On Mon, Jul 08, 2024 at 02:22:40PM GMT, Konrad Dybcio wrote: > From: AngeloGioacchino Del Regno <angelogioacchino.delregno@xxxxxxxxxxxxxx> > > Introduce a new driver (based on qcom-cpr for CPRv1 IP) for the newer > Qualcomm Core Power Reduction hardware, known downstream as CPR[34h] > (h for hardened). > > In these new CPR versions, support for various new features was introduced. > That includes: > * voltage reduction for the GPU > * security hardening > * a new way of controlling CPU DVFS, based on internal communication > between CPRh and Operating State Manager MCUs. > > The CPR v3, v4 and CPRh are present in a broad range of SoCs, from the > mid-range to the high end ones including, but not limited to: > MSM8953/8996/8998 and SDM630/636/660/845. > > Note that to reduce the giant review and testing matrix of the driver, this > patch (admittedly, somewhat confusingly but for good reasons) omits support > for CPR*3* specifically, which is otherwise quite straightforward to add. > > Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@xxxxxxxxxxxxxx> > [Konrad: rebase, a whole lot of cleanup/fixes] > Signed-off-by: Konrad Dybcio <konrad.dybcio@xxxxxxxxxx> > --- > drivers/pmdomain/qcom/Kconfig | 22 + > drivers/pmdomain/qcom/Makefile | 4 +- > drivers/pmdomain/qcom/cpr-common.h | 2 + > drivers/pmdomain/qcom/cpr3.c | 2711 ++++++++++++++++++++++++++++++++++++ > include/soc/qcom/cpr.h | 17 + > 5 files changed, 2755 insertions(+), 1 deletion(-) > > diff --git a/drivers/pmdomain/qcom/Kconfig b/drivers/pmdomain/qcom/Kconfig > index 3d3948eabef0..f7ab4e57fec4 100644 > --- a/drivers/pmdomain/qcom/Kconfig > +++ b/drivers/pmdomain/qcom/Kconfig > @@ -1,9 +1,13 @@ > # SPDX-License-Identifier: GPL-2.0-only > menu "Qualcomm PM Domains" > > +config QCOM_CPR_COMMON > + tristate > + > config QCOM_CPR > tristate "QCOM Core Power Reduction (CPR) support" > depends on ARCH_QCOM && HAS_IOMEM > + select QCOM_CPR_COMMON > select PM_OPP > select REGMAP > help > @@ -17,6 +21,24 @@ config QCOM_CPR > To compile this driver as a module, choose M here: the module will > be called qcom-cpr > > +config QCOM_CPR3 > + tristate "QCOM Core Power Reduction (CPR v3/v4/Hardened) support" > + depends on ARCH_QCOM && HAS_IOMEM > + select QCOM_CPR_COMMON > + select PM_OPP > + select REGMAP > + help > + Say Y here to enable support for the CPR hardware found on a broad > + variety of Qualcomm SoCs like MSM8996, MSM8998, SDM630, SDM660, > + SDM845 and others. > + > + This driver populates OPP tables and makes adjustments to them > + based on feedback from the CPR hardware. If you want to do CPU > + and/or GPU frequency scaling say Y here. > + > + To compile this driver as a module, choose M here: the module will > + be called qcom-cpr3 > + > config QCOM_RPMHPD > tristate "Qualcomm RPMh Power domain driver" > depends on QCOM_RPMH && QCOM_COMMAND_DB > diff --git a/drivers/pmdomain/qcom/Makefile b/drivers/pmdomain/qcom/Makefile > index b28c8d9128c4..d59fac580525 100644 > --- a/drivers/pmdomain/qcom/Makefile > +++ b/drivers/pmdomain/qcom/Makefile > @@ -1,4 +1,6 @@ > # SPDX-License-Identifier: GPL-2.0 > -obj-$(CONFIG_QCOM_CPR) += cpr-common.o cpr.o > +obj-$(CONFIG_QCOM_CPR_COMMON) += cpr-common.o > +obj-$(CONFIG_QCOM_CPR) += cpr.o > +obj-$(CONFIG_QCOM_CPR3) += cpr3.o > obj-$(CONFIG_QCOM_RPMPD) += rpmpd.o > obj-$(CONFIG_QCOM_RPMHPD) += rpmhpd.o > diff --git a/drivers/pmdomain/qcom/cpr-common.h b/drivers/pmdomain/qcom/cpr-common.h > index 2c5bb81ab713..17f55bbc4a11 100644 > --- a/drivers/pmdomain/qcom/cpr-common.h > +++ b/drivers/pmdomain/qcom/cpr-common.h > @@ -65,6 +65,8 @@ struct corner { > struct corner_data { > unsigned int fuse_corner; > u64 freq; > + int oloop_vadj; > + int cloop_vadj; > }; > > struct acc_desc { > diff --git a/drivers/pmdomain/qcom/cpr3.c b/drivers/pmdomain/qcom/cpr3.c > new file mode 100644 > index 000000000000..de24973978b7 > --- /dev/null > +++ b/drivers/pmdomain/qcom/cpr3.c > @@ -0,0 +1,2711 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (c) 2013-2020, The Linux Foundation. All rights reserved. > + * Copyright (c) 2019 Linaro Limited > + * Copyright (c) 2021, AngeloGioacchino Del Regno > + * <angelogioacchino.delregno@xxxxxxxxxxxxxx> > + */ > + > +#include <linux/bitops.h> > +#include <linux/clk.h> > +#include <linux/debugfs.h> > +#include <linux/err.h> > +#include <linux/init.h> > +#include <linux/interrupt.h> > +#include <linux/io.h> > +#include <linux/kernel.h> > +#include <linux/mfd/syscon.h> > +#include <linux/module.h> > +#include <linux/nvmem-consumer.h> > +#include <linux/of_device.h> > +#include <linux/of.h> > +#include <linux/platform_device.h> > +#include <linux/pm_domain.h> > +#include <linux/pm_opp.h> > +#include <linux/regmap.h> > +#include <linux/regulator/consumer.h> > +#include <linux/slab.h> > +#include <linux/string.h> > +#include <linux/workqueue.h> > +#include <soc/qcom/cpr.h> > + > +#include "cpr-common.h" > + > +#define CPR3_RO_COUNT 16 > +#define CPR3_RO_MASK GENMASK(CPR3_RO_COUNT - 1, 0) > + > +/* CPR3 registers */ > +#define CPR3_REG_CPR_VERSION 0x0 > +#define CPRH_CPR_VERSION_4P5 0x40050000 > + > +#define CPR3_REG_CPR_CTL 0x4 > +#define CPR3_CPR_CTL_LOOP_EN_MASK BIT(0) > +#define CPR3_CPR_CTL_IDLE_CLOCKS_MASK GENMASK(5, 1) > +#define CPR3_CPR_CTL_COUNT_MODE_MASK GENMASK(7, 6) > + #define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN 0 > + #define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MAX 1 > + #define CPR3_CPR_CTL_COUNT_MODE_STAGGERED 2 > + #define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE 3 > +#define CPR3_CPR_CTL_COUNT_REPEAT_MASK GENMASK(31, 9) > + > +#define CPR3_REG_CPR_STATUS 0x8 > +#define CPR3_CPR_STATUS_BUSY_MASK BIT(0) > + > +/* > + * This register is not present on controllers that support HW closed-loop > + * except CPR4 APSS controller. > + */ > +#define CPR3_REG_CPR_TIMER_AUTO_CONT 0xC > + > +#define CPR3_REG_CPR_STEP_QUOT 0x14 > +#define CPR3_CPR_STEP_QUOT_MIN_MASK GENMASK(5, 0) > +#define CPR3_CPR_STEP_QUOT_MAX_MASK GENMASK(11, 6) > +#define CPRH_DELTA_QUOT_STEP_FACTOR 4 > + > +#define CPR3_REG_GCNT(ro) (0xA0 + 0x4 * (ro)) > +#define CPR3_REG_SENSOR_OWNER(sensor) (0x200 + 0x4 * (sensor)) > + > +#define CPR3_REG_CONT_CMD 0x800 > +#define CPR3_CONT_CMD_ACK 0x1 > +#define CPR3_CONT_CMD_NACK 0x0 > + > +#define CPR3_REG_THRESH(thread) (0x808 + 0x440 * (thread)) > +#define CPR3_THRESH_CONS_DOWN_MASK GENMASK(3, 0) > +#define CPR3_THRESH_CONS_UP_MASK GENMASK(7, 4) > +#define CPR3_THRESH_DOWN_THRESH_MASK GENMASK(12, 8) > +#define CPR3_THRESH_UP_THRESH_MASK GENMASK(17, 13) > + > +#define CPR3_REG_RO_MASK(thread) (0x80C + 0x440 * (thread)) > + > +#define CPR3_REG_RESULT0(thread) (0x810 + 0x440 * (thread)) > +#define CPR3_RESULT0_BUSY_MASK BIT(0) > +#define CPR3_RESULT0_STEP_DN_MASK BIT(1) > +#define CPR3_RESULT0_STEP_UP_MASK BIT(2) > +#define CPR3_RESULT0_ERROR_STEPS_MASK GENMASK(7, 3) > +#define CPR3_RESULT0_ERROR_MASK GENMASK(19, 8) > +#define CPR3_RESULT0_NEG_MASK BIT(20) > + > +#define CPR3_REG_RESULT1(thread) (0x814 + 0x440 * (thread)) > +#define CPR3_RESULT1_QUOT_MIN_MASK GENMASK(11, 0) > +#define CPR3_RESULT1_QUOT_MAX_MASK GENMASK(23, 12) > +#define CPR3_RESULT1_RO_MIN_MASK GENMASK(27, 24) > +#define CPR3_RESULT1_RO_MAX_MASK GENMASK(31, 28) > + > +#define CPR3_REG_RESULT2(thread) (0x818 + 0x440 * (thread)) > +#define CPR3_RESULT2_STEP_QUOT_MIN_MASK GENMASK(5, 0) > +#define CPR3_RESULT2_STEP_QUOT_MAX_MASK GENMASK(11, 6) > +#define CPR3_RESULT2_SENSOR_MIN_MASK GENMASK(23, 16) > +#define CPR3_RESULT2_SENSOR_MAX_MASK GENMASK(31, 24) > + > +#define CPR3_REG_IRQ_EN 0x81C > +#define CPR3_REG_IRQ_CLEAR 0x820 > +#define CPR3_REG_IRQ_STATUS 0x824 > +#define CPR3_IRQ_UP BIT(3) > +#define CPR3_IRQ_MID BIT(2) > +#define CPR3_IRQ_DOWN BIT(1) > +#define CPR3_IRQ_ALL (CPR3_IRQ_UP | CPR3_IRQ_MID | CPR3_IRQ_DOWN) > + > +#define CPR3_REG_TARGET_QUOT(thread, ro) (0x840 + 0x440 * (thread) + 0x4 * (ro)) > + > +/* CPR4 controller specific registers and bit definitions */ > +#define CPR4_REG_CPR_TIMER_CLAMP 0x10 > +#define CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN BIT(27) > + > +#define CPR4_REG_MISC 0x700 > +#define CPR4_MISC_RESET_STEP_QUOT_LOOP_EN BIT(2) > +#define CPR4_MISC_THREAD_HAS_ALWAYS_VOTE_EN BIT(3) > + > +#define CPR4_REG_SAW_ERROR_STEP_LIMIT 0x7A4 > +#define CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK GENMASK(4, 0) > +#define CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT 0 > +#define CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK GENMASK(9, 5) > +#define CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT 5 > + > +#define CPR4_REG_MARGIN_TEMP_CORE_TIMERS 0x7A8 > +#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK GENMASK(28, 18) > +#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHFT 18 > + > +#define CPR4_REG_MARGIN_ADJ_CTL 0x7F8 > +#define CPR4_MARGIN_ADJ_HW_CLOSED_LOOP_EN BIT(4) > +#define CPR4_MARGIN_ADJ_PER_RO_KV_MARGIN_EN BIT(7) > +#define CPR4_MARGIN_ADJ_PMIC_STEP_SIZE_MASK GENMASK(16, 12) > +#define CPR4_MARGIN_ADJ_PMIC_STEP_SIZE_SHIFT 12 > + > +#define CPR4_REG_CPR_MASK_THREAD(thread) (0x80C + 0x440 * (thread)) > +#define CPR4_CPR_MASK_THREAD_DISABLE_THREAD BIT(31) > +#define CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK GENMASK(15, 0) > + > +/* CPRh controller specific registers and bit definitions */ > +#define __CPRH_REG_CORNER(rbase, tbase, tid, cnum) (rbase + (tbase * tid) + (0x4 * cnum)) > +#define CPRH_REG_CORNER(d, t, c) __CPRH_REG_CORNER(d->reg_corner, d->reg_corner_tid, t, c) > + > +#define CPRH_CTL_OSM_ENABLED BIT(0) > +#define CPRH_CTL_BASE_VOLTAGE_MASK GENMASK(10, 1) > +#define CPRH_CTL_BASE_VOLTAGE_SHIFT 1 > +#define CPRH_CTL_MODE_SWITCH_DELAY_MASK GENMASK(24, 17) > +#define CPRH_CTL_MODE_SWITCH_DELAY_SHIFT 17 > +#define CPRH_CTL_VOLTAGE_MULTIPLIER_MASK GENMASK(28, 25) > +#define CPRH_CTL_VOLTAGE_MULTIPLIER_SHIFT 25 > + > +#define CPRH_CORNER_INIT_VOLTAGE_MASK GENMASK(7, 0) > +#define CPRH_CORNER_FLOOR_VOLTAGE_MASK GENMASK(15, 8) > +#define CPRH_CORNER_QUOT_DELTA_MASK GENMASK(24, 16) > +#define CPRH_CORNER_RO_SEL_MASK GENMASK(28, 25) > +#define CPRH_CORNER_CPR_CL_DISABLE BIT(29) > + > +#define CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE 255 > +#define CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE 255 > +#define CPRH_CORNER_QUOT_DELTA_MAX_VALUE 511 > + > +enum cpr_type { > + CTRL_TYPE_CPR4, > + CTRL_TYPE_CPRH, > + CTRL_TYPE_MAX, > +}; > + > +/* > + * struct cpr_thread_desc - CPR Thread-specific parameters > + * > + * @controller_id: Identifier of the CPR controller expected by the HW > + * @hw_tid: Identifier of the CPR thread expected by the HW > + * @ro_scaling_factor: Scaling factor for each ring oscillator entry > + * @ro_scaling_factor_common: Whether the ro_scaling_factor value is common for all fuses > + * @init_voltage_step: Voltage in uV for number of steps read from fuse array > + * @init_voltage_width: Bit-width of the voltage read from the fuse array > + * @sensor_range_start: First sensor ID used by a thread > + * @sensor_range_end: Last sensor ID used by a thread > + * @step_quot_init_min: Minimum achievable step quotient for this corner > + * @step_quot_init_max: Maximum achievable step quotient for this corner > + * @num_fuse_corners: Number of valid entries in fuse_corner_data > + * @fuse_corner_data: Parameters for calculation of each fuse corner > + */ > +struct cpr_thread_desc { > + u8 controller_id; > + u8 hw_tid; > + const int (*ro_scaling_factor)[CPR3_RO_COUNT]; > + bool ro_scaling_factor_common; > + int init_voltage_step; > + int init_voltage_width; > + u8 sensor_range_start; > + u8 sensor_range_end; > + u8 step_quot_init_min; > + u8 step_quot_init_max; > + unsigned int num_fuse_corners; > + struct fuse_corner_data *fuse_corner_data; > +}; > + > +/* > + * struct cpr_desc - Driver instance-wide CPR parameters > + * > + * @cpr_type: Type (base version) of the CPR controller > + * @num_threads: Max. number of threads supported by this controller > + * @timer_delay_us: Loop delay time in uS > + * @timer_updn_delay_us: Voltage after-up/before-down delay time in uS > + * @timer_cons_up: Wait between consecutive up requests in uS > + * @timer_cons_down: Wait between consecutive down requests in uS > + * @up_threshold: Generic corner up threshold > + * @down_threshold: Generic corner down threshold > + * @idle_clocks: CPR Sensor: idle timer in cpr clocks unit > + * @count_mode: CPR Sensor: counting mode > + * @count_repeat: CPR Sensor: number of times to repeat reading > + * @gcnt_us: CPR measurement interval in uS > + * @vreg_step_fixed: Regulator voltage per step (if vreg unusable) > + * @vreg_step_up_limit: Num. of steps up at once before re-measuring sensors > + * @vreg_step_down_limit: Num. of steps dn at once before re-measuring sensors > + * @vdd_settle_time_us: Settling timer to account for one VDD supply step > + * @corner_settle_time_us: Settle time for corner switch request > + * @mem_acc_threshold: Memory Accelerator (MEM-ACC) voltage threshold > + * @apm_threshold: Array Power Mux (APM) voltage threshold > + * @apm_crossover: Array Power Mux (APM) corner crossover voltage > + * @apm_hysteresis: Hysteresis for APM V-threshold related calculations > + * @cpr_base_voltage: Safety: Absolute minimum voltage (uV) on this CPR > + * @cpr_max_voltage: Safety: Absolute maximum voltage (uV) on this CPR > + * @pd_throttle_val: CPR Power Domain throttle during voltage switch > + * @threads: Array containing "CPR Thread" specific parameters > + * @reduce_to_fuse_uV: Reduce corner max volts (if higher) to fuse ceiling > + * @reduce_to_corner_uV: Reduce corner max volts (if higher) to corner ceil. > + * @hw_closed_loop_en: Enable CPR HW Closed-Loop voltage auto-adjustment > + */ > +struct cpr_desc { > + enum cpr_type cpr_type; > + unsigned int num_threads; > + unsigned int timer_delay_us; > + u8 timer_updn_delay_us; > + u8 timer_cons_up; > + u8 timer_cons_down; > + u8 up_threshold; > + u8 down_threshold; > + u8 idle_clocks; > + u8 count_mode; > + u8 count_repeat; > + u8 gcnt_us; > + u16 vreg_step_fixed; > + u8 vreg_step_up_limit; > + u8 vreg_step_down_limit; > + u8 vdd_settle_time_us; > + u8 corner_settle_time_us; > + int mem_acc_threshold; > + int apm_threshold; > + int apm_crossover; > + int apm_hysteresis; > + u32 cpr_base_voltage; > + u32 cpr_max_voltage; > + u32 pd_throttle_val; > + > + const struct cpr_thread_desc **threads; > + bool reduce_to_fuse_uV; > + bool reduce_to_corner_uV; > + bool hw_closed_loop_en; > +}; > + > +struct cpr_drv; > +struct cpr_thread { > + int num_corners; > + int id; > + bool enabled; > + void __iomem *base; > + struct clk *cpu_clk; > + struct corner *corner; > + struct corner *corners; > + struct fuse_corner *fuse_corners; > + struct cpr_drv *drv; > + struct cpr_ext_data ext_data; > + struct generic_pm_domain pd; > + struct device *attached_cpu_dev; > + struct work_struct restart_work; > + bool restarting; > + > + const struct cpr_fuse *cpr_fuses; > + const struct cpr_thread_desc *desc; > +}; > + > +struct cpr_drv { > + int irq; > + unsigned int ref_clk_khz; > + struct device *dev; > + struct mutex lock; > + struct regulator *vreg; > + struct regmap *tcsr; > + u32 gcnt; > + u32 speed_bin; > + u32 fusing_rev; > + u32 last_uV; > + u32 cpr_hw_rev; > + u32 reg_corner; > + u32 reg_corner_tid; > + u32 reg_ctl; > + u32 reg_status; > + int fuse_level_set; > + int extra_corners; > + unsigned int vreg_step; > + bool enabled; > + > + struct cpr_thread *threads; > + struct genpd_onecell_data cell_data; > + > + const struct cpr_desc *desc; > + const struct acc_desc *acc_desc; > + struct dentry *debugfs; > +}; > + > +/** > + * cpr_get_corner_post_vadj() - Get corner post-voltage adjustment values > + * @opp: Pointer to the corresponding OPP struct > + * @tid: CPR thread ID > + * @open_loop: Pointer to the closed-loop adjustment value > + * @closed_loop: Pointer to the open-loop adjustment value > + * > + * Return: 0 on success, negative errno on failure > + */ > +static int cpr_get_corner_post_vadj(struct dev_pm_opp *opp, u32 tid, > + s32 *open_loop, s32 *closed_loop) > +{ > + struct device_node *np; > + int ret; > + > + /* > + * There is no of_property_read_s32_index, so we just store the > + * result into a s32 variable. After all, the OF API is doing > + * the exact same for of_property_read_s32... > + */ > + np = dev_pm_opp_get_of_node(opp); > + > + ret = of_property_read_u32_index(np, "qcom,opp-oloop-vadj", > + tid, open_loop); > + if (ret) > + goto out; > + > + ret = of_property_read_u32_index(np, "qcom,opp-cloop-vadj", > + tid, closed_loop); > + > +out: > + of_node_put(np); > + return ret; > +} > + > +static void cpr_write(struct cpr_thread *thread, u32 offset, u32 value) > +{ > + writel(value, thread->base + offset); > +} > + > +static u32 cpr_read(struct cpr_thread *thread, u32 offset) > +{ > + return readl(thread->base + offset); > +} > + > +static void > +cpr_masked_write(struct cpr_thread *thread, u32 offset, u32 mask, u32 value) > +{ > + u32 val; > + > + val = readl(thread->base + offset); > + val &= ~mask; > + val |= value & mask; > + writel(val, thread->base + offset); > +} > + > +static void cpr_irq_clr(struct cpr_thread *thread) > +{ > + cpr_write(thread, CPR3_REG_IRQ_CLEAR, CPR3_IRQ_ALL); > +} > + > +static void cpr_irq_clr_nack(struct cpr_thread *thread) > +{ > + cpr_irq_clr(thread); > + cpr_write(thread, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_NACK); > +} > + > +static void cpr_irq_clr_ack(struct cpr_thread *thread) > +{ > + cpr_irq_clr(thread); > + cpr_write(thread, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_ACK); > +} > + > +static void cpr_irq_set(struct cpr_thread *thread, u32 int_bits) > +{ > + /* On CPR-hardened, interrupts are managed by and on firmware */ > + if (thread->drv->desc->cpr_type == CTRL_TYPE_CPRH) > + return; > + > + cpr_write(thread, CPR3_REG_IRQ_EN, int_bits); > +} > + > +/** > + * cpr_ctl_enable() - Enable CPR thread > + * @thread: Structure holding CPR thread-specific parameters > + */ > +static void cpr_ctl_enable(struct cpr_thread *thread) > +{ > + if (thread->drv->enabled && !thread->restarting) { > + cpr_masked_write(thread, CPR3_REG_CPR_CTL, > + CPR3_CPR_CTL_LOOP_EN_MASK, > + CPR3_CPR_CTL_LOOP_EN_MASK); > + } > +} > + > +/** > + * cpr_ctl_disable() - Disable CPR thread > + * @thread: Structure holding CPR thread-specific parameters > + */ > +static void cpr_ctl_disable(struct cpr_thread *thread) > +{ > + const struct cpr_desc *desc = thread->drv->desc; > + > + if (desc->cpr_type != CTRL_TYPE_CPRH) { > + cpr_irq_set(thread, 0); > + cpr_irq_clr(thread); > + } > + > + cpr_masked_write(thread, CPR3_REG_CPR_CTL, > + CPR3_CPR_CTL_LOOP_EN_MASK, 0); > +} > + > +/** > + * cpr_ctl_is_enabled() - Check if thread is enabled > + * @thread: Structure holding CPR thread-specific parameters > + * > + * Return: true if the CPR is enabled, false if it is disabled. > + */ > +static bool cpr_ctl_is_enabled(struct cpr_thread *thread) > +{ > + u32 reg_val; > + > + reg_val = cpr_read(thread, CPR3_REG_CPR_CTL); > + return reg_val & CPR3_CPR_CTL_LOOP_EN_MASK; > +} > + > +/** > + * cpr_check_any_thread_busy() - Check if HW is done processing > + * @thread: Structure holding CPR thread-specific parameters > + * > + * Return: true if the CPR is busy, false if it is ready. > + */ > +static bool cpr_check_any_thread_busy(struct cpr_thread *thread) > +{ > + int i; > + > + for (i = 0; i < thread->drv->desc->num_threads; i++) > + if (cpr_read(thread, CPR3_REG_RESULT0(i)) & > + CPR3_RESULT0_BUSY_MASK) > + return true; > + > + return false; > +} > + > +static void cpr_restart_worker(struct work_struct *work) > +{ > + struct cpr_thread *thread = container_of(work, struct cpr_thread, > + restart_work); > + struct cpr_drv *drv = thread->drv; > + int i; > + > + mutex_lock(&drv->lock); > + > + thread->restarting = true; > + cpr_ctl_disable(thread); > + disable_irq(drv->irq); > + > + mutex_unlock(&drv->lock); > + > + for (i = 0; i < 20; i++) { > + u32 cpr_status = cpr_read(thread, CPR3_REG_CPR_STATUS); > + u32 ctl = cpr_read(thread, CPR3_REG_CPR_CTL); > + > + if ((cpr_status & CPR3_CPR_STATUS_BUSY_MASK) && > + !(ctl & CPR3_CPR_CTL_LOOP_EN_MASK)) > + break; > + > + udelay(10); > + } > + > + cpr_irq_clr(thread); > + > + for (i = 0; i < 20; i++) { > + u32 status = cpr_read(thread, CPR3_REG_IRQ_STATUS); > + > + if (!(status & CPR3_IRQ_ALL)) > + break; > + udelay(10); > + } > + > + mutex_lock(&drv->lock); > + > + thread->restarting = false; > + enable_irq(drv->irq); > + cpr_ctl_enable(thread); > + > + mutex_unlock(&drv->lock); > +} > + > +/** > + * cpr_corner_restore() - Restore saved corner level > + * @thread: Structure holding CPR thread-specific parameters > + * @corner: Structure holding the saved corner level > + */ > +static void cpr_corner_restore(struct cpr_thread *thread, > + struct corner *corner) > +{ > + const struct cpr_thread_desc *tdesc = thread->desc; > + struct fuse_corner *fuse = corner->fuse_corner; > + struct cpr_drv *drv = thread->drv; > + u32 ro_sel = fuse->ring_osc_idx; > + > + cpr_write(thread, CPR3_REG_GCNT(ro_sel), drv->gcnt); > + > + cpr_write(thread, CPR3_REG_RO_MASK(tdesc->hw_tid), > + CPR3_RO_MASK & ~BIT(ro_sel)); > + > + cpr_write(thread, CPR3_REG_TARGET_QUOT(tdesc->hw_tid, ro_sel), > + fuse->quot - corner->quot_adjust); > + > + if (drv->desc->cpr_type == CTRL_TYPE_CPR4) > + cpr_masked_write(thread, > + CPR4_REG_CPR_MASK_THREAD(tdesc->hw_tid), > + CPR4_CPR_MASK_THREAD_DISABLE_THREAD | > + CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK, 0); > + > + thread->corner = corner; > + corner->last_uV = corner->uV; > +} > + > +/** > + * cpr_set_acc() - Set fuse level to the mem-acc > + * @drv: Main driver structure > + * @f: Fuse level > + */ > +static void cpr_set_acc(struct cpr_drv *drv, int f) > +{ > + const struct acc_desc *desc = drv->acc_desc; > + struct reg_sequence *s = desc->settings; > + int n = desc->num_regs_per_fuse; > + > + if (!drv->tcsr) > + return; > + > + if (!s || f == drv->fuse_level_set) > + return; > + > + regmap_multi_reg_write(drv->tcsr, s + (n * f), n); > + drv->fuse_level_set = f; > +} > + > +/** > + * cpr_commit_state() - Set the newly requested voltage > + * @thread: Structure holding CPR thread-specific parameters > + * > + * Return: Zero for success or negative number on errors. > + */ > +static int cpr_commit_state(struct cpr_thread *thread) > +{ > + int min_uV = 0, max_uV = 0, new_uV = 0, fuse_level = 0; > + struct cpr_drv *drv = thread->drv; > + enum voltage_change_dir dir; > + u32 next_irqmask = 0; > + int ret, i; > + > + /* On CPRhardened, control states are managed in firmware */ > + if (drv->desc->cpr_type == CTRL_TYPE_CPRH) > + return 0; > + > + for (i = 0; i < drv->desc->num_threads; i++) { > + struct cpr_thread *t = &drv->threads[i]; > + > + if (!t->corner) > + continue; > + > + fuse_level = max(fuse_level, > + (int) (t->corner->fuse_corner - > + &t->fuse_corners[0])); > + > + max_uV = max(max_uV, t->corner->max_uV); > + min_uV = max(min_uV, t->corner->min_uV); > + new_uV = max(new_uV, t->corner->last_uV); > + } > + dev_vdbg(drv->dev, "%s: new uV: %d, last uV: %d\n", > + __func__, new_uV, drv->last_uV); > + > + /* > + * Safety measure: if the voltage is out of the globally allowed > + * range, then go out and warn the user. > + * This should *never* happen. > + */ > + if (new_uV > drv->desc->cpr_max_voltage || > + new_uV < drv->desc->cpr_base_voltage) { > + dev_warn(drv->dev, "Voltage (%u uV) out of range.", new_uV); > + return -EINVAL; > + } > + > + if (new_uV == drv->last_uV || fuse_level == drv->fuse_level_set) > + goto out; > + > + dir = fuse_level > drv->fuse_level_set ? UP : DOWN; > + > + if (dir == DOWN) > + cpr_set_acc(drv, fuse_level); > + > + dev_vdbg(drv->dev, "setting voltage: %d\n", new_uV); > + > + ret = regulator_set_voltage(drv->vreg, new_uV, new_uV); > + if (ret) { > + dev_err_ratelimited(drv->dev, "failed to set voltage %d: %d\n", new_uV, ret); > + return ret; > + } > + > + if (dir == UP) > + cpr_set_acc(drv, fuse_level); > + > + drv->last_uV = new_uV; > +out: > + if (new_uV > min_uV) > + next_irqmask |= CPR3_IRQ_DOWN; > + if (new_uV < max_uV) > + next_irqmask |= CPR3_IRQ_UP; > + > + cpr_irq_set(thread, next_irqmask); > + > + return 0; > +} > + > +static unsigned int cpr_get_cur_perf_state(struct cpr_thread *thread) > +{ > + return thread->corner ? thread->corner - thread->corners + 1 : 0; > +} > + > +/** > + * cpr_scale() - Calculate new voltage for the received direction > + * @thread: Structure holding CPR thread-specific parameters > + * @dir: Enumeration for voltage change direction > + * > + * The CPR scales one by one: this function calculates the new > + * voltage to set when a voltage-UP or voltage-DOWN request comes > + * and stores it into the per-thread structure that gets passed. > + */ > +static void cpr_scale(struct cpr_thread *thread, enum voltage_change_dir dir) > +{ > + struct cpr_drv *drv = thread->drv; > + const struct cpr_thread_desc *tdesc = thread->desc; > + u32 val, error_steps; > + int last_uV, new_uV; > + struct corner *corner; > + > + if (dir != UP && dir != DOWN) > + return; > + > + corner = thread->corner; > + val = cpr_read(thread, CPR3_REG_RESULT0(tdesc->hw_tid)); > + error_steps = FIELD_GET(CPR3_RESULT0_ERROR_STEPS_MASK, val); > + > + last_uV = corner->last_uV; > + > + if (dir == UP) { > + if (!(val & CPR3_RESULT0_STEP_UP_MASK)) > + return; > + > + /* Calculate new voltage */ > + new_uV = last_uV + drv->vreg_step; > + new_uV = min(new_uV, corner->max_uV); > + > + dev_vdbg(drv->dev, "[T%u] UP - new_uV=%d last_uV=%d p-state=%u st=%u\n", > + thread->id, new_uV, last_uV, > + cpr_get_cur_perf_state(thread), error_steps); > + } else { > + if (!(val & CPR3_RESULT0_STEP_DN_MASK)) > + return; > + > + /* Calculate new voltage */ > + new_uV = last_uV - drv->vreg_step; > + new_uV = max(new_uV, corner->min_uV); > + dev_vdbg(drv->dev, "[T%u] DOWN - new_uV=%d last_uV=%d p-state=%u st=%u\n", > + thread->id, new_uV, last_uV, > + cpr_get_cur_perf_state(thread), error_steps); > + } > + corner->last_uV = new_uV; > +} > + > +/** > + * cpr_irq_handler() - Handle CPR3/CPR4 status interrupts > + * @irq: Number of the interrupt > + * @dev: Pointer to the cpr_thread structure > + * > + * Handle the interrupts coming from non-hardened CPR HW as to get > + * an ok to scale voltages immediately, or to pass error status to > + * the hardware (either success/ACK or failure/NACK). > + * > + * Return: IRQ_SUCCESS for success, IRQ_NONE if the CPR is disabled. > + */ > +static irqreturn_t cpr_irq_handler(int irq, void *dev) > +{ > + struct cpr_thread *thread = dev; > + struct cpr_drv *drv = thread->drv; > + irqreturn_t ret = IRQ_HANDLED; > + int i, rc; > + enum voltage_change_dir dir = NO_CHANGE; > + u32 val; > + > + guard(mutex)(&drv->lock); > + > + val = cpr_read(thread, CPR3_REG_IRQ_STATUS); > + > + dev_vdbg(drv->dev, "IRQ_STATUS = 0x%x\n", val); > + > + if (!cpr_ctl_is_enabled(thread)) { > + dev_vdbg(drv->dev, "CPR is disabled\n"); > + return IRQ_NONE; > + } else if (cpr_check_any_thread_busy(thread)) { > + cpr_irq_clr_nack(thread); > + dev_dbg(drv->dev, "CPR measurement is not ready\n"); > + } else { > + /* > + * Following sequence of handling is as per each IRQ's > + * priority > + */ > + if (val & CPR3_IRQ_UP) > + dir = UP; > + else if (val & CPR3_IRQ_DOWN) > + dir = DOWN; > + > + if (dir != NO_CHANGE) { > + for (i = 0; i < drv->desc->num_threads; i++) { > + thread = &drv->threads[i]; > + cpr_scale(thread, dir); > + } > + > + rc = cpr_commit_state(thread); > + if (rc) > + cpr_irq_clr_nack(thread); > + else > + cpr_irq_clr_ack(thread); > + } else if (val & CPR3_IRQ_MID) { > + dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n"); > + } else { > + dev_warn(drv->dev, "IRQ occurred for unknown flag (%#08x)\n", val); > + schedule_work(&thread->restart_work); > + } > + } > + > + return ret; > +} > + > +static int cpr_switch(struct cpr_drv *drv) > +{ > + bool enabled = false; > + int i, ret; > + > + if (drv->desc->cpr_type == CTRL_TYPE_CPRH) > + return 0; > + > + for (i = 0; i < drv->desc->num_threads && !enabled; i++) > + enabled = drv->threads[i].enabled; > + > + dev_vdbg(drv->dev, "%s: enabled = %d\n", __func__, enabled); > + > + if (enabled == drv->enabled) > + return 0; > + > + if (enabled) { > + ret = regulator_enable(drv->vreg); > + if (ret) > + return ret; > + > + drv->enabled = enabled; > + > + for (i = 0; i < drv->desc->num_threads; i++) > + if (drv->threads[i].corner) > + break; > + > + if (i < drv->desc->num_threads) { > + cpr_irq_clr(&drv->threads[i]); > + > + cpr_commit_state(&drv->threads[i]); > + cpr_ctl_enable(&drv->threads[i]); > + } > + } else { > + for (i = 0; i < drv->desc->num_threads && !enabled; i++) > + cpr_ctl_disable(&drv->threads[i]); > + > + drv->enabled = enabled; > + > + ret = regulator_disable(drv->vreg); > + if (ret < 0) > + return ret; > + } > + > + return 0; > +} > + > +/** > + * cpr_enable() - Enables a CPR thread > + * @thread: Structure holding CPR thread-specific parameters > + * > + * Return: Zero for success or negative number on errors. > + */ > +static int cpr_enable(struct cpr_thread *thread) > +{ > + struct cpr_drv *drv = thread->drv; > + > + dev_dbg(drv->dev, "Enabling thread %d\n", thread->id); > + > + guard(mutex)(&drv->lock); > + > + thread->enabled = true; > + > + return cpr_switch(thread->drv); > +} > + > +/** > + * cpr_disable() - Disables a CPR thread > + * @thread: Structure holding CPR thread-specific parameters > + * > + * Return: Zero for success or negative number on errors. > + */ > +static int cpr_disable(struct cpr_thread *thread) > +{ > + struct cpr_drv *drv = thread->drv; > + > + dev_dbg(drv->dev, "Disabling thread %d\n", thread->id); > + > + guard(mutex)(&drv->lock); > + > + thread->enabled = false; > + > + return cpr_switch(thread->drv); > +} > + > +/** > + * cpr_configure() - Configure main HW parameters > + * @thread: Structure holding CPR thread-specific parameters > + * > + * This function configures the main CPR hardware parameters, such as > + * internal timers (and delays), sensor ownerships, activates and/or > + * deactivates cpr-threads and others, as one sequence for all of the > + * versions supported in this driver. By design, the function may > + * return a success earlier if the sequence for "a previous version" > + * has ended. > + * > + * Context: The CPR must be clocked before calling this function! > + * > + * Return: Zero for success or negative number on errors. > + */ > +static int cpr_configure(struct cpr_thread *thread) > +{ > + const struct cpr_thread_desc *tdesc = thread->desc; > + struct cpr_drv *drv = thread->drv; > + const struct cpr_desc *desc = drv->desc; > + u32 val; > + int i; > + > + /* Disable interrupt and CPR */ > + cpr_irq_set(thread, 0); > + cpr_write(thread, CPR3_REG_CPR_CTL, 0); > + > + /* Init and save gcnt */ > + drv->gcnt = drv->ref_clk_khz * desc->gcnt_us; > + do_div(drv->gcnt, 1000); > + > + /* Program the delay count for the timer */ > + val = drv->ref_clk_khz * desc->timer_delay_us; > + do_div(val, 1000); > + > + cpr_write(thread, CPR3_REG_CPR_TIMER_AUTO_CONT, val); > + > + dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val, > + desc->timer_delay_us); > + > + /* Program the control register */ > + val = FIELD_PREP(CPR3_CPR_CTL_IDLE_CLOCKS_MASK, desc->idle_clocks) | > + FIELD_PREP(CPR3_CPR_CTL_COUNT_MODE_MASK, desc->count_mode) | > + FIELD_PREP(CPR3_CPR_CTL_COUNT_REPEAT_MASK, desc->count_repeat); > + cpr_write(thread, CPR3_REG_CPR_CTL, val); > + > + /* Configure CPR default step quotients */ > + val = FIELD_PREP(CPR3_CPR_STEP_QUOT_MIN_MASK, tdesc->step_quot_init_min) | > + FIELD_PREP(CPR3_CPR_STEP_QUOT_MAX_MASK, tdesc->step_quot_init_max); > + > + cpr_write(thread, CPR3_REG_CPR_STEP_QUOT, val); > + > + /* Configure the CPR sensor ownership (always on thread 0) */ > + for (i = tdesc->sensor_range_start; i < tdesc->sensor_range_end; i++) > + cpr_write(thread, CPR3_REG_SENSOR_OWNER(i), 0); > + > + /* Program Consecutive Up & Down */ > + val = FIELD_PREP(CPR3_THRESH_CONS_DOWN_MASK, desc->timer_cons_down) | > + FIELD_PREP(CPR3_THRESH_CONS_UP_MASK, desc->timer_cons_up) | > + FIELD_PREP(CPR3_THRESH_DOWN_THRESH_MASK, desc->down_threshold) | > + FIELD_PREP(CPR3_THRESH_UP_THRESH_MASK, desc->up_threshold); > + cpr_write(thread, CPR3_REG_THRESH(tdesc->hw_tid), val); > + > + /* Mask all ring oscillators for all threads initially */ > + cpr_write(thread, CPR3_REG_RO_MASK(tdesc->hw_tid), CPR3_RO_MASK); > + > + /* HW Closed-loop control */ > + cpr_masked_write(thread, CPR4_REG_MARGIN_ADJ_CTL, > + CPR4_MARGIN_ADJ_HW_CLOSED_LOOP_EN, > + desc->hw_closed_loop_en ? > + CPR4_MARGIN_ADJ_HW_CLOSED_LOOP_EN : 0); > + > + /* Additional configuration for CPR4 and beyond */ > + if (desc->cpr_type < CTRL_TYPE_CPR4) > + return 0; > + > + /* Disable threads initially only on non-hardened CPR4 */ > + if (desc->cpr_type == CTRL_TYPE_CPR4) > + cpr_masked_write(thread, CPR4_REG_CPR_MASK_THREAD(1), > + CPR4_CPR_MASK_THREAD_DISABLE_THREAD | > + CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK, > + CPR4_CPR_MASK_THREAD_DISABLE_THREAD | > + CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK); > + > + if (tdesc->hw_tid > 0) > + cpr_masked_write(thread, CPR4_REG_MISC, > + CPR4_MISC_RESET_STEP_QUOT_LOOP_EN | > + CPR4_MISC_THREAD_HAS_ALWAYS_VOTE_EN, > + CPR4_MISC_RESET_STEP_QUOT_LOOP_EN | > + CPR4_MISC_THREAD_HAS_ALWAYS_VOTE_EN); > + > + val = drv->vreg_step; > + do_div(val, 1000); > + cpr_masked_write(thread, CPR4_REG_MARGIN_ADJ_CTL, > + CPR4_MARGIN_ADJ_PMIC_STEP_SIZE_MASK, > + val << CPR4_MARGIN_ADJ_PMIC_STEP_SIZE_SHIFT); > + > + cpr_masked_write(thread, CPR4_REG_SAW_ERROR_STEP_LIMIT, > + CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK, > + desc->vreg_step_down_limit << > + CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT); > + > + cpr_masked_write(thread, CPR4_REG_SAW_ERROR_STEP_LIMIT, > + CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK, > + desc->vreg_step_up_limit << > + CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT); > + > + cpr_masked_write(thread, CPR4_REG_MARGIN_ADJ_CTL, > + CPR4_MARGIN_ADJ_PER_RO_KV_MARGIN_EN, > + CPR4_MARGIN_ADJ_PER_RO_KV_MARGIN_EN); > + > + if (tdesc->hw_tid > 0) > + cpr_masked_write(thread, CPR4_REG_CPR_TIMER_CLAMP, > + CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN, > + CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN); > + > + /* Settling timer to account for one VDD supply step */ > + if (desc->vdd_settle_time_us > 0) { > + u32 m = CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK; > + u32 s = CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHFT; > + > + cpr_masked_write(thread, CPR4_REG_MARGIN_TEMP_CORE_TIMERS, > + m, desc->vdd_settle_time_us << s); > + } > + > + /* Additional configuration for CPR-hardened */ > + if (desc->cpr_type != CTRL_TYPE_CPRH) > + return 0; > + > + /* Settling timer to account for one corner-switch request */ > + if (desc->corner_settle_time_us > 0) > + cpr_masked_write(thread, drv->reg_ctl, > + CPRH_CTL_MODE_SWITCH_DELAY_MASK, > + desc->corner_settle_time_us << > + CPRH_CTL_MODE_SWITCH_DELAY_SHIFT); > + > + /* Base voltage and multiplier values for CPRh internal calculations */ > + cpr_masked_write(thread, drv->reg_ctl, > + CPRH_CTL_BASE_VOLTAGE_MASK, > + (DIV_ROUND_UP(desc->cpr_base_voltage, > + drv->vreg_step) << > + CPRH_CTL_BASE_VOLTAGE_SHIFT)); > + > + cpr_masked_write(thread, drv->reg_ctl, > + CPRH_CTL_VOLTAGE_MULTIPLIER_MASK, > + DIV_ROUND_UP(drv->vreg_step, 1000) << > + CPRH_CTL_VOLTAGE_MULTIPLIER_SHIFT); > + > + return 0; > +} > + > +static int cprh_dummy_set_performance_state(struct generic_pm_domain *domain, > + unsigned int state) > +{ > + return 0; > +} > + > +static int cpr_set_performance_state(struct generic_pm_domain *domain, > + unsigned int state) > +{ > + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd); > + struct cpr_drv *drv = thread->drv; > + struct corner *corner, *end; > + int ret = 0; > + > + guard(mutex)(&drv->lock); > + > + dev_dbg(drv->dev, "setting perf state: %u (prev state: %u thread: %u)\n", > + state, cpr_get_cur_perf_state(thread), thread->id); > + > + /* > + * Determine new corner we're going to. > + * Remove one since lowest performance state is 1. > + */ > + corner = thread->corners + state - 1; > + end = &thread->corners[thread->num_corners - 1]; > + if (corner > end || corner < thread->corners) > + return -EINVAL; > + > + cpr_ctl_disable(thread); > + > + cpr_irq_clr(thread); > + if (thread->corner != corner) > + cpr_corner_restore(thread, corner); > + > + ret = cpr_commit_state(thread); > + if (ret) > + return ret; > + > + cpr_ctl_enable(thread); > + > + dev_dbg(drv->dev, "set perf state %u on thread %u\n", state, thread->id); > + > + return ret; > +} > + > +/** > + * cpr3_adjust_quot - Adjust the closed-loop quotients > + * @ring_osc_factor: Ring oscillator adjustment factor > + * @volt_closed_loop: Closed-loop voltage adjustment factor > + * > + * Calculates the quotient adjustment factor based on closed-loop > + * quotients and ring oscillator factor. > + * > + * Return: Adjusted quotient > + */ > +static int cpr3_adjust_quot(int ring_osc_factor, int volt_closed_loop) > +{ > + s64 temp = (s64)ring_osc_factor * volt_closed_loop; > + > + return (int)div_s64(temp, 1000000); > +} > + > +/** > + * cpr_fuse_corner_init() - Calculate fuse corner table > + * @thread: Structure holding CPR thread-specific parameters > + * > + * This function populates the fuse corners table by reading the > + * values from the fuses, eventually adjusting them with a fixed > + * per-corner offset and doing basic checks about them being > + * supported by the regulator that is assigned to this CPR - if > + * it is available (on CPR-Hardened, there is no usable vreg, as > + * that is protected by the hypervisor). > + * > + * Return: Zero for success, negative number on error > + */ > +static int cpr_fuse_corner_init(struct cpr_thread *thread) > +{ > + struct cpr_drv *drv = thread->drv; > + const struct cpr_thread_desc *desc = thread->desc; > + const struct cpr_fuse *cpr_fuse = thread->cpr_fuses; > + struct fuse_corner_data *fdata; > + struct fuse_corner *fuse, *prev_fuse, *end; > + int i, ret; > + > + /* Populate fuse_corner members */ > + fuse = thread->fuse_corners; > + prev_fuse = &fuse[0]; > + end = &fuse[desc->num_fuse_corners - 1]; > + fdata = desc->fuse_corner_data; > + > + for (i = 0; fuse <= end; fuse++, cpr_fuse++, i++, fdata++) { > + int sf_idx = desc->ro_scaling_factor_common ? 0 : i; > + int factor = desc->ro_scaling_factor[sf_idx][fuse->ring_osc_idx]; > + > + ret = cpr_populate_fuse_common(drv->dev, fdata, cpr_fuse, > + fuse, drv->vreg_step, > + desc->init_voltage_width, > + desc->init_voltage_step); > + if (ret) > + return ret; > + > + /* > + * Adjust the fuse quot with per-fuse-corner closed-loop > + * voltage adjustment parameters. > + */ > + fuse->quot += cpr3_adjust_quot(factor, fdata->volt_cloop_adjust); > + > + /* CPRh: no regulator access... */ > + if (drv->desc->cpr_type == CTRL_TYPE_CPRH) > + goto skip_pvs_restrict; > + > + /* Re-check if corner voltage range is supported by regulator */ > + ret = cpr_check_vreg_constraints(drv->dev, drv->vreg, fuse); > + if (ret) > + return ret; > + > +skip_pvs_restrict: > + if (fuse->uV < prev_fuse->uV) > + fuse->uV = prev_fuse->uV; > + prev_fuse = fuse; > + dev_dbg(drv->dev, "fuse corner %d: [%d %d %d] RO%u quot %d\n", > + i, fuse->min_uV, fuse->uV, fuse->max_uV, > + fuse->ring_osc_idx, fuse->quot); > + > + /* Check if constraints are valid */ > + if (fuse->uV < fuse->min_uV || fuse->uV > fuse->max_uV) { > + dev_err(drv->dev, "fuse corner %d: Bad voltage range.\n", i); > + return -EINVAL; > + } > + } > + > + return 0; > +} > + > +static void cpr3_restrict_corner(struct corner *corner, int threshold, > + int hysteresis, int step) > +{ > + if (threshold > corner->min_uV && threshold <= corner->max_uV) { > + if (corner->uV >= threshold) { > + corner->min_uV = max(corner->min_uV, > + threshold - hysteresis); > + if (corner->min_uV > corner->uV) > + corner->uV = corner->min_uV; > + } else { > + corner->max_uV = threshold; > + corner->max_uV -= step; > + } > + } > +} > + > +/* > + * cprh_corner_adjust_opps() - Set voltage on each CPU OPP table entry > + * > + * On CPR-Hardened, the voltage level is controlled internally through > + * the OSM hardware: in order to initialize the latter, we have to > + * communicate the voltage to its driver, so that it will be able to > + * write the right parameters (as they have to be set both on the CPRh > + * and on the OSM) on it. > + * This function is called only for CPRh. > + * > + * Return: Zero for success, negative number for error. > + */ > +static int cprh_corner_adjust_opps(struct cpr_thread *thread) > +{ > + struct corner *corner = thread->corners; > + struct cpr_drv *drv = thread->drv; > + int i, ret; > + > + for (i = 0; i < thread->num_corners; i++) { > + ret = dev_pm_opp_adjust_voltage(thread->attached_cpu_dev, > + corner[i].freq, > + corner[i].uV, > + corner[i].min_uV, > + corner[i].max_uV); > + if (ret) > + break; > + > + dev_dbg(drv->dev, "OPP voltage adjusted for %llu Hz, %d uV\n", > + corner[i].freq, corner[i].uV); > + } > + > + /* If we couldn't adjust voltage for all corners, something went wrong */ > + if (i < thread->num_corners) > + return -EINVAL; > + > + return ret; > +} > + > +/** > + * cpr3_corner_init() - Calculate and set-up corners for the CPR HW > + * @thread: Structure holding CPR thread-specific parameters > + * > + * This function calculates all the corner parameters by comparing > + * and interpolating the values read from the various set-points > + * read from the fuses (also called "fuse corners") to generate and > + * program to the CPR a lookup table that describes each voltage > + * step, mapped to a performance level (or corner number). > + * > + * It also programs other essential parameters on the CPR and - if > + * we are dealing with CPR-Hardened, it will also enable the internal > + * interface between the Operating State Manager (OSM) and the CPRh > + * in order to achieve CPU DVFS. > + * > + * Return: Zero for success, negative number on error > + */ > +static int cpr3_corner_init(struct cpr_thread *thread) > +{ > + struct cpr_drv *drv = thread->drv; > + const struct cpr_desc *desc = drv->desc; > + const struct cpr_thread_desc *tdesc = thread->desc; > + const struct cpr_fuse *fuses = thread->cpr_fuses; > + int i, ret, total_corners, extra_corners, level, scaling = 0; > + unsigned int fnum, fc; > + const char *quot_offset; > + const struct fuse_corner_data *fdata; > + struct fuse_corner *fuse, *prev_fuse; > + struct corner *corner, *prev_corner, *end; > + struct corner_data *cdata; > + struct dev_pm_opp *opp; > + u32 ring_osc_mask = CPR3_RO_MASK, min_quotient = U32_MAX; > + u64 freq; > + > + corner = thread->corners; > + prev_corner = &thread->corners[0]; > + end = &corner[thread->num_corners - 1]; > + > + cdata = devm_kcalloc(drv->dev, thread->num_corners + drv->extra_corners, > + sizeof(struct corner_data), GFP_KERNEL); > + if (!cdata) > + return -ENOMEM; > + > + for (level = 1; level <= thread->num_corners; level++) { > + opp = dev_pm_opp_find_level_exact(&thread->pd.dev, level); > + if (IS_ERR(opp)) > + return -EINVAL; > + > + fc = cpr_get_fuse_corner(opp, thread->id); > + if (!fc) { > + dev_pm_opp_put(opp); > + return -EINVAL; > + } > + fnum = fc - 1; > + > + freq = cpr_get_opp_hz_for_req(opp, thread->attached_cpu_dev); > + if (!freq) { > + thread->num_corners = max(level - 1, 0); > + end = &thread->corners[thread->num_corners - 1]; > + break; > + } > + > + ret = cpr_get_corner_post_vadj(opp, thread->id, > + &cdata[level - 1].oloop_vadj, > + &cdata[level - 1].cloop_vadj); > + if (ret) { > + dev_pm_opp_put(opp); > + return ret; > + } > + > + cdata[level - 1].fuse_corner = fnum; > + cdata[level - 1].freq = freq; > + > + fuse = &thread->fuse_corners[fnum]; > + dev_dbg(drv->dev, "freq: %llu level: %u fuse level: %u\n", > + freq, dev_pm_opp_get_level(opp) - 1, fnum); > + if (freq > fuse->max_freq) > + fuse->max_freq = freq; > + dev_pm_opp_put(opp); > + > + /* > + * Make sure that the frequencies in the table are in ascending > + * order, as this is critical for the algorithm to work. > + */ > + if (cdata[level - 2].freq > freq) { > + dev_err(drv->dev, "Frequency table not in ascending order.\n"); > + return -EINVAL; > + } > + } > + > + if (thread->num_corners < 2) { > + dev_err(drv->dev, "need at least 2 OPPs to use CPR\n"); > + return -EINVAL; > + } > + > + /* > + * Get the quotient adjustment scaling factor, according to: > + * > + * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1)) > + * / (freq(corner_N) - freq(corner_N-1)), max_factor) > + * > + * QUOT(corner_N): quotient read from fuse for fuse corner N > + * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1) > + * freq(corner_N): max frequency in MHz supported by fuse corner N > + * freq(corner_N-1): max frequency in MHz supported by fuse corner > + * (N - 1) > + * > + * Then walk through the corners mapped to each fuse corner > + * and calculate the quotient adjustment for each one using the > + * following formula: > + * > + * quot_adjust = (freq_max - freq_corner) * scaling / 1000 > + * > + * freq_max: max frequency in MHz supported by the fuse corner > + * freq_corner: frequency in MHz corresponding to the corner > + * scaling: calculated from above equation > + * > + * > + * + + > + * | v | > + * q | f c o | f c > + * u | c l | c > + * o | f t | f > + * t | c a | c > + * | c f g | c f > + * | e | > + * +--------------- +---------------- > + * 0 1 2 3 4 5 6 0 1 2 3 4 5 6 > + * corner corner > + * > + * c = corner > + * f = fuse corner > + * > + */ > + for (i = 0; corner <= end; corner++, i++) { > + int ro_fac, sf_idx, vadj, prev_quot; > + u64 freq_diff_mhz; > + > + fnum = cdata[i].fuse_corner; > + fdata = &tdesc->fuse_corner_data[fnum]; > + quot_offset = fuses[fnum].quotient_offset; > + fuse = &thread->fuse_corners[fnum]; > + ring_osc_mask &= (u16)(~BIT(fuse->ring_osc_idx)); > + if (fnum) > + prev_fuse = &thread->fuse_corners[fnum - 1]; > + else > + prev_fuse = NULL; > + > + corner->fuse_corner = fuse; > + corner->freq = cdata[i].freq; > + corner->uV = fuse->uV; > + > + if (prev_fuse) { > + if (prev_fuse->ring_osc_idx == fuse->ring_osc_idx) > + quot_offset = NULL; > + > + scaling = cpr_calculate_scaling(drv->dev, quot_offset, > + fdata, corner); > + if (scaling < 0) > + return scaling; > + > + freq_diff_mhz = fuse->max_freq - corner->freq; > + do_div(freq_diff_mhz, 1000000); /* now in MHz */ > + > + corner->quot_adjust = scaling * freq_diff_mhz; > + do_div(corner->quot_adjust, 1000); > + > + /* Fine-tune QUOT (closed-loop) based on fixed values */ > + sf_idx = tdesc->ro_scaling_factor_common ? 0 : fnum; > + ro_fac = tdesc->ro_scaling_factor[sf_idx][fuse->ring_osc_idx]; > + vadj = cdata[i].cloop_vadj; > + corner->quot_adjust -= cpr3_adjust_quot(ro_fac, vadj); > + dev_vdbg(drv->dev, "Quot fine-tuning to %d for post-vadj=%d\n", > + corner->quot_adjust, vadj); > + > + /* > + * Make sure that we scale (up) monotonically. > + * P.S.: Fuse quots can never be descending. > + */ > + prev_quot = prev_corner->fuse_corner->quot; > + prev_quot -= prev_corner->quot_adjust; > + if (fuse->quot - corner->quot_adjust < prev_quot) { > + int new_adj = prev_corner->fuse_corner->quot; > + > + new_adj -= fuse->quot; > + dev_vdbg(drv->dev, "Monotonic increase forced: %d->%d\n", > + corner->quot_adjust, new_adj); > + corner->quot_adjust = new_adj; > + } > + > + corner->uV = cpr_interpolate(corner, > + drv->vreg_step, fdata); > + } > + /* Negative fuse quotients are nonsense. */ > + if (fuse->quot < corner->quot_adjust) > + return -EINVAL; > + > + min_quotient = min(min_quotient, > + (u32)(fuse->quot - corner->quot_adjust)); > + > + /* Fine-tune voltages (open-loop) based on fixed values */ > + corner->uV += cdata[i].oloop_vadj; > + dev_dbg(drv->dev, "Voltage fine-tuning to %d for post-vadj=%d\n", > + corner->uV, cdata[i].oloop_vadj); > + > + corner->max_uV = fuse->max_uV; > + corner->min_uV = fuse->min_uV; > + corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV); > + dev_vdbg(drv->dev, "Clamped after interpolation: [%d %d %d]\n", > + corner->min_uV, corner->uV, corner->max_uV); > + > + /* Make sure that we scale monotonically here, too. */ > + if (corner->uV < prev_corner->uV) > + corner->uV = prev_corner->uV; > + > + corner->last_uV = corner->uV; > + > + /* Reduce the ceiling voltage if needed */ > + if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV) > + corner->max_uV = corner->uV; > + else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV) > + corner->max_uV = max(corner->min_uV, fuse->uV); > + > + corner->min_uV = max(corner->max_uV - fdata->range_uV, > + corner->min_uV); > + > + /* > + * Adjust per-corner floor and ceiling voltages so that > + * they do not overlap the memory Array Power Mux (APM) > + * nor the Memory Accelerator (MEM-ACC) threshold voltages. > + */ > + if (desc->apm_threshold) > + cpr3_restrict_corner(corner, desc->apm_threshold, > + desc->apm_hysteresis, > + drv->vreg_step); > + if (desc->mem_acc_threshold) > + cpr3_restrict_corner(corner, desc->mem_acc_threshold, > + 0, drv->vreg_step); > + > + prev_corner = corner; > + dev_dbg(drv->dev, "corner %d: [%d %d %d] scaling %d quot %d\n", i, > + corner->min_uV, corner->uV, corner->max_uV, scaling, > + fuse->quot - corner->quot_adjust); > + } > + > + /* Additional setup for CPRh only */ > + if (desc->cpr_type != CTRL_TYPE_CPRH) > + return 0; > + > + /* If the OPPs can't be adjusted, programming the CPRh is useless */ > + ret = cprh_corner_adjust_opps(thread); > + if (ret) { > + dev_err(drv->dev, "Cannot adjust CPU OPP voltages: %d\n", ret); > + return ret; > + } > + > + total_corners = thread->num_corners; > + extra_corners = drv->extra_corners; > + > + /* If the APM extra corner exists, add it now. */ > + if (desc->apm_crossover && desc->apm_threshold && extra_corners) { > + /* Program the APM crossover corner on the CPR-Hardened */ > + thread->corners[total_corners].uV = desc->apm_crossover; > + thread->corners[total_corners].min_uV = desc->apm_crossover; > + thread->corners[total_corners].max_uV = desc->apm_crossover; > + thread->corners[total_corners].is_open_loop = true; > + > + /* > + * We have calculated the APM parameters for this clock plan: > + * make the APM *threshold* available to external callers. > + * The crossover is used only internally in the CPR. > + */ > + thread->ext_data.apm_threshold_uV = desc->apm_threshold; > + > + dev_dbg(drv->dev, "corner %d (APM): [%d %d %d] Open-Loop\n", > + total_corners, desc->apm_crossover, > + desc->apm_crossover, desc->apm_crossover); > + > + total_corners++; > + extra_corners--; > + } > + > + if (desc->mem_acc_threshold && extra_corners) { > + /* Program the Memory Accelerator threshold corner to CPRh */ > + thread->corners[total_corners].uV = desc->mem_acc_threshold; > + thread->corners[total_corners].min_uV = desc->mem_acc_threshold; > + thread->corners[total_corners].max_uV = desc->mem_acc_threshold; > + thread->corners[total_corners].is_open_loop = true; > + > + /* > + * We have calculated a mem-acc threshold for this clock plan: > + * make it available to external callers. > + */ > + thread->ext_data.mem_acc_threshold_uV = desc->mem_acc_threshold; > + > + dev_dbg(drv->dev, "corner %d (MEMACC): [%d %d %d] Open-Loop\n", > + total_corners, desc->mem_acc_threshold, > + desc->mem_acc_threshold, desc->mem_acc_threshold); > + > + total_corners++; > + extra_corners--; > + } > + > + /* > + * If there are any extra corners left, it means that even though we > + * expect to fill in both APM and MEM-ACC crossovers, one couldn't > + * satisfy requirements, which means that the specified parameters > + * are wrong: in this case, inform the user and bail out, otherwise > + * if we go on writing the (invalid) table to the CPR-Hardened, the > + * hardware (in this case, the CPU) will surely freeze and crash. > + */ > + if (unlikely(extra_corners)) { > + dev_err(drv->dev, "APM/MEM-ACC corners: bad parameters.\n"); > + return -EINVAL; > + } > + /* Reassign extra_corners, as we have to exclude delta_quot for them */ > + extra_corners = drv->extra_corners; > + > + /* Disable the interface between OSM and CPRh */ > + cpr_masked_write(thread, drv->reg_ctl, > + CPRH_CTL_OSM_ENABLED, 0); > + > + /* Program the GCNT before unmasking ring oscillator(s) */ > + for (i = 0; i < CPR3_RO_COUNT; i++) { > + if (!(ring_osc_mask & BIT(i))) { > + cpr_write(thread, CPR3_REG_GCNT(i), drv->gcnt); > + dev_vdbg(drv->dev, "RO%d gcnt=%d\n", i, drv->gcnt); > + } > + } > + > + /* > + * Unmask the ring oscillator(s) that we're going to use: it seems > + * to be mandatory to do this *before* sending the rest of the > + * CPRhardened specific configuration. > + */ > + dev_dbg(drv->dev, "Unmasking ring oscillators with mask 0x%x\n", ring_osc_mask); > + cpr_write(thread, CPR3_REG_RO_MASK(tdesc->hw_tid), ring_osc_mask); > + > + /* Setup minimum quotients for ring oscillators */ > + for (i = 0; i < CPR3_RO_COUNT; i++) { > + u32 tgt_quot_reg = CPR3_REG_TARGET_QUOT(tdesc->hw_tid, i); > + u32 tgt_quot_val = 0; > + > + if (!(ring_osc_mask & BIT(i))) > + tgt_quot_val = min_quotient; > + > + cpr_write(thread, tgt_quot_reg, tgt_quot_val); > + dev_vdbg(drv->dev, "Programmed min quotient %u for Ring Oscillator %d\n", > + tgt_quot_val, tgt_quot_reg); > + } > + > + for (i = 0; i < total_corners; i++) { > + int volt_oloop_steps, volt_floor_steps, delta_quot_steps; > + int ring_osc; > + u32 val; > + > + fnum = cdata[i].fuse_corner; > + fuse = &thread->fuse_corners[fnum]; > + > + val = thread->corners[i].uV - desc->cpr_base_voltage; > + volt_oloop_steps = DIV_ROUND_UP(val, drv->vreg_step); > + > + val = thread->corners[i].min_uV - desc->cpr_base_voltage; > + volt_floor_steps = DIV_ROUND_UP(val, drv->vreg_step); > + > + /* > + * If we are accessing corners that are not used as > + * an active DCVS set-point, then always select RO 0 > + * and zero out the delta quotient. > + */ > + if (i >= thread->num_corners) { > + ring_osc = 0; > + delta_quot_steps = 0; > + } else { > + ring_osc = fuse->ring_osc_idx; > + val = fuse->quot - thread->corners[i].quot_adjust; > + val -= min_quotient; > + delta_quot_steps = DIV_ROUND_UP(val, > + CPRH_DELTA_QUOT_STEP_FACTOR); > + } > + > + if (volt_oloop_steps > CPRH_CORNER_INIT_VOLTAGE_MAX_VALUE || > + volt_floor_steps > CPRH_CORNER_FLOOR_VOLTAGE_MAX_VALUE || > + delta_quot_steps > CPRH_CORNER_QUOT_DELTA_MAX_VALUE) { > + dev_err(drv->dev, "Invalid cfg: oloop=%d, floor=%d, delta=%d\n", > + volt_oloop_steps, volt_floor_steps, > + delta_quot_steps); > + return -EINVAL; > + } > + /* Green light: Go, Go, Go! */ > + > + /* Set number of open-loop steps */ > + val = FIELD_PREP(CPRH_CORNER_INIT_VOLTAGE_MASK, volt_oloop_steps); > + > + /* Set number of floor voltage steps */ > + val |= FIELD_PREP(CPRH_CORNER_FLOOR_VOLTAGE_MASK, volt_floor_steps); > + > + /* Set number of target quotient delta steps */ > + val |= FIELD_PREP(CPRH_CORNER_QUOT_DELTA_MASK, delta_quot_steps); > + > + /* Select ring oscillator for this corner */ > + val |= FIELD_PREP(CPRH_CORNER_RO_SEL_MASK, ring_osc); > + > + /* Open loop corner is usually APM/ACC crossover */ > + if (thread->corners[i].is_open_loop) { > + dev_dbg(drv->dev, "Disabling Closed-Loop on corner %d\n", i); > + val |= CPRH_CORNER_CPR_CL_DISABLE; > + } > + cpr_write(thread, CPRH_REG_CORNER(drv, tdesc->hw_tid, i), val); > + > + dev_dbg(drv->dev, "steps [%d]: open-loop %d, floor %d, delta_quot %d\n", > + i, volt_oloop_steps, volt_floor_steps, > + delta_quot_steps); > + } > + > + /* YAY! Setup is done! Enable the internal loop to start CPR. */ > + cpr_masked_write(thread, CPR3_REG_CPR_CTL, > + CPR3_CPR_CTL_LOOP_EN_MASK, > + CPR3_CPR_CTL_LOOP_EN_MASK); > + > + /* > + * All the writes are going through before enabling internal > + * communication between the OSM and the CPRh controllers > + * because we are never using relaxed accessors, but should > + * we use them, it would be critical to issue a barrier here, > + * otherwise there is a high risk of hardware lockups due to > + * under-voltage for the selected CPU clock. > + * > + * Please note that the CPR-hardened gets set-up in Linux but > + * then gets actually used in firmware (and only by the OSM); > + * after handing it off we will have no more control on it. > + */ > + > + /* Enable the interface between OSM and CPRh */ > + cpr_masked_write(thread, drv->reg_ctl, > + CPRH_CTL_OSM_ENABLED, > + CPRH_CTL_OSM_ENABLED); > + > + /* On success, free cdata manually */ > + devm_kfree(drv->dev, cdata); > + > + return 0; > +} > + > +/** > + * cpr3_init_parameters() - Initialize CPR global parameters > + * @drv: Main driver structure > + * > + * Initial "integrity" checks and setup for the thread-independent parameters. > + * > + * Return: Zero for success, negative number on error > + */ > +static int cpr3_init_parameters(struct cpr_drv *drv) > +{ > + const struct cpr_desc *desc = drv->desc; > + struct clk *clk; > + > + clk = devm_clk_get(drv->dev, NULL); > + if (IS_ERR(clk)) { > + dev_err(drv->dev, "Couldn't get the reference clock: %ld\n", PTR_ERR(clk)); > + return PTR_ERR(clk); > + } > + > + drv->ref_clk_khz = clk_get_rate(clk); > + do_div(drv->ref_clk_khz, 1000); > + > + /* On CPRh this clock is not always-on... */ > + if (desc->cpr_type == CTRL_TYPE_CPRH) > + clk_prepare_enable(clk); > + else > + devm_clk_put(drv->dev, clk); > + > + /* > + * Read the CPR version register only from CPR3 onwards: > + * this is needed to get the additional register offsets. > + * > + * Note: When threaded, even if multi-controller, there > + * is no chance to have different versions at the > + * same time in the same domain, so it is safe to > + * check this only on the first controller/thread. > + */ > + drv->cpr_hw_rev = cpr_read(&drv->threads[0], CPR3_REG_CPR_VERSION); > + dev_dbg(drv->dev, "CPR hardware revision: 0x%x\n", drv->cpr_hw_rev); > + > + if (drv->cpr_hw_rev >= CPRH_CPR_VERSION_4P5) { > + drv->reg_corner = 0x3500; > + drv->reg_corner_tid = 0xa0; > + drv->reg_ctl = 0x3a80; > + drv->reg_status = 0x3a84; > + } else { > + drv->reg_corner = 0x3a00; > + drv->reg_corner_tid = 0; > + drv->reg_ctl = 0x3aa0; > + drv->reg_status = 0x3aa4; > + } > + > + dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n", > + desc->up_threshold, desc->down_threshold); > + > + return 0; > +} > + > +/** > + * cpr3_find_initial_corner() - Finds boot-up p-state and enables CPR > + * @thread: Structure holding CPR thread-specific parameters > + * > + * Differently from CPRv1, from CPRv3 onwards when we successfully find > + * the target boot-up performance state, we must refresh the HW > + * immediately to guarantee system stability and to avoid overheating > + * during the boot process, thing that would more likely happen without > + * this driver doing its job. > + * > + * Return: Zero for success, negative number on error > + */ > +static int cpr3_find_initial_corner(struct cpr_thread *thread) > +{ > + struct cpr_drv *drv = thread->drv; > + struct corner *corner; > + int uV, idx; > + > + idx = cpr_find_initial_corner(drv->dev, thread->cpu_clk, > + thread->corners, > + thread->num_corners); > + if (idx < 0) > + return idx; > + > + cpr_ctl_disable(thread); > + > + corner = &thread->corners[idx]; > + cpr_corner_restore(thread, corner); > + > + uV = regulator_get_voltage(drv->vreg); > + uV = clamp(uV, corner->min_uV, corner->max_uV); > + > + corner->last_uV = uV; > + if (!drv->last_uV) > + drv->last_uV = uV; > + > + cpr_commit_state(thread); > + thread->enabled = true; > + cpr_switch(drv); > + > + return 0; > +} > + [skipped the tables] > + > +static int cpr_power_off(struct generic_pm_domain *domain) > +{ > + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd); > + > + return cpr_disable(thread); > +} > + > +static int cpr_power_on(struct generic_pm_domain *domain) > +{ > + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd); > + > + return cpr_enable(thread); > +} > + > +static void cpr_pd_detach_dev(struct generic_pm_domain *domain, > + struct device *dev) > +{ > + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd); > + struct cpr_drv *drv = thread->drv; > + > + guard(mutex)(&drv->lock); > + > + dev_dbg(drv->dev, "detach callback for: %s\n", dev_name(dev)); > + thread->attached_cpu_dev = NULL; > +} > + > +static int cpr_pd_attach_dev(struct generic_pm_domain *domain, > + struct device *dev) > +{ > + struct cpr_thread *thread = container_of(domain, struct cpr_thread, pd); > + struct cpr_drv *drv = thread->drv; > + const struct acc_desc *acc_desc = drv->acc_desc; > + bool cprh_opp_remove_table = false; > + int ret = 0; > + > + guard(mutex)(&drv->lock); > + > + dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev)); > + > + /* > + * This driver only supports scaling voltage for a CPU cluster > + * where all CPUs in the cluster share a single regulator. > + * Therefore, save the struct device pointer only for the first > + * CPU device that gets attached. There is no need to do any > + * additional initialization when further CPUs get attached. > + * This is not an error condition. > + */ > + if (thread->attached_cpu_dev) > + return 0; > + > + /* > + * cpr_scale_voltage() requires the direction (if we are changing > + * to a higher or lower OPP). The first time > + * cpr_set_performance_state() is called, there is no previous > + * performance state defined. Therefore, we call > + * cpr_find_initial_corner() that gets the CPU clock frequency > + * set by the bootloader, so that we can determine the direction > + * the first time cpr_set_performance_state() is called. > + */ > + thread->cpu_clk = devm_clk_get(dev, NULL); > + if (drv->desc->cpr_type != CTRL_TYPE_CPRH && IS_ERR(thread->cpu_clk)) { > + ret = PTR_ERR(thread->cpu_clk); > + if (ret != -EPROBE_DEFER) > + dev_err(drv->dev, "could not get cpu clk: %d\n", ret); > + return ret; > + } > + thread->attached_cpu_dev = dev; > + > + /* > + * We are exporting the APM and MEM-ACC thresholds to the caller; > + * while APM is necessary in the CPU CPR case, MEM-ACC may not be, > + * depending on the SoC and on fuses. > + * Initialize both to an invalid value, so that the caller can check > + * if they got calculated or read from fuses in this driver. > + */ > + thread->ext_data.apm_threshold_uV = -1; > + thread->ext_data.mem_acc_threshold_uV = -1; > + dev_set_drvdata(thread->attached_cpu_dev, &thread->ext_data); There are no users for the ext_data. Can we drop it for now? > + > + dev_dbg(drv->dev, "using cpu clk from: %s\n", > + dev_name(thread->attached_cpu_dev)); > + > + /* > + * Everything related to (virtual) corners has to be initialized > + * here, when attaching to the power domain, since we need to know > + * the maximum frequency for each fuse corner, and this is only > + * available after the cpufreq driver has attached to us. > + * The reason for this is that we need to know the highest > + * frequency associated with each fuse corner. > + */ > + ret = dev_pm_opp_get_opp_count(&thread->pd.dev); > + if (ret < 0) { > + dev_err(drv->dev, "could not get OPP count\n"); > + thread->attached_cpu_dev = NULL; > + return ret; > + } > + thread->num_corners = ret; > + > + thread->corners = devm_kcalloc(drv->dev, > + thread->num_corners + > + drv->extra_corners, > + sizeof(*thread->corners), > + GFP_KERNEL); > + if (!thread->corners) > + return -ENOMEM; > + > + /* > + * If we are on CPR-Hardened we have to make sure that the attached > + * device has a OPP table installed, as we're going to modify it here > + * with our calculations based on qfprom values. > + */ I'd really suggest to have CPRh split as it shortcuts several pieces in the driver. The reason is pretty simple: Each of CPR[34h] implementations requires slightly different knobs and quirks. I have a seemingly working CPR3-GFX driver (for msm8996), but it also uses slighly modified version of the functions here. The core functionality (corner handling, calculations) remains the same, but the rest differs. > + if (drv->desc->cpr_type == CTRL_TYPE_CPRH) { > + ret = dev_pm_opp_of_add_table(dev); > + if (ret && ret != -EEXIST) { > + dev_err(drv->dev, "Cannot add table: %d\n", ret); > + return ret; > + } > + cprh_opp_remove_table = true; > + } > + > + ret = cpr3_corner_init(thread); > + if (ret) { > + /* > + * If we are on CPRh and we reached an error condition, we installed > + * the OPP table but we haven't done any setup on it, nor we ever will. > + * In order to leave a clean state, remove the table. > + */ > + if (cprh_opp_remove_table) > + dev_pm_opp_of_remove_table(thread->attached_cpu_dev); > + > + return dev_err_probe(dev, ret, "Couldn't initialize corners\n"); > + } > + > + if (drv->desc->cpr_type != CTRL_TYPE_CPRH) { > + ret = cpr3_find_initial_corner(thread); > + if (ret) > + return dev_err_probe(dev, ret, "Couldn't find initial corner\n"); > + > + if (acc_desc && acc_desc->config) > + regmap_multi_reg_write(drv->tcsr, acc_desc->config, > + acc_desc->num_regs_per_fuse); > + > + /* Enable ACC if required */ > + if (acc_desc && acc_desc->enable_mask) > + regmap_set_bits(drv->tcsr, acc_desc->enable_reg, > + acc_desc->enable_mask); > + } > + dev_info(drv->dev, "thread %d initialized with %u OPPs\n", > + thread->id, thread->num_corners); > + > + return ret; > +} > + [skipped] > diff --git a/include/soc/qcom/cpr.h b/include/soc/qcom/cpr.h > new file mode 100644 > index 000000000000..2ba4324d18f6 > --- /dev/null > +++ b/include/soc/qcom/cpr.h > @@ -0,0 +1,17 @@ > +/* SPDX-License-Identifier: GPL-2.0-only */ > +/* > + * Copyright (c) 2013-2020, The Linux Foundation. All rights reserved. > + * Copyright (c) 2019 Linaro Limited > + * Copyright (c) 2021, AngeloGioacchino Del Regno > + * <angelogioacchino.delregno@xxxxxxxxxxxxxx> > + */ > + > +#ifndef __CPR_H__ > +#define __CPR_H__ > + > +struct cpr_ext_data { > + int mem_acc_threshold_uV; > + int apm_threshold_uV; > +}; There are no users for this, please drop. I'm not 100% sure how mem_acc and apm should be handled on the actual platforms. > + > +#endif /* __CPR_H__ */ > > -- > 2.45.2 > -- With best wishes Dmitry