Re: [PATCH v4 06/13] rust: add `io::{Io, IoRaw}` base types

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi Danilo,

> On 5 Dec 2024, at 11:14, Danilo Krummrich <dakr@xxxxxxxxxx> wrote:
> 
> I/O memory is typically either mapped through direct calls to ioremap()
> or subsystem / bus specific ones such as pci_iomap().
> 
> Even though subsystem / bus specific functions to map I/O memory are
> based on ioremap() / iounmap() it is not desirable to re-implement them
> in Rust.
> 
> Instead, implement a base type for I/O mapped memory, which generically
> provides the corresponding accessors, such as `Io::readb` or
> `Io:try_readb`.
> 
> `Io` supports an optional const generic, such that a driver can indicate
> the minimal expected and required size of the mapping at compile time.
> Correspondingly, calls to the 'non-try' accessors, support compile time
> checks of the I/O memory offset to read / write, while the 'try'
> accessors, provide boundary checks on runtime.
> 
> `IoRaw` is meant to be embedded into a structure (e.g. pci::Bar or
> io::IoMem) which creates the actual I/O memory mapping and initializes

Maybe the in-flight platform::IoMem would be the other example? I see no `io::IoMem` in
your patch other than the one in the doctest.

> `IoRaw` accordingly.
> 
> To ensure that I/O mapped memory can't out-live the device it may be
> bound to, subsystems must embed the corresponding I/O memory type (e.g.
> pci::Bar) into a `Devres` container, such that it gets revoked once the
> device is unbound.
> 
> Signed-off-by: Danilo Krummrich <dakr@xxxxxxxxxx>
> ---
> rust/helpers/helpers.c |   1 +
> rust/helpers/io.c      | 101 ++++++++++++++++
> rust/kernel/io.rs      | 260 +++++++++++++++++++++++++++++++++++++++++
> rust/kernel/lib.rs     |   1 +
> 4 files changed, 363 insertions(+)
> create mode 100644 rust/helpers/io.c
> create mode 100644 rust/kernel/io.rs
> 
> diff --git a/rust/helpers/helpers.c b/rust/helpers/helpers.c
> index 060750af6524..63f9b1da179f 100644
> --- a/rust/helpers/helpers.c
> +++ b/rust/helpers/helpers.c
> @@ -14,6 +14,7 @@
> #include "cred.c"
> #include "err.c"
> #include "fs.c"
> +#include "io.c"
> #include "jump_label.c"
> #include "kunit.c"
> #include "mutex.c"
> diff --git a/rust/helpers/io.c b/rust/helpers/io.c
> new file mode 100644
> index 000000000000..1dde6374c0e2
> --- /dev/null
> +++ b/rust/helpers/io.c
> @@ -0,0 +1,101 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +#include <linux/io.h>
> +
> +void __iomem *rust_helper_ioremap(phys_addr_t offset, size_t size)
> +{
> + return ioremap(offset, size);
> +}
> +
> +void rust_helper_iounmap(volatile void __iomem *addr)
> +{
> + return iounmap(addr);
> +}
> +
> +u8 rust_helper_readb(const volatile void __iomem *addr)
> +{
> + return readb(addr);
> +}
> +
> +u16 rust_helper_readw(const volatile void __iomem *addr)
> +{
> + return readw(addr);
> +}
> +
> +u32 rust_helper_readl(const volatile void __iomem *addr)
> +{
> + return readl(addr);
> +}
> +
> +#ifdef CONFIG_64BIT
> +u64 rust_helper_readq(const volatile void __iomem *addr)
> +{
> + return readq(addr);
> +}
> +#endif
> +
> +void rust_helper_writeb(u8 value, volatile void __iomem *addr)
> +{
> + writeb(value, addr);
> +}
> +
> +void rust_helper_writew(u16 value, volatile void __iomem *addr)
> +{
> + writew(value, addr);
> +}
> +
> +void rust_helper_writel(u32 value, volatile void __iomem *addr)
> +{
> + writel(value, addr);
> +}
> +
> +#ifdef CONFIG_64BIT
> +void rust_helper_writeq(u64 value, volatile void __iomem *addr)
> +{
> + writeq(value, addr);
> +}
> +#endif
> +
> +u8 rust_helper_readb_relaxed(const volatile void __iomem *addr)
> +{
> + return readb_relaxed(addr);
> +}
> +
> +u16 rust_helper_readw_relaxed(const volatile void __iomem *addr)
> +{
> + return readw_relaxed(addr);
> +}
> +
> +u32 rust_helper_readl_relaxed(const volatile void __iomem *addr)
> +{
> + return readl_relaxed(addr);
> +}
> +
> +#ifdef CONFIG_64BIT
> +u64 rust_helper_readq_relaxed(const volatile void __iomem *addr)
> +{
> + return readq_relaxed(addr);
> +}
> +#endif
> +
> +void rust_helper_writeb_relaxed(u8 value, volatile void __iomem *addr)
> +{
> + writeb_relaxed(value, addr);
> +}
> +
> +void rust_helper_writew_relaxed(u16 value, volatile void __iomem *addr)
> +{
> + writew_relaxed(value, addr);
> +}
> +
> +void rust_helper_writel_relaxed(u32 value, volatile void __iomem *addr)
> +{
> + writel_relaxed(value, addr);
> +}
> +
> +#ifdef CONFIG_64BIT
> +void rust_helper_writeq_relaxed(u64 value, volatile void __iomem *addr)
> +{
> + writeq_relaxed(value, addr);
> +}
> +#endif
> diff --git a/rust/kernel/io.rs b/rust/kernel/io.rs
> new file mode 100644
> index 000000000000..36aa2ec1bcc8
> --- /dev/null
> +++ b/rust/kernel/io.rs
> @@ -0,0 +1,260 @@
> +// SPDX-License-Identifier: GPL-2.0
> +
> +//! Memory-mapped IO.
> +//!
> +//! C header: [`include/asm-generic/io.h`](srctree/include/asm-generic/io.h)
> +
> +use crate::error::{code::EINVAL, Result};
> +use crate::{bindings, build_assert};
> +
> +/// Raw representation of an MMIO region.
> +///
> +/// By itself, the existence of an instance of this structure does not provide any guarantees that
> +/// the represented MMIO region does exist or is properly mapped.
> +///
> +/// Instead, the bus specific MMIO implementation must convert this raw representation into an `Io`
> +/// instance providing the actual memory accessors. Only by the conversion into an `Io` structure
> +/// any guarantees are given.
> +pub struct IoRaw<const SIZE: usize = 0> {
> +    addr: usize,
> +    maxsize: usize,
> +}
> +
> +impl<const SIZE: usize> IoRaw<SIZE> {
> +    /// Returns a new `IoRaw` instance on success, an error otherwise.
> +    pub fn new(addr: usize, maxsize: usize) -> Result<Self> {
> +        if maxsize < SIZE {
> +            return Err(EINVAL);
> +        }
> +
> +        Ok(Self { addr, maxsize })
> +    }
> +
> +    /// Returns the base address of the MMIO region.
> +    #[inline]
> +    pub fn addr(&self) -> usize {
> +        self.addr
> +    }
> +
> +    /// Returns the maximum size of the MMIO region.
> +    #[inline]
> +    pub fn maxsize(&self) -> usize {
> +        self.maxsize
> +    }
> +}
> +
> +/// IO-mapped memory, starting at the base address @addr and spanning @maxlen bytes.
> +///
> +/// The creator (usually a subsystem / bus such as PCI) is responsible for creating the
> +/// mapping, performing an additional region request etc.
> +///
> +/// # Invariant
> +///
> +/// `addr` is the start and `maxsize` the length of valid I/O mapped memory region of size
> +/// `maxsize`.
> +///
> +/// # Examples
> +///
> +/// ```no_run
> +/// # use kernel::{bindings, io::{Io, IoRaw}};
> +/// # use core::ops::Deref;
> +///
> +/// // See also [`pci::Bar`] for a real example.
> +/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
> +///
> +/// impl<const SIZE: usize> IoMem<SIZE> {
> +///     /// # Safety
> +///     ///
> +///     /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
> +///     /// virtual address space.
> +///     unsafe fn new(paddr: usize) -> Result<Self>{
> +///         // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
> +///         // valid for `ioremap`.
> +///         let addr = unsafe { bindings::ioremap(paddr as _, SIZE.try_into().unwrap()) };
> +///         if addr.is_null() {
> +///             return Err(ENOMEM);
> +///         }
> +///
> +///         Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
> +///     }
> +/// }
> +///
> +/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
> +///     fn drop(&mut self) {
> +///         // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
> +///         unsafe { bindings::iounmap(self.0.addr() as _); };
> +///     }
> +/// }
> +///
> +/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
> +///    type Target = Io<SIZE>;
> +///
> +///    fn deref(&self) -> &Self::Target {
> +///         // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
> +///         unsafe { Io::from_raw(&self.0) }
> +///    }
> +/// }
> +///
> +///# fn no_run() -> Result<(), Error> {
> +/// // SAFETY: Invalid usage for example purposes.
> +/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
> +/// iomem.writel(0x42, 0x0);
> +/// assert!(iomem.try_writel(0x42, 0x0).is_ok());
> +/// assert!(iomem.try_writel(0x42, 0x4).is_err());
> +/// # Ok(())
> +/// # }
> +/// ```
> +#[repr(transparent)]
> +pub struct Io<const SIZE: usize = 0>(IoRaw<SIZE>);
> +
> +macro_rules! define_read {
> +    ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
> +        /// Read IO data from a given offset known at compile time.
> +        ///
> +        /// Bound checks are performed on compile time, hence if the offset is not known at compile
> +        /// time, the build will fail.
> +        $(#[$attr])*
> +        #[inline]
> +        pub fn $name(&self, offset: usize) -> $type_name {
> +            let addr = self.io_addr_assert::<$type_name>(offset);
> +
> +            // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> +            unsafe { bindings::$name(addr as _) }
> +        }
> +
> +        /// Read IO data from a given offset.
> +        ///
> +        /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
> +        /// out of bounds.
> +        $(#[$attr])*
> +        pub fn $try_name(&self, offset: usize) -> Result<$type_name> {
> +            let addr = self.io_addr::<$type_name>(offset)?;
> +
> +            // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> +            Ok(unsafe { bindings::$name(addr as _) })
> +        }
> +    };
> +}
> +
> +macro_rules! define_write {
> +    ($(#[$attr:meta])* $name:ident, $try_name:ident, $type_name:ty) => {
> +        /// Write IO data from a given offset known at compile time.
> +        ///
> +        /// Bound checks are performed on compile time, hence if the offset is not known at compile
> +        /// time, the build will fail.
> +        $(#[$attr])*
> +        #[inline]
> +        pub fn $name(&self, value: $type_name, offset: usize) {
> +            let addr = self.io_addr_assert::<$type_name>(offset);
> +
> +            // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> +            unsafe { bindings::$name(value, addr as _, ) }
> +        }
> +
> +        /// Write IO data from a given offset.
> +        ///
> +        /// Bound checks are performed on runtime, it fails if the offset (plus the type size) is
> +        /// out of bounds.
> +        $(#[$attr])*
> +        pub fn $try_name(&self, value: $type_name, offset: usize) -> Result {
> +            let addr = self.io_addr::<$type_name>(offset)?;
> +
> +            // SAFETY: By the type invariant `addr` is a valid address for MMIO operations.
> +            unsafe { bindings::$name(value, addr as _) }
> +            Ok(())
> +        }
> +    };
> +}
> +
> +impl<const SIZE: usize> Io<SIZE> {
> +    /// Converts an `IoRaw` into an `Io` instance, providing the accessors to the MMIO mapping.
> +    ///
> +    /// # Safety
> +    ///
> +    /// Callers must ensure that `addr` is the start of a valid I/O mapped memory region of size
> +    /// `maxsize`.
> +    pub unsafe fn from_raw<'a>(raw: &IoRaw<SIZE>) -> &'a Self {
> +        // SAFETY: `Io` is a transparent wrapper around `IoRaw`.
> +        unsafe { &*core::ptr::from_ref(raw).cast() }
> +    }
> +
> +    /// Returns the base address of this mapping.
> +    #[inline]
> +    pub fn addr(&self) -> usize {
> +        self.0.addr()
> +    }
> +
> +    /// Returns the maximum size of this mapping.
> +    #[inline]
> +    pub fn maxsize(&self) -> usize {
> +        self.0.maxsize()
> +    }
> +
> +    #[inline]
> +    const fn offset_valid<U>(offset: usize, size: usize) -> bool {
> +        let type_size = core::mem::size_of::<U>();
> +        if let Some(end) = offset.checked_add(type_size) {
> +            end <= size && offset % type_size == 0
> +        } else {
> +            false
> +        }
> +    }
> +
> +    #[inline]
> +    fn io_addr<U>(&self, offset: usize) -> Result<usize> {
> +        if !Self::offset_valid::<U>(offset, self.maxsize()) {
> +            return Err(EINVAL);
> +        }
> +
> +        // Probably no need to check, since the safety requirements of `Self::new` guarantee that
> +        // this can't overflow.
> +        self.addr().checked_add(offset).ok_or(EINVAL)
> +    }
> +
> +    #[inline]
> +    fn io_addr_assert<U>(&self, offset: usize) -> usize {
> +        build_assert!(Self::offset_valid::<U>(offset, SIZE));
> +
> +        self.addr() + offset
> +    }
> +
> +    define_read!(readb, try_readb, u8);
> +    define_read!(readw, try_readw, u16);
> +    define_read!(readl, try_readl, u32);
> +    define_read!(
> +        #[cfg(CONFIG_64BIT)]
> +        readq,
> +        try_readq,
> +        u64
> +    );
> +
> +    define_read!(readb_relaxed, try_readb_relaxed, u8);
> +    define_read!(readw_relaxed, try_readw_relaxed, u16);
> +    define_read!(readl_relaxed, try_readl_relaxed, u32);
> +    define_read!(
> +        #[cfg(CONFIG_64BIT)]
> +        readq_relaxed,
> +        try_readq_relaxed,
> +        u64
> +    );
> +
> +    define_write!(writeb, try_writeb, u8);
> +    define_write!(writew, try_writew, u16);
> +    define_write!(writel, try_writel, u32);
> +    define_write!(
> +        #[cfg(CONFIG_64BIT)]
> +        writeq,
> +        try_writeq,
> +        u64
> +    );
> +
> +    define_write!(writeb_relaxed, try_writeb_relaxed, u8);
> +    define_write!(writew_relaxed, try_writew_relaxed, u16);
> +    define_write!(writel_relaxed, try_writel_relaxed, u32);
> +    define_write!(
> +        #[cfg(CONFIG_64BIT)]
> +        writeq_relaxed,
> +        try_writeq_relaxed,
> +        u64
> +    );
> +}
> diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs
> index 200c5f99a805..d1f30b1a05fb 100644
> --- a/rust/kernel/lib.rs
> +++ b/rust/kernel/lib.rs
> @@ -79,6 +79,7 @@
> 
> #[doc(hidden)]
> pub use bindings;
> +pub mod io;
> pub use macros;
> pub use uapi;
> 
> -- 
> 2.47.0
> 

I rebased platform::IoMem on top of this, and it still works fine.

As I said, I am testing it by modifying the compatible in `rust_driver_platform`, and
I’ve been able to successfully map and read from a memory-mapped device register.

It’s a read-only register containing some information about the device, and the value
read matches what we get in the C driver.

Tested-by: Daniel Almeida <daniel.almeida@xxxxxxxxxxxxx>
Reviewed-by: Daniel Almeida  <daniel.almeida@xxxxxxxxxxxxx>






[Index of Archives]     [Device Tree Compilter]     [Device Tree Spec]     [Linux Driver Backports]     [Video for Linux]     [Linux USB Devel]     [Linux PCI Devel]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [XFree86]     [Yosemite Backpacking]


  Powered by Linux