clk_round_rate(pll, target_rate); > + unsigned long actual_rate; > + unsigned long rate_error; > + > + if (pll_rate <= 0) > + continue; > + actual_rate = pll_rate / pdiv_now; > + rate_error = abs((long)actual_rate - (long)rate); > + if (rate_error < best_rate_error) { > + pdiv_best = pdiv_now; > + best_rate_error = rate_error; > + } > + /* TODO: Consider PLL frequency based on smaller n/m values > + * and pick the better one if the error is equal */ > + } > + > + return rate * pdiv_best; > +} > + > +static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long *parent_rate) > +{ > + unsigned long l_parent_rate = *parent_rate; > + u16 divider = cdce925_calc_divider(rate, l_parent_rate); > + > + if (l_parent_rate / divider != rate) { > + l_parent_rate = cdce925_clk_best_parent_rate(hw, rate); > + divider = cdce925_calc_divider(rate, l_parent_rate); > + *parent_rate = l_parent_rate; > + } > + > + if (divider) > + return (long)(l_parent_rate / divider); > + return 0; > +} > + > +static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long parent_rate) > +{ > + struct clk_cdce925_output *data = to_clk_cdce925_output(hw); > + > + data->pdiv = cdce925_calc_divider(rate, parent_rate); > + > + return 0; > +} > + > +static const struct clk_ops cdce925_clk_ops = { > + .prepare = cdce925_clk_prepare, > + .unprepare = cdce925_clk_unprepare, > + .recalc_rate = cdce925_clk_recalc_rate, > + .round_rate = cdce925_clk_round_rate, > + .set_rate = cdce925_clk_set_rate, > +}; > + > + > +static u16 cdce925_y1_calc_divider(unsigned long rate, > + unsigned long parent_rate) > +{ > + unsigned long divider; > + > + if (!rate) > + return 0; > + if (rate >= parent_rate) > + return 1; > + > + divider = DIV_ROUND_CLOSEST(parent_rate, rate); > + if (divider > 0x3FF) /* Y1 has 10-bit divider */ > + divider = 0x3FF; > + > + return (u16)divider; > +} > + > +static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long *parent_rate) > +{ > + unsigned long l_parent_rate = *parent_rate; > + u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate); > + > + if (divider) > + return (long)(l_parent_rate / divider); > + return 0; > +} > + > +static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long parent_rate) > +{ > + struct clk_cdce925_output *data = to_clk_cdce925_output(hw); > + > + data->pdiv = cdce925_y1_calc_divider(rate, parent_rate); > + > + return 0; > +} > + > +static const struct clk_ops cdce925_clk_y1_ops = { > + .prepare = cdce925_clk_prepare, > + .unprepare = cdce925_clk_unprepare, > + .recalc_rate = cdce925_clk_recalc_rate, > + .round_rate = cdce925_clk_y1_round_rate, > + .set_rate = cdce925_clk_y1_set_rate, > +}; > + > + > +static struct regmap_config cdce925_regmap_config = { > + .name = "configuration0", > + .reg_bits = 8, > + .val_bits = 8, > + .cache_type = REGCACHE_RBTREE, > + .max_register = 0x2F, > +}; > + > +#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00 > +#define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80 > + > +static int cdce925_regmap_i2c_write( > + void *context, const void *data, size_t count) > +{ > + struct device *dev = context; > + struct i2c_client *i2c = to_i2c_client(dev); > + int ret; > + u8 reg_data[2]; > + > + if (count != 2) > + return -ENOTSUPP; > + > + /* First byte is command code */ > + reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0]; > + reg_data[1] = ((u8 *)data)[1]; > + > + dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count, > + reg_data[0], reg_data[1]); > + > + ret = i2c_master_send(i2c, reg_data, count); > + if (likely(ret == count)) > + return 0; > + else if (ret < 0) > + return ret; > + else > + return -EIO; > +} > + > +static int cdce925_regmap_i2c_read(void *context, > + const void *reg, size_t reg_size, void *val, size_t val_size) > +{ > + struct device *dev = context; > + struct i2c_client *i2c = to_i2c_client(dev); > + struct i2c_msg xfer[2]; > + int ret; > + u8 reg_data[2]; > + > + if (reg_size != 1) > + return -ENOTSUPP; > + > + xfer[0].addr = i2c->addr; > + xfer[0].flags = 0; > + xfer[0].buf = reg_data; > + if (val_size == 1) { > + reg_data[0] = > + CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0]; > + xfer[0].len = 1; > + } else { > + reg_data[0] = > + CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0]; > + reg_data[1] = val_size; > + xfer[0].len = 2; > + } > + > + xfer[1].addr = i2c->addr; > + xfer[1].flags = I2C_M_RD; > + xfer[1].len = val_size; > + xfer[1].buf = val; > + > + ret = i2c_transfer(i2c->adapter, xfer, 2); > + if (likely(ret == 2)) { > + dev_dbg(&i2c->dev, "%s(%zu, %u) %#x %#x\n", __func__, > + reg_size, val_size, reg_data[0], *((u8 *)val)); > + return 0; > + } else if (ret < 0) > + return ret; > + else > + return -EIO; > +} > + > +/* The CDCE925 uses a funky way to read/write registers. Bulk mode is > + * just weird, so just use the single byte mode exclusively. */ > +static struct regmap_bus regmap_cdce925_bus = { > + .write = cdce925_regmap_i2c_write, > + .read = cdce925_regmap_i2c_read, > +}; > + > +static int cdce925_probe(struct i2c_client *client, > + const struct i2c_device_id *id) > +{ > + struct clk_cdce925_chip *data; > + struct device_node *node = client->dev.of_node; > + const char *parent_name; > + const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,}; > + struct clk_init_data init; > + struct clk *clk; > + u32 value; > + int i; > + int err; > + struct device_node *np_output; > + char child_name[6]; > + > + dev_dbg(&client->dev, "%s\n", __func__); > + data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); > + if (!data) > + return -ENOMEM; > + > + data->i2c_client = client; > + data->regmap = devm_regmap_init(&client->dev, ®map_cdce925_bus, > + &client->dev, &cdce925_regmap_config); > + if (IS_ERR(data->regmap)) { > + dev_err(&client->dev, "failed to allocate register map\n"); > + return PTR_ERR(data->regmap); > + } > + i2c_set_clientdata(client, data); > + > + parent_name = of_clk_get_parent_name(node, 0); > + if (!parent_name) { > + dev_err(&client->dev, "missing parent clock\n"); > + return -ENODEV; > + } > + dev_dbg(&client->dev, "parent is: %s\n", parent_name); > + > + if (of_property_read_u32(node, "xtal-load-pf", &value) == 0) > + regmap_write(data->regmap, > + CDCE925_REG_XCSEL, (value << 3) & 0xF8); > + /* PWDN bit */ > + regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0); > + > + /* Set input source for Y1 to be the XTAL */ > + regmap_update_bits(data->regmap, 0x02, BIT(7), 0); > + > + init.ops = &cdce925_pll_ops; > + init.flags = 0; > + init.parent_names = &parent_name; > + init.num_parents = parent_name ? 1 : 0; > + > + /* Register PLL clocks */ > + for (i = 0; i < NUMBER_OF_PLLS; ++i) { > + pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d", > + client->dev.of_node->name, i); > + init.name = pll_clk_name[i]; > + data->pll[i].chip = data; > + data->pll[i].hw.init = &init; > + data->pll[i].index = i; > + clk = devm_clk_register(&client->dev, &data->pll[i].hw); > + if (IS_ERR(clk)) { > + dev_err(&client->dev, "Failed register PLL %d\n", i); > + err = PTR_ERR(clk); > + goto error; > + } > + sprintf(child_name, "PLL%d", i+1); > + np_output = of_get_child_by_name(node, child_name); > + if (!np_output) > + continue; > + if (!of_property_read_u32(np_output, > + "clock-frequency", &value)) { > + err = clk_set_rate(clk, value); > + if (err) > + dev_err(&client->dev, > + "unable to set PLL frequency %ud\n", > + value); > + } > + if (!of_property_read_u32(np_output, > + "spread-spectrum", &value)) { > + u8 flag = of_property_read_bool(np_output, > + "spread-spectrum-center") ? 0x80 : 0x00; > + regmap_update_bits(data->regmap, > + 0x16 + (i*CDCE925_OFFSET_PLL), > + 0x80, flag); > + regmap_update_bits(data->regmap, > + 0x12 + (i*CDCE925_OFFSET_PLL), > + 0x07, value & 0x07); > + } > + } > + > + /* Register output clock Y1 */ > + init.ops = &cdce925_clk_y1_ops; > + init.flags = 0; > + init.num_parents = 1; > + init.parent_names = &parent_name; /* Mux Y1 to input */ > + init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name); > + data->clk[0].chip = data; > + data->clk[0].hw.init = &init; > + data->clk[0].index = 0; > + data->clk[0].pdiv = 1; > + clk = devm_clk_register(&client->dev, &data->clk[0].hw); > + kfree(init.name); /* clock framework made a copy of the name */ > + if (IS_ERR(clk)) { > + dev_err(&client->dev, "clock registration Y1 failed\n"); > + err = PTR_ERR(clk); > + goto error; > + } > + data->dt_clk[0] = clk; > + > + /* Register output clocks Y2 .. Y5*/ > + init.ops = &cdce925_clk_ops; > + init.flags = CLK_SET_RATE_PARENT; > + init.num_parents = 1; > + for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) { > + init.name = kasprintf(GFP_KERNEL, "%s.Y%d", > + client->dev.of_node->name, i+1); > + data->clk[i].chip = data; > + data->clk[i].hw.init = &init; > + data->clk[i].index = i; > + data->clk[i].pdiv = 1; > + switch (i) { > + case 1: > + case 2: > + /* Mux Y2/3 to PLL1 */ > + init.parent_names = &pll_clk_name[0]; > + break; > + case 3: > + case 4: > + /* Mux Y4/5 to PLL2 */ > + init.parent_names = &pll_clk_name[1]; > + break; > + } > + clk = devm_clk_register(&client->dev, &data->clk[i].hw); > + kfree(init.name); /* clock framework made a copy of the name */ > + if (IS_ERR(clk)) { > + dev_err(&client->dev, "clock registration failed\n"); > + err = PTR_ERR(clk); > + goto error; > + } > + data->dt_clk[i] = clk; > + } > + > + /* Register the output clocks */ > + data->onecell.clk_num = NUMBER_OF_OUTPUTS; > + data->onecell.clks = data->dt_clk; > + err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get, > + &data->onecell); > + if (err) > + dev_err(&client->dev, "unable to add OF clock provider\n"); > + > + err = 0; > + > +error: > + for (i = 0; i < NUMBER_OF_PLLS; ++i) > + /* clock framework made a copy of the name */ > + kfree(pll_clk_name[i]); > + > + return err; > +} > + > +static const struct i2c_device_id cdce925_id[] = { > + { "cdce925", 0 }, > + { } > +}; > +MODULE_DEVICE_TABLE(i2c, cdce925_id); > + > +static const struct of_device_id clk_cdce925_of_match[] = { > + { .compatible = "ti,cdce925" }, > + { }, > +}; > +MODULE_DEVICE_TABLE(of, clk_cdce925_of_match); > + > +static struct i2c_driver cdce925_driver = { > + .driver = { > + .name = "cdce925", > + .of_match_table = of_match_ptr(clk_cdce925_of_match), > + }, > + .probe = cdce925_probe, > + .id_table = cdce925_id, > +}; > +module_i2c_driver(cdce925_driver); > + > +MODULE_AUTHOR("Mike Looijmans <mike.looijmans@xxxxxxxx>"); > +MODULE_DESCRIPTION("cdce925 driver"); > +MODULE_LICENSE("GPL"); > -- > 1.9.1 > -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html