On Tue, 10 Dec 2024 23:46:33 +0100 Danilo Krummrich <dakr@xxxxxxxxxx> wrote: > From: Wedson Almeida Filho <wedsonaf@xxxxxxxxx> > > Revocable allows access to objects to be safely revoked at run time. > > This is useful, for example, for resources allocated during device probe; > when the device is removed, the driver should stop accessing the device > resources even if another state is kept in memory due to existing > references (i.e., device context data is ref-counted and has a non-zero > refcount after removal of the device). > > Signed-off-by: Wedson Almeida Filho <wedsonaf@xxxxxxxxx> > Co-developed-by: Danilo Krummrich <dakr@xxxxxxxxxx> > Signed-off-by: Danilo Krummrich <dakr@xxxxxxxxxx> > --- > rust/kernel/lib.rs | 1 + > rust/kernel/revocable.rs | 223 +++++++++++++++++++++++++++++++++++++++ > 2 files changed, 224 insertions(+) > create mode 100644 rust/kernel/revocable.rs > > diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs > index b5da7c520eb8..200c5f99a805 100644 > --- a/rust/kernel/lib.rs > +++ b/rust/kernel/lib.rs > @@ -60,6 +60,7 @@ > pub mod prelude; > pub mod print; > pub mod rbtree; > +pub mod revocable; > pub mod security; > pub mod seq_file; > pub mod sizes; > diff --git a/rust/kernel/revocable.rs b/rust/kernel/revocable.rs > new file mode 100644 > index 000000000000..e464d59eb6b5 > --- /dev/null > +++ b/rust/kernel/revocable.rs > @@ -0,0 +1,223 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +//! Revocable objects. > +//! > +//! The [`Revocable`] type wraps other types and allows access to them to be revoked. The existence > +//! of a [`RevocableGuard`] ensures that objects remain valid. > + > +use crate::{bindings, prelude::*, sync::rcu, types::Opaque}; > +use core::{ > + marker::PhantomData, > + ops::Deref, > + ptr::drop_in_place, > + sync::atomic::{AtomicBool, Ordering}, > +}; > + > +/// An object that can become inaccessible at runtime. > +/// > +/// Once access is revoked and all concurrent users complete (i.e., all existing instances of > +/// [`RevocableGuard`] are dropped), the wrapped object is also dropped. > +/// > +/// # Examples > +/// > +/// ``` > +/// # use kernel::revocable::Revocable; > +/// > +/// struct Example { > +/// a: u32, > +/// b: u32, > +/// } > +/// > +/// fn add_two(v: &Revocable<Example>) -> Option<u32> { > +/// let guard = v.try_access()?; > +/// Some(guard.a + guard.b) > +/// } > +/// > +/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap(); > +/// assert_eq!(add_two(&v), Some(30)); > +/// v.revoke(); > +/// assert_eq!(add_two(&v), None); > +/// ``` > +/// > +/// Sample example as above, but explicitly using the rcu read side lock. > +/// > +/// ``` > +/// # use kernel::revocable::Revocable; > +/// use kernel::sync::rcu; > +/// > +/// struct Example { > +/// a: u32, > +/// b: u32, > +/// } > +/// > +/// fn add_two(v: &Revocable<Example>) -> Option<u32> { > +/// let guard = rcu::read_lock(); > +/// let e = v.try_access_with_guard(&guard)?; > +/// Some(e.a + e.b) > +/// } > +/// > +/// let v = KBox::pin_init(Revocable::new(Example { a: 10, b: 20 }), GFP_KERNEL).unwrap(); > +/// assert_eq!(add_two(&v), Some(30)); > +/// v.revoke(); > +/// assert_eq!(add_two(&v), None); > +/// ``` > +#[pin_data(PinnedDrop)] > +pub struct Revocable<T> { > + is_available: AtomicBool, > + #[pin] > + data: Opaque<T>, > +} > + > +// SAFETY: `Revocable` is `Send` if the wrapped object is also `Send`. This is because while the > +// functionality exposed by `Revocable` can be accessed from any thread/CPU, it is possible that > +// this isn't supported by the wrapped object. > +unsafe impl<T: Send> Send for Revocable<T> {} > + > +// SAFETY: `Revocable` is `Sync` if the wrapped object is both `Send` and `Sync`. We require `Send` > +// from the wrapped object as well because of `Revocable::revoke`, which can trigger the `Drop` > +// implementation of the wrapped object from an arbitrary thread. > +unsafe impl<T: Sync + Send> Sync for Revocable<T> {} > + > +impl<T> Revocable<T> { > + /// Creates a new revocable instance of the given data. > + pub fn new(data: impl PinInit<T>) -> impl PinInit<Self> { > + pin_init!(Self { > + is_available: AtomicBool::new(true), > + data <- Opaque::pin_init(data), > + }) > + } > + > + /// Tries to access the revocable wrapped object. > + /// > + /// Returns `None` if the object has been revoked and is therefore no longer accessible. > + /// > + /// Returns a guard that gives access to the object otherwise; the object is guaranteed to > + /// remain accessible while the guard is alive. In such cases, callers are not allowed to sleep > + /// because another CPU may be waiting to complete the revocation of this object. > + pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> { > + let guard = rcu::read_lock(); > + if self.is_available.load(Ordering::Relaxed) { > + // Since `self.is_available` is true, data is initialised and has to remain valid > + // because the RCU read side lock prevents it from being dropped. > + Some(RevocableGuard::new(self.data.get(), guard)) > + } else { > + None > + } > + } > + > + /// Tries to access the revocable wrapped object. > + /// > + /// Returns `None` if the object has been revoked and is therefore no longer accessible. > + /// > + /// Returns a shared reference to the object otherwise; the object is guaranteed to > + /// remain accessible while the rcu read side guard is alive. In such cases, callers are not > + /// allowed to sleep because another CPU may be waiting to complete the revocation of this > + /// object. > + pub fn try_access_with_guard<'a>(&'a self, _guard: &'a rcu::Guard) -> Option<&'a T> { > + if self.is_available.load(Ordering::Relaxed) { > + // SAFETY: Since `self.is_available` is true, data is initialised and has to remain > + // valid because the RCU read side lock prevents it from being dropped. > + Some(unsafe { &*self.data.get() }) > + } else { > + None > + } > + } > + > + /// # Safety > + /// > + /// Callers must ensure that there are no more concurrent users of the revocable object. > + unsafe fn revoke_internal<const SYNC: bool>(&self) { > + if self > + .is_available > + .compare_exchange(true, false, Ordering::Relaxed, Ordering::Relaxed) > + .is_ok() This can be simplified to `if self.is_available.swap(false, Ordering::Relaxed) {` > + { > + if SYNC { > + // SAFETY: Just an FFI call, there are no further requirements. > + unsafe { bindings::synchronize_rcu() }; > + } > + > + // SAFETY: We know `self.data` is valid because only one CPU can succeed the > + // `compare_exchange` above that takes `is_available` from `true` to `false`. > + unsafe { drop_in_place(self.data.get()) }; > + } > + } > + > + /// Revokes access to and drops the wrapped object. > + /// > + /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`], > + /// expecting that there are no concurrent users of the object. > + /// > + /// # Safety > + /// > + /// Callers must ensure that there are no more concurrent users of the revocable object. > + pub unsafe fn revoke_nosync(&self) { > + // SAFETY: By the safety requirement of this function, the caller ensures that nobody is > + // accessing the data anymore and hence we don't have to wait for the grace period to > + // finish. > + unsafe { self.revoke_internal::<false>() } > + } > + > + /// Revokes access to and drops the wrapped object. > + /// > + /// Access to the object is revoked immediately to new callers of [`Revocable::try_access`]. > + /// > + /// If there are concurrent users of the object (i.e., ones that called > + /// [`Revocable::try_access`] beforehand and still haven't dropped the returned guard), this > + /// function waits for the concurrent access to complete before dropping the wrapped object. > + pub fn revoke(&self) { > + // SAFETY: By passing `true` we ask `revoke_internal` to wait for the grace period to > + // finish. > + unsafe { self.revoke_internal::<true>() } > + } > +} > + > +#[pinned_drop] > +impl<T> PinnedDrop for Revocable<T> { > + fn drop(self: Pin<&mut Self>) { > + // Drop only if the data hasn't been revoked yet (in which case it has already been > + // dropped). > + // SAFETY: We are not moving out of `p`, only dropping in place > + let p = unsafe { self.get_unchecked_mut() }; > + if *p.is_available.get_mut() { > + // SAFETY: We know `self.data` is valid because no other CPU has changed > + // `is_available` to `false` yet, and no other CPU can do it anymore because this CPU > + // holds the only reference (mutable) to `self` now. > + unsafe { drop_in_place(p.data.get()) }; > + } > + } > +} > + > +/// A guard that allows access to a revocable object and keeps it alive. > +/// > +/// CPUs may not sleep while holding on to [`RevocableGuard`] because it's in atomic context > +/// holding the RCU read-side lock. > +/// > +/// # Invariants > +/// > +/// The RCU read-side lock is held while the guard is alive. > +pub struct RevocableGuard<'a, T> { > + data_ref: *const T, > + _rcu_guard: rcu::Guard, > + _p: PhantomData<&'a ()>, > +} Shouldn't this type hold a `&'a T` directly instead of a raw pointer ? > + > +impl<T> RevocableGuard<'_, T> { > + fn new(data_ref: *const T, rcu_guard: rcu::Guard) -> Self { > + Self { > + data_ref, > + _rcu_guard: rcu_guard, > + _p: PhantomData, > + } > + } > +} > + > +impl<T> Deref for RevocableGuard<'_, T> { > + type Target = T; > + > + fn deref(&self) -> &Self::Target { > + // SAFETY: By the type invariants, we hold the rcu read-side lock, so the object is > + // guaranteed to remain valid. > + unsafe { &*self.data_ref } > + } > +} > -- > 2.47.0 Benoît du Garreau