Re: [PATCH 05/12] dmaengine: Add STM32 DMA3 support

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hi Frank,

On 5/7/24 22:26, Frank Li wrote:
On Tue, May 07, 2024 at 01:33:31PM +0200, Amelie Delaunay wrote:
Hi Vinod,

Thanks for the review.

On 5/4/24 14:40, Vinod Koul wrote:
On 23-04-24, 14:32, Amelie Delaunay wrote:
STM32 DMA3 driver supports the 3 hardware configurations of the STM32 DMA3
controller:
- LPDMA (Low Power): 4 channels, no FIFO
- GPDMA (General Purpose): 16 channels, FIFO from 8 to 32 bytes
- HPDMA (High Performance): 16 channels, FIFO from 8 to 256 bytes
Hardware configuration of the channels is retrieved from the hardware
configuration registers.
The client can specify its channel requirements through device tree.
STM32 DMA3 channels can be individually reserved either because they are
secure, or dedicated to another CPU.
Indeed, channels availability depends on Resource Isolation Framework
(RIF) configuration. RIF grants access to buses with Compartiment ID

Compartiment? typo...?


Sorry, indeed, Compartment instead.

(CIF) filtering, secure and privilege level. It also assigns DMA channels
to one or several processors.
DMA channels used by Linux should be CID-filtered and statically assigned
to CID1 or shared with other CPUs but using semaphore. In case CID
filtering is not configured, dma-channel-mask property can be used to
specify available DMA channels to the kernel, otherwise such channels
will be marked as reserved and can't be used by Linux.

Signed-off-by: Amelie Delaunay <amelie.delaunay@xxxxxxxxxxx>
---
   drivers/dma/stm32/Kconfig      |   10 +
   drivers/dma/stm32/Makefile     |    1 +
   drivers/dma/stm32/stm32-dma3.c | 1431 ++++++++++++++++++++++++++++++++
   3 files changed, 1442 insertions(+)
   create mode 100644 drivers/dma/stm32/stm32-dma3.c

diff --git a/drivers/dma/stm32/Kconfig b/drivers/dma/stm32/Kconfig
index b72ae1a4502f..4d8d8063133b 100644
--- a/drivers/dma/stm32/Kconfig
+++ b/drivers/dma/stm32/Kconfig
@@ -34,4 +34,14 @@ config STM32_MDMA
   	  If you have a board based on STM32 SoC with such DMA controller
   	  and want to use MDMA say Y here.
+config STM32_DMA3
+	tristate "STMicroelectronics STM32 DMA3 support"
+	select DMA_ENGINE
+	select DMA_VIRTUAL_CHANNELS
+	help
+	  Enable support for the on-chip DMA3 controller on STMicroelectronics
+	  STM32 platforms.
+	  If you have a board based on STM32 SoC with such DMA3 controller
+	  and want to use DMA3, say Y here.
+
   endif
diff --git a/drivers/dma/stm32/Makefile b/drivers/dma/stm32/Makefile
index 663a3896a881..5082db4b4c1c 100644
--- a/drivers/dma/stm32/Makefile
+++ b/drivers/dma/stm32/Makefile
@@ -2,3 +2,4 @@
   obj-$(CONFIG_STM32_DMA) += stm32-dma.o
   obj-$(CONFIG_STM32_DMAMUX) += stm32-dmamux.o
   obj-$(CONFIG_STM32_MDMA) += stm32-mdma.o
+obj-$(CONFIG_STM32_DMA3) += stm32-dma3.o

are there any similarities in mdma/dma and dma3..?
can anything be reused...?


DMA/MDMA were originally intended for STM32 MCUs and have been used in
STM32MP1 MPUs.
New MPUs (STM32MP2, ...) and STM32 MCUs (STM32H5, STM32N6, ...) use DMA3.
Unlike DMA/MDMA, DMA3 can be declined in multiple configurations, LPDMA,
GPDMA, HPDMA, and among these global configurations, there are possible
sub-configurations (e.g. channel fifo size). stm32-dma3 uses the hardware
configuration registers to discover the controller/channels capabilities.
Reuse stm32-dma or stm32-mdma would lead to complicating the driver and
making future stm32-dma3 evolutions for next STM32 MPUs intricate and very
difficult.

I think your reason still not enough to create new driver instead try to
reuse old one.

Does register layout or dma descriptor is totally difference?

If dma descriptor format is the same, at least you can reuse prepare DMA
descriptor part.

Choose channel is independt part of DMA channel. You can create sperate
one for difference DMA engine.

Frank


stm32-dma is not considered for reuse : register layout is completely different and this DMA controller doesn't rely on descriptors mechanism.

stm32-mdma is based on descriptors mechanism but even there, there are significant differences in register layout and descriptors structure.
As you can see:
/* Descriptor from stm32-mdma */
struct stm32_mdma_hwdesc {
	u32 ctcr;
	u32 cbndtr;
	u32 csar;
	u32 cdar;
	u32 cbrur;
	u32 clar;
	u32 ctbr;
	u32 dummy;
	u32 cmar;
	u32 cmdr;
} __aligned(64);

/* Descriptor from stm32-dma3 */
struct stm32_dma3_hwdesc {
	u32 ctr1;
	u32 ctr2;
	u32 cbr1;
	u32 csar;
	u32 cdar;
	u32 cllr;
} __aligned(32);

Moreover, stm32-dma3 can have static or dynamic linked-list items. Dynamic data structure support is not yet in this patchset, current implementation is undergoing validation and maturation. "cllr" configures the data structure of the next linked-list item in addition to its address pointer. The descriptor can be "compacted" depending on cllr update bits values.

/* CxLLR DMA channel x linked-list address register */
#define CLLR_LA				GENMASK(15, 2) /* Address */
#define CLLR_ULL			BIT(16) /* CxLLR update ? */
#define CLLR_UDA			BIT(27) /* CxDAR update ? */
#define CLLR_USA			BIT(28) /* CxSAR update ? */
#define CLLR_UB1			BIT(29) /* CxBR1 update ? */
#define CLLR_UT2			BIT(30) /* CxTR2 update ? */
#define CLLR_UT1			BIT(31) /* CxTR1 update ? */

If one or more CLLR_Uxx bit(s) is(are) not set, it means the corresponding u32 value(s) in the descriptor is(are) not there. For example, if CLLR_ULL bit is the only one that is set, then "cllr" value should be at offset 0 in linked-list data structure.

I hope this gives an insights into why I've decided not to reuse the existing drivers, either in whole or in part.

Amelie


diff --git a/drivers/dma/stm32/stm32-dma3.c b/drivers/dma/stm32/stm32-dma3.c
new file mode 100644
index 000000000000..b5493f497d06
--- /dev/null
+++ b/drivers/dma/stm32/stm32-dma3.c
@@ -0,0 +1,1431 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * STM32 DMA3 controller driver
+ *
+ * Copyright (C) STMicroelectronics 2024
+ * Author(s): Amelie Delaunay <amelie.delaunay@xxxxxxxxxxx>
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/dmapool.h>
+#include <linux/init.h>
+#include <linux/iopoll.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of_dma.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/reset.h>
+#include <linux/slab.h>
+
+#include "../virt-dma.h"
+
+#define STM32_DMA3_SECCFGR		0x00
+#define STM32_DMA3_PRIVCFGR		0x04
+#define STM32_DMA3_RCFGLOCKR		0x08
+#define STM32_DMA3_MISR			0x0C

lower hex please


Ok.

+#define STM32_DMA3_SMISR		0x10
+
+#define STM32_DMA3_CLBAR(x)		(0x50 + 0x80 * (x))
+#define STM32_DMA3_CCIDCFGR(x)		(0x54 + 0x80 * (x))
+#define STM32_DMA3_CSEMCR(x)		(0x58 + 0x80 * (x))
+#define STM32_DMA3_CFCR(x)		(0x5C + 0x80 * (x))
+#define STM32_DMA3_CSR(x)		(0x60 + 0x80 * (x))
+#define STM32_DMA3_CCR(x)		(0x64 + 0x80 * (x))
+#define STM32_DMA3_CTR1(x)		(0x90 + 0x80 * (x))
+#define STM32_DMA3_CTR2(x)		(0x94 + 0x80 * (x))
+#define STM32_DMA3_CBR1(x)		(0x98 + 0x80 * (x))
+#define STM32_DMA3_CSAR(x)		(0x9C + 0x80 * (x))
+#define STM32_DMA3_CDAR(x)		(0xA0 + 0x80 * (x))
+#define STM32_DMA3_CLLR(x)		(0xCC + 0x80 * (x))
+
+#define STM32_DMA3_HWCFGR13		0xFC0 /* G_PER_CTRL(X) x=8..15 */
+#define STM32_DMA3_HWCFGR12		0xFC4 /* G_PER_CTRL(X) x=0..7 */
+#define STM32_DMA3_HWCFGR4		0xFE4 /* G_FIFO_SIZE(X) x=8..15 */
+#define STM32_DMA3_HWCFGR3		0xFE8 /* G_FIFO_SIZE(X) x=0..7 */
+#define STM32_DMA3_HWCFGR2		0xFEC /* G_MAX_REQ_ID */
+#define STM32_DMA3_HWCFGR1		0xFF0 /* G_MASTER_PORTS, G_NUM_CHANNELS, G_Mx_DATA_WIDTH */
+#define STM32_DMA3_VERR			0xFF4

here as well


Ok.

+
+/* SECCFGR DMA secure configuration register */
+#define SECCFGR_SEC(x)			BIT(x)
+
+/* MISR DMA non-secure/secure masked interrupt status register */
+#define MISR_MIS(x)			BIT(x)
+
+/* CxLBAR DMA channel x linked_list base address register */
+#define CLBAR_LBA			GENMASK(31, 16)
+
+/* CxCIDCFGR DMA channel x CID register */
+#define CCIDCFGR_CFEN			BIT(0)
+#define CCIDCFGR_SEM_EN			BIT(1)
+#define CCIDCFGR_SCID			GENMASK(5, 4)
+#define CCIDCFGR_SEM_WLIST_CID0		BIT(16)
+#define CCIDCFGR_SEM_WLIST_CID1		BIT(17)
+#define CCIDCFGR_SEM_WLIST_CID2		BIT(18)
+
+enum ccidcfgr_cid {
+	CCIDCFGR_CID0,
+	CCIDCFGR_CID1,
+	CCIDCFGR_CID2,
+};
+
+/* CxSEMCR DMA channel x semaphore control register */
+#define CSEMCR_SEM_MUTEX		BIT(0)
+#define CSEMCR_SEM_CCID			GENMASK(5, 4)
+
+/* CxFCR DMA channel x flag clear register */
+#define CFCR_TCF			BIT(8)
+#define CFCR_HTF			BIT(9)
+#define CFCR_DTEF			BIT(10)
+#define CFCR_ULEF			BIT(11)
+#define CFCR_USEF			BIT(12)
+#define CFCR_SUSPF			BIT(13)
+
+/* CxSR DMA channel x status register */
+#define CSR_IDLEF			BIT(0)
+#define CSR_TCF				BIT(8)
+#define CSR_HTF				BIT(9)
+#define CSR_DTEF			BIT(10)
+#define CSR_ULEF			BIT(11)
+#define CSR_USEF			BIT(12)
+#define CSR_SUSPF			BIT(13)
+#define CSR_ALL_F			GENMASK(13, 8)
+#define CSR_FIFOL			GENMASK(24, 16)
+
+/* CxCR DMA channel x control register */
+#define CCR_EN				BIT(0)
+#define CCR_RESET			BIT(1)
+#define CCR_SUSP			BIT(2)
+#define CCR_TCIE			BIT(8)
+#define CCR_HTIE			BIT(9)
+#define CCR_DTEIE			BIT(10)
+#define CCR_ULEIE			BIT(11)
+#define CCR_USEIE			BIT(12)
+#define CCR_SUSPIE			BIT(13)
+#define CCR_ALLIE			GENMASK(13, 8)
+#define CCR_LSM				BIT(16)
+#define CCR_LAP				BIT(17)
+#define CCR_PRIO			GENMASK(23, 22)
+
+enum ccr_prio {
+	CCR_PRIO_LOW,
+	CCR_PRIO_MID,
+	CCR_PRIO_HIGH,
+	CCR_PRIO_VERY_HIGH,
+};
+
+/* CxTR1 DMA channel x transfer register 1 */
+#define CTR1_SINC			BIT(3)
+#define CTR1_SBL_1			GENMASK(9, 4)
+#define CTR1_DINC			BIT(19)
+#define CTR1_DBL_1			GENMASK(25, 20)
+#define CTR1_SDW_LOG2			GENMASK(1, 0)
+#define CTR1_PAM			GENMASK(12, 11)
+#define CTR1_SAP			BIT(14)
+#define CTR1_DDW_LOG2			GENMASK(17, 16)
+#define CTR1_DAP			BIT(30)
+
+enum ctr1_dw {
+	CTR1_DW_BYTE,
+	CTR1_DW_HWORD,
+	CTR1_DW_WORD,
+	CTR1_DW_DWORD, /* Depends on HWCFGR1.G_M0_DATA_WIDTH_ENC and .G_M1_DATA_WIDTH_ENC */
+};
+
+enum ctr1_pam {
+	CTR1_PAM_0S_LT, /* if DDW > SDW, padded with 0s else left-truncated */
+	CTR1_PAM_SE_RT, /* if DDW > SDW, sign extended else right-truncated */
+	CTR1_PAM_PACK_UNPACK, /* FIFO queued */
+};
+
+/* CxTR2 DMA channel x transfer register 2 */
+#define CTR2_REQSEL			GENMASK(7, 0)
+#define CTR2_SWREQ			BIT(9)
+#define CTR2_DREQ			BIT(10)
+#define CTR2_BREQ			BIT(11)
+#define CTR2_PFREQ			BIT(12)
+#define CTR2_TCEM			GENMASK(31, 30)
+
+enum ctr2_tcem {
+	CTR2_TCEM_BLOCK,
+	CTR2_TCEM_REPEAT_BLOCK,
+	CTR2_TCEM_LLI,
+	CTR2_TCEM_CHANNEL,
+};
+
+/* CxBR1 DMA channel x block register 1 */
+#define CBR1_BNDT			GENMASK(15, 0)
+
+/* CxLLR DMA channel x linked-list address register */
+#define CLLR_LA				GENMASK(15, 2)
+#define CLLR_ULL			BIT(16)
+#define CLLR_UDA			BIT(27)
+#define CLLR_USA			BIT(28)
+#define CLLR_UB1			BIT(29)
+#define CLLR_UT2			BIT(30)
+#define CLLR_UT1			BIT(31)
+
+/* HWCFGR13 DMA hardware configuration register 13 x=8..15 */
+/* HWCFGR12 DMA hardware configuration register 12 x=0..7 */
+#define G_PER_CTRL(x)			(ULL(0x1) << (4 * (x)))
+
+/* HWCFGR4 DMA hardware configuration register 4 x=8..15 */
+/* HWCFGR3 DMA hardware configuration register 3 x=0..7 */
+#define G_FIFO_SIZE(x)			(ULL(0x7) << (4 * (x)))
+
+#define get_chan_hwcfg(x, mask, reg)	(((reg) & (mask)) >> (4 * (x)))
+
+/* HWCFGR2 DMA hardware configuration register 2 */
+#define G_MAX_REQ_ID			GENMASK(7, 0)
+
+/* HWCFGR1 DMA hardware configuration register 1 */
+#define G_MASTER_PORTS			GENMASK(2, 0)
+#define G_NUM_CHANNELS			GENMASK(12, 8)
+#define G_M0_DATA_WIDTH_ENC		GENMASK(25, 24)
+#define G_M1_DATA_WIDTH_ENC		GENMASK(29, 28)
+
+enum stm32_dma3_master_ports {
+	AXI64, /* 1x AXI: 64-bit port 0 */
+	AHB32, /* 1x AHB: 32-bit port 0 */
+	AHB32_AHB32, /* 2x AHB: 32-bit port 0 and 32-bit port 1 */
+	AXI64_AHB32, /* 1x AXI 64-bit port 0 and 1x AHB 32-bit port 1 */
+	AXI64_AXI64, /* 2x AXI: 64-bit port 0 and 64-bit port 1 */
+	AXI128_AHB32, /* 1x AXI 128-bit port 0 and 1x AHB 32-bit port 1 */
+};
+
+enum stm32_dma3_port_data_width {
+	DW_32, /* 32-bit, for AHB */
+	DW_64, /* 64-bit, for AXI */
+	DW_128, /* 128-bit, for AXI */
+	DW_INVALID,
+};
+
+/* VERR DMA version register */
+#define VERR_MINREV			GENMASK(3, 0)
+#define VERR_MAJREV			GENMASK(7, 4)
+
+/* Device tree */
+/* struct stm32_dma3_dt_conf */
+/* .ch_conf */
+#define STM32_DMA3_DT_PRIO		GENMASK(1, 0) /* CCR_PRIO */
+#define STM32_DMA3_DT_FIFO		GENMASK(7, 4)
+/* .tr_conf */
+#define STM32_DMA3_DT_SINC		BIT(0) /* CTR1_SINC */
+#define STM32_DMA3_DT_SAP		BIT(1) /* CTR1_SAP */
+#define STM32_DMA3_DT_DINC		BIT(4) /* CTR1_DINC */
+#define STM32_DMA3_DT_DAP		BIT(5) /* CTR1_DAP */
+#define STM32_DMA3_DT_BREQ		BIT(8) /* CTR2_BREQ */
+#define STM32_DMA3_DT_PFREQ		BIT(9) /* CTR2_PFREQ */
+#define STM32_DMA3_DT_TCEM		GENMASK(13, 12) /* CTR2_TCEM */
+
+#define STM32_DMA3_MAX_BLOCK_SIZE	ALIGN_DOWN(CBR1_BNDT, 64)
+#define port_is_ahb(maxdw)		({ typeof(maxdw) (_maxdw) = (maxdw); \
+					   ((_maxdw) != DW_INVALID) && ((_maxdw) == DW_32); })
+#define port_is_axi(maxdw)		({ typeof(maxdw) (_maxdw) = (maxdw); \
+					   ((_maxdw) != DW_INVALID) && ((_maxdw) != DW_32); })
+#define get_chan_max_dw(maxdw, maxburst)((port_is_ahb(maxdw) ||			     \
+					  (maxburst) < DMA_SLAVE_BUSWIDTH_8_BYTES) ? \
+					 DMA_SLAVE_BUSWIDTH_4_BYTES : DMA_SLAVE_BUSWIDTH_8_BYTES)
+
+/* Static linked-list data structure (depends on update bits UT1/UT2/UB1/USA/UDA/ULL) */
+struct stm32_dma3_hwdesc {
+	u32 ctr1;
+	u32 ctr2;
+	u32 cbr1;
+	u32 csar;
+	u32 cdar;
+	u32 cllr;
+} __aligned(32);
+
+/*
+ * CLLR_LA / sizeof(struct stm32_dma3_hwdesc) represents the number of hdwdesc that can be addressed
+ * by the pointer to the next linked-list data structure. The __aligned forces the 32-byte
+ * alignment. So use hardcoded 32. Multiplied by the max block size of each item, it represents
+ * the sg size limitation.
+ */
+#define STM32_DMA3_MAX_SEG_SIZE		((CLLR_LA / 32) * STM32_DMA3_MAX_BLOCK_SIZE)
+
+/*
+ * Linked-list items
+ */
+struct stm32_dma3_lli {
+	struct stm32_dma3_hwdesc *hwdesc;
+	dma_addr_t hwdesc_addr;
+};
+
+struct stm32_dma3_swdesc {
+	struct virt_dma_desc vdesc;
+	u32 ccr;
+	bool cyclic;
+	u32 lli_size;
+	struct stm32_dma3_lli lli[] __counted_by(lli_size);
+};
+
+struct stm32_dma3_dt_conf {
+	u32 ch_id;
+	u32 req_line;
+	u32 ch_conf;
+	u32 tr_conf;
+};
+
+struct stm32_dma3_chan {
+	struct virt_dma_chan vchan;
+	u32 id;
+	int irq;
+	u32 fifo_size;
+	u32 max_burst;
+	bool semaphore_mode;
+	struct stm32_dma3_dt_conf dt_config;
+	struct dma_slave_config dma_config;
+	struct dma_pool *lli_pool;
+	struct stm32_dma3_swdesc *swdesc;
+	enum ctr2_tcem tcem;
+	u32 dma_status;
+};
+
+struct stm32_dma3_ddata {
+	struct dma_device dma_dev;
+	void __iomem *base;
+	struct clk *clk;
+	struct stm32_dma3_chan *chans;
+	u32 dma_channels;
+	u32 dma_requests;
+	enum stm32_dma3_port_data_width ports_max_dw[2];
+};
+
+static inline struct stm32_dma3_ddata *to_stm32_dma3_ddata(struct stm32_dma3_chan *chan)
+{
+	return container_of(chan->vchan.chan.device, struct stm32_dma3_ddata, dma_dev);
+}
+
+static inline struct stm32_dma3_chan *to_stm32_dma3_chan(struct dma_chan *c)
+{
+	return container_of(c, struct stm32_dma3_chan, vchan.chan);
+}
+
+static inline struct stm32_dma3_swdesc *to_stm32_dma3_swdesc(struct virt_dma_desc *vdesc)
+{
+	return container_of(vdesc, struct stm32_dma3_swdesc, vdesc);
+}
+
+static struct device *chan2dev(struct stm32_dma3_chan *chan)
+{
+	return &chan->vchan.chan.dev->device;
+}
+
+static void stm32_dma3_chan_dump_reg(struct stm32_dma3_chan *chan)
+{
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	struct device *dev = chan2dev(chan);
+	u32 id = chan->id, offset;
+
+	offset = STM32_DMA3_SECCFGR;
+	dev_dbg(dev, "SECCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_PRIVCFGR;
+	dev_dbg(dev, "PRIVCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CCIDCFGR(id);
+	dev_dbg(dev, "C%dCIDCFGR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CSEMCR(id);
+	dev_dbg(dev, "C%dSEMCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CSR(id);
+	dev_dbg(dev, "C%dSR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CCR(id);
+	dev_dbg(dev, "C%dCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CTR1(id);
+	dev_dbg(dev, "C%dTR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CTR2(id);
+	dev_dbg(dev, "C%dTR2(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CBR1(id);
+	dev_dbg(dev, "C%dBR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CSAR(id);
+	dev_dbg(dev, "C%dSAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CDAR(id);
+	dev_dbg(dev, "C%dDAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CLLR(id);
+	dev_dbg(dev, "C%dLLR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+	offset = STM32_DMA3_CLBAR(id);
+	dev_dbg(dev, "C%dLBAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
+}
+
+static void stm32_dma3_chan_dump_hwdesc(struct stm32_dma3_chan *chan,
+					struct stm32_dma3_swdesc *swdesc)
+{
+	struct stm32_dma3_hwdesc *hwdesc;
+	int i;
+
+	for (i = 0; i < swdesc->lli_size; i++) {
+		hwdesc = swdesc->lli[i].hwdesc;
+		if (i)
+			dev_dbg(chan2dev(chan), "V\n");
+		dev_dbg(chan2dev(chan), "[%d]@%pad\n", i, &swdesc->lli[i].hwdesc_addr);
+		dev_dbg(chan2dev(chan), "| C%dTR1: %08x\n", chan->id, hwdesc->ctr1);
+		dev_dbg(chan2dev(chan), "| C%dTR2: %08x\n", chan->id, hwdesc->ctr2);
+		dev_dbg(chan2dev(chan), "| C%dBR1: %08x\n", chan->id, hwdesc->cbr1);
+		dev_dbg(chan2dev(chan), "| C%dSAR: %08x\n", chan->id, hwdesc->csar);
+		dev_dbg(chan2dev(chan), "| C%dDAR: %08x\n", chan->id, hwdesc->cdar);
+		dev_dbg(chan2dev(chan), "| C%dLLR: %08x\n", chan->id, hwdesc->cllr);
+	}
+
+	if (swdesc->cyclic) {
+		dev_dbg(chan2dev(chan), "|\n");
+		dev_dbg(chan2dev(chan), "-->[0]@%pad\n", &swdesc->lli[0].hwdesc_addr);
+	} else {
+		dev_dbg(chan2dev(chan), "X\n");
+	}
+}
+
+static struct stm32_dma3_swdesc *stm32_dma3_chan_desc_alloc(struct stm32_dma3_chan *chan, u32 count)
+{
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	struct stm32_dma3_swdesc *swdesc;
+	int i;
+
+	/*
+	 * If the memory to be allocated for the number of hwdesc (6 u32 members but 32-bytes
+	 * aligned) is greater than the maximum address of CLLR_LA, then the last items can't be
+	 * addressed, so abort the allocation.
+	 */
+	if ((count * 32) > CLLR_LA) {
+		dev_err(chan2dev(chan), "Transfer is too big (> %luB)\n", STM32_DMA3_MAX_SEG_SIZE);
+		return NULL;
+	}
+
+	swdesc = kzalloc(struct_size(swdesc, lli, count), GFP_NOWAIT);
+	if (!swdesc)
+		return NULL;
+
+	for (i = 0; i < count; i++) {
+		swdesc->lli[i].hwdesc = dma_pool_zalloc(chan->lli_pool, GFP_NOWAIT,
+							&swdesc->lli[i].hwdesc_addr);
+		if (!swdesc->lli[i].hwdesc)
+			goto err_pool_free;
+	}
+	swdesc->lli_size = count;
+	swdesc->ccr = 0;
+
+	/* Set LL base address */
+	writel_relaxed(swdesc->lli[0].hwdesc_addr & CLBAR_LBA,
+		       ddata->base + STM32_DMA3_CLBAR(chan->id));
+
+	/* Set LL allocated port */
+	swdesc->ccr &= ~CCR_LAP;
+
+	return swdesc;
+
+err_pool_free:
+	dev_err(chan2dev(chan), "Failed to alloc descriptors\n");
+	while (--i >= 0)
+		dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr);
+	kfree(swdesc);
+
+	return NULL;
+}
+
+static void stm32_dma3_chan_desc_free(struct stm32_dma3_chan *chan,
+				      struct stm32_dma3_swdesc *swdesc)
+{
+	int i;
+
+	for (i = 0; i < swdesc->lli_size; i++)
+		dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr);
+
+	kfree(swdesc);
+}
+
+static void stm32_dma3_chan_vdesc_free(struct virt_dma_desc *vdesc)
+{
+	struct stm32_dma3_swdesc *swdesc = to_stm32_dma3_swdesc(vdesc);
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(vdesc->tx.chan);
+
+	stm32_dma3_chan_desc_free(chan, swdesc);
+}
+
+static void stm32_dma3_check_user_setting(struct stm32_dma3_chan *chan)
+{
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	struct device *dev = chan2dev(chan);
+	u32 ctr1 = readl_relaxed(ddata->base + STM32_DMA3_CTR1(chan->id));
+	u32 cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id));
+	u32 csar = readl_relaxed(ddata->base + STM32_DMA3_CSAR(chan->id));
+	u32 cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id));
+	u32 cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id));
+	u32 bndt = FIELD_GET(CBR1_BNDT, cbr1);
+	u32 sdw = 1 << FIELD_GET(CTR1_SDW_LOG2, ctr1);
+	u32 ddw = 1 << FIELD_GET(CTR1_DDW_LOG2, ctr1);
+	u32 sap = FIELD_GET(CTR1_SAP, ctr1);
+	u32 dap = FIELD_GET(CTR1_DAP, ctr1);
+
+	if (!bndt && !FIELD_GET(CLLR_UB1, cllr))
+		dev_err(dev, "null source block size and no update of this value\n");
+	if (bndt % sdw)
+		dev_err(dev, "source block size not multiple of src data width\n");
+	if (FIELD_GET(CTR1_PAM, ctr1) == CTR1_PAM_PACK_UNPACK && bndt % ddw)
+		dev_err(dev, "(un)packing mode w/ src block size not multiple of dst data width\n");
+	if (csar % sdw)
+		dev_err(dev, "unaligned source address not multiple of src data width\n");
+	if (cdar % ddw)
+		dev_err(dev, "unaligned destination address not multiple of dst data width\n");
+	if (sdw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[sap]))
+		dev_err(dev, "double-word source data width not supported on port %u\n", sap);
+	if (ddw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[dap]))
+		dev_err(dev, "double-word destination data width not supported on port %u\n", dap);

NO error/abort if this is wrong...?


User setting error triggers an interrupt caught in stm32_dma3_chan_irq()
interrupt handler.
Indeed User setting error can occur when enabling the channel or when DMA3
registers are updated with each linked-list item.
In interrupt handler, when USEF (User Setting Error Flag) is set, this
function (stm32_dma3_check_user_setting) helps the user to understand what
went wrong. The hardware automatically disables the channel to prevent the
execution of the wrongly programmed transfer and the driver resets the
channel and sets chan->dma_status = DMA_ERROR;. dmaengine_tx_status() will
return DMA_ERROR.
So from user point of view, the transfer will never complete, and the
channel is ready to be reprogrammed.
Note that in _prep_ functions, all is checked to avoid user setting error.
If a user setting error occurs, it is rather due to a corrupted linked-list
item (that should fortunately never happen).

+}
+
+static void stm32_dma3_chan_prep_hwdesc(struct stm32_dma3_chan *chan,
+					struct stm32_dma3_swdesc *swdesc,
+					u32 curr, dma_addr_t src, dma_addr_t dst, u32 len,
+					u32 ctr1, u32 ctr2, bool is_last, bool is_cyclic)
+{
+	struct stm32_dma3_hwdesc *hwdesc;
+	dma_addr_t next_lli;
+	u32 next = curr + 1;
+
+	hwdesc = swdesc->lli[curr].hwdesc;
+	hwdesc->ctr1 = ctr1;
+	hwdesc->ctr2 = ctr2;
+	hwdesc->cbr1 = FIELD_PREP(CBR1_BNDT, len);
+	hwdesc->csar = src;
+	hwdesc->cdar = dst;
+
+	if (is_last) {
+		if (is_cyclic)
+			next_lli = swdesc->lli[0].hwdesc_addr;
+		else
+			next_lli = 0;
+	} else {
+		next_lli = swdesc->lli[next].hwdesc_addr;
+	}
+
+	hwdesc->cllr = 0;
+	if (next_lli) {
+		hwdesc->cllr |= CLLR_UT1 | CLLR_UT2 | CLLR_UB1;
+		hwdesc->cllr |= CLLR_USA | CLLR_UDA | CLLR_ULL;
+		hwdesc->cllr |= (next_lli & CLLR_LA);
+	}
+}
+
+static enum dma_slave_buswidth stm32_dma3_get_max_dw(u32 chan_max_burst,
+						     enum stm32_dma3_port_data_width port_max_dw,
+						     u32 len, dma_addr_t addr)
+{
+	enum dma_slave_buswidth max_dw = get_chan_max_dw(port_max_dw, chan_max_burst);
+
+	/* len and addr must be a multiple of dw */
+	return 1 << __ffs(len | addr | max_dw);
+}
+
+static u32 stm32_dma3_get_max_burst(u32 len, enum dma_slave_buswidth dw, u32 chan_max_burst)
+{
+	u32 max_burst = chan_max_burst ? chan_max_burst / dw : 1;
+
+	/* len is a multiple of dw, so if len is < chan_max_burst, shorten burst */
+	if (len < chan_max_burst)
+		max_burst = len / dw;
+
+	/*
+	 * HW doesn't modify the burst if burst size <= half of the fifo size.
+	 * If len is not a multiple of burst size, last burst is shortened by HW.
+	 */
+	return max_burst;
+}
+
+static int stm32_dma3_chan_prep_hw(struct stm32_dma3_chan *chan, enum dma_transfer_direction dir,
+				   u32 *ccr, u32 *ctr1, u32 *ctr2,
+				   dma_addr_t src_addr, dma_addr_t dst_addr, u32 len)
+{
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	struct dma_device dma_device = ddata->dma_dev;
+	u32 sdw, ddw, sbl_max, dbl_max, tcem;
+	u32 _ctr1 = 0, _ctr2 = 0;
+	u32 ch_conf = chan->dt_config.ch_conf;
+	u32 tr_conf = chan->dt_config.tr_conf;
+	u32 sap = FIELD_GET(STM32_DMA3_DT_SAP, tr_conf), sap_max_dw;
+	u32 dap = FIELD_GET(STM32_DMA3_DT_DAP, tr_conf), dap_max_dw;
+
+	dev_dbg(chan2dev(chan), "%s from %pad to %pad\n",
+		dmaengine_get_direction_text(dir), &src_addr, &dst_addr);
+
+	sdw = chan->dma_config.src_addr_width ? : get_chan_max_dw(sap, chan->max_burst);
+	ddw = chan->dma_config.dst_addr_width ? : get_chan_max_dw(dap, chan->max_burst);
+	sbl_max = chan->dma_config.src_maxburst ? : 1;
+	dbl_max = chan->dma_config.dst_maxburst ? : 1;
+
+	/* Following conditions would raise User Setting Error interrupt */
+	if (!(dma_device.src_addr_widths & BIT(sdw)) || !(dma_device.dst_addr_widths & BIT(ddw))) {
+		dev_err(chan2dev(chan), "Bus width (src=%u, dst=%u) not supported\n", sdw, ddw);
+		return -EINVAL;
+	}
+
+	if (ddata->ports_max_dw[1] == DW_INVALID && (sap || dap)) {
+		dev_err(chan2dev(chan), "Only one master port, port 1 is not supported\n");
+		return -EINVAL;
+	}
+
+	sap_max_dw = ddata->ports_max_dw[sap];
+	dap_max_dw = ddata->ports_max_dw[dap];
+	if ((port_is_ahb(sap_max_dw) && sdw == DMA_SLAVE_BUSWIDTH_8_BYTES) ||
+	    (port_is_ahb(dap_max_dw) && ddw == DMA_SLAVE_BUSWIDTH_8_BYTES)) {
+		dev_err(chan2dev(chan),
+			"8 bytes buswidth (src=%u, dst=%u) not supported on port (sap=%u, dap=%u\n",
+			sdw, ddw, sap, dap);
+		return -EINVAL;
+	}
+
+	if (FIELD_GET(STM32_DMA3_DT_SINC, tr_conf))
+		_ctr1 |= CTR1_SINC;
+	if (sap)
+		_ctr1 |= CTR1_SAP;
+	if (FIELD_GET(STM32_DMA3_DT_DINC, tr_conf))
+		_ctr1 |= CTR1_DINC;
+	if (dap)
+		_ctr1 |= CTR1_DAP;
+
+	_ctr2 |= FIELD_PREP(CTR2_REQSEL, chan->dt_config.req_line) & ~CTR2_SWREQ;
+	if (FIELD_GET(STM32_DMA3_DT_BREQ, tr_conf))
+		_ctr2 |= CTR2_BREQ;
+	if (dir == DMA_DEV_TO_MEM && FIELD_GET(STM32_DMA3_DT_PFREQ, tr_conf))
+		_ctr2 |= CTR2_PFREQ;
+	tcem = FIELD_GET(STM32_DMA3_DT_TCEM, tr_conf);
+	_ctr2 |= FIELD_PREP(CTR2_TCEM, tcem);
+
+	/* Store TCEM to know on which event TC flag occurred */
+	chan->tcem = tcem;
+	/* Store direction for residue computation */
+	chan->dma_config.direction = dir;
+
+	switch (dir) {
+	case DMA_MEM_TO_DEV:
+		/* Set destination (device) data width and burst */
+		ddw = min_t(u32, ddw, stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw,
+							    len, dst_addr));
+		dbl_max = min_t(u32, dbl_max, stm32_dma3_get_max_burst(len, ddw, chan->max_burst));
+
+		/* Set source (memory) data width and burst */
+		sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr);
+		sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst);
+
+		_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
+		_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
+		_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
+		_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
+
+		if (ddw != sdw) {
+			_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
+			/* Should never reach this case as ddw is clamped down */
+			if (len & (ddw - 1)) {
+				dev_err(chan2dev(chan),
+					"Packing mode is enabled and len is not multiple of ddw");
+				return -EINVAL;
+			}
+		}
+
+		/* dst = dev */
+		_ctr2 |= CTR2_DREQ;
+
+		break;
+
+	case DMA_DEV_TO_MEM:
+		/* Set source (device) data width and burst */
+		sdw = min_t(u32, sdw, stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw,
+							    len, src_addr));
+		sbl_max = min_t(u32, sbl_max, stm32_dma3_get_max_burst(len, sdw, chan->max_burst));
+
+		/* Set destination (memory) data width and burst */
+		ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr);
+		dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst);
+
+		_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
+		_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
+		_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
+		_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
+
+		if (ddw != sdw) {
+			_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
+			/* Should never reach this case as ddw is clamped down */
+			if (len & (ddw - 1)) {
+				dev_err(chan2dev(chan),
+					"Packing mode is enabled and len is not multiple of ddw\n");
+				return -EINVAL;
+			}
+		}
+
+		/* dst = mem */
+		_ctr2 &= ~CTR2_DREQ;
+
+		break;
+
+	default:
+		dev_err(chan2dev(chan), "Direction %s not supported\n",
+			dmaengine_get_direction_text(dir));
+		return -EINVAL;
+	}
+
+	*ccr |= FIELD_PREP(CCR_PRIO, FIELD_GET(STM32_DMA3_DT_PRIO, ch_conf));
+	*ctr1 = _ctr1;
+	*ctr2 = _ctr2;
+
+	dev_dbg(chan2dev(chan), "%s: sdw=%u bytes sbl=%u beats ddw=%u bytes dbl=%u beats\n",
+		__func__, sdw, sbl_max, ddw, dbl_max);
+
+	return 0;
+}
+
+static void stm32_dma3_chan_start(struct stm32_dma3_chan *chan)
+{
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	struct virt_dma_desc *vdesc;
+	struct stm32_dma3_hwdesc *hwdesc;
+	u32 id = chan->id;
+	u32 csr, ccr;
+
+	vdesc = vchan_next_desc(&chan->vchan);
+	if (!vdesc) {
+		chan->swdesc = NULL;
+		return;
+	}
+	list_del(&vdesc->node);
+
+	chan->swdesc = to_stm32_dma3_swdesc(vdesc);
+	hwdesc = chan->swdesc->lli[0].hwdesc;
+
+	stm32_dma3_chan_dump_hwdesc(chan, chan->swdesc);
+
+	writel_relaxed(chan->swdesc->ccr, ddata->base + STM32_DMA3_CCR(id));
+	writel_relaxed(hwdesc->ctr1, ddata->base + STM32_DMA3_CTR1(id));
+	writel_relaxed(hwdesc->ctr2, ddata->base + STM32_DMA3_CTR2(id));
+	writel_relaxed(hwdesc->cbr1, ddata->base + STM32_DMA3_CBR1(id));
+	writel_relaxed(hwdesc->csar, ddata->base + STM32_DMA3_CSAR(id));
+	writel_relaxed(hwdesc->cdar, ddata->base + STM32_DMA3_CDAR(id));
+	writel_relaxed(hwdesc->cllr, ddata->base + STM32_DMA3_CLLR(id));
+
+	/* Clear any pending interrupts */
+	csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(id));
+	if (csr & CSR_ALL_F)
+		writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(id));
+
+	stm32_dma3_chan_dump_reg(chan);
+
+	ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(id));
+	writel_relaxed(ccr | CCR_EN, ddata->base + STM32_DMA3_CCR(id));
+
+	chan->dma_status = DMA_IN_PROGRESS;
+
+	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
+}
+
+static int stm32_dma3_chan_suspend(struct stm32_dma3_chan *chan, bool susp)
+{
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	u32 csr, ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN;
+	int ret = 0;
+
+	if (susp)
+		ccr |= CCR_SUSP;
+	else
+		ccr &= ~CCR_SUSP;
+
+	writel_relaxed(ccr, ddata->base + STM32_DMA3_CCR(chan->id));
+
+	if (susp) {
+		ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr,
+							csr & CSR_SUSPF, 1, 10);
+		if (!ret)
+			writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
+
+		stm32_dma3_chan_dump_reg(chan);
+	}
+
+	return ret;
+}
+
+static void stm32_dma3_chan_reset(struct stm32_dma3_chan *chan)
+{
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	u32 ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN;
+
+	writel_relaxed(ccr |= CCR_RESET, ddata->base + STM32_DMA3_CCR(chan->id));
+}
+
+static int stm32_dma3_chan_stop(struct stm32_dma3_chan *chan)
+{
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	u32 ccr;
+	int ret = 0;
+
+	chan->dma_status = DMA_COMPLETE;
+
+	/* Disable interrupts */
+	ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id));
+	writel_relaxed(ccr & ~(CCR_ALLIE | CCR_EN), ddata->base + STM32_DMA3_CCR(chan->id));
+
+	if (!(ccr & CCR_SUSP) && (ccr & CCR_EN)) {
+		/* Suspend the channel */
+		ret = stm32_dma3_chan_suspend(chan, true);
+		if (ret)
+			dev_warn(chan2dev(chan), "%s: timeout, data might be lost\n", __func__);
+	}
+
+	/*
+	 * Reset the channel: this causes the reset of the FIFO and the reset of the channel
+	 * internal state, the reset of CCR_EN and CCR_SUSP bits.
+	 */
+	stm32_dma3_chan_reset(chan);
+
+	return ret;
+}
+
+static void stm32_dma3_chan_complete(struct stm32_dma3_chan *chan)
+{
+	if (!chan->swdesc)
+		return;
+
+	vchan_cookie_complete(&chan->swdesc->vdesc);
+	chan->swdesc = NULL;
+	stm32_dma3_chan_start(chan);
+}
+
+static irqreturn_t stm32_dma3_chan_irq(int irq, void *devid)
+{
+	struct stm32_dma3_chan *chan = devid;
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	u32 misr, csr, ccr;
+
+	spin_lock(&chan->vchan.lock);
+
+	misr = readl_relaxed(ddata->base + STM32_DMA3_MISR);
+	if (!(misr & MISR_MIS(chan->id))) {
+		spin_unlock(&chan->vchan.lock);
+		return IRQ_NONE;
+	}
+
+	csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id));
+	ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & CCR_ALLIE;
+
+	if (csr & CSR_TCF && ccr & CCR_TCIE) {
+		if (chan->swdesc->cyclic)
+			vchan_cyclic_callback(&chan->swdesc->vdesc);
+		else
+			stm32_dma3_chan_complete(chan);
+	}
+
+	if (csr & CSR_USEF && ccr & CCR_USEIE) {
+		dev_err(chan2dev(chan), "User setting error\n");
+		chan->dma_status = DMA_ERROR;
+		/* CCR.EN automatically cleared by HW */
+		stm32_dma3_check_user_setting(chan);
+		stm32_dma3_chan_reset(chan);
+	}
+
+	if (csr & CSR_ULEF && ccr & CCR_ULEIE) {
+		dev_err(chan2dev(chan), "Update link transfer error\n");
+		chan->dma_status = DMA_ERROR;
+		/* CCR.EN automatically cleared by HW */
+		stm32_dma3_chan_reset(chan);
+	}
+
+	if (csr & CSR_DTEF && ccr & CCR_DTEIE) {
+		dev_err(chan2dev(chan), "Data transfer error\n");
+		chan->dma_status = DMA_ERROR;
+		/* CCR.EN automatically cleared by HW */
+		stm32_dma3_chan_reset(chan);
+	}
+
+	/*
+	 * Half Transfer Interrupt may be disabled but Half Transfer Flag can be set,
+	 * ensure HTF flag to be cleared, with other flags.
+	 */
+	csr &= (ccr | CCR_HTIE);
+
+	if (csr)
+		writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(chan->id));
+
+	spin_unlock(&chan->vchan.lock);
+
+	return IRQ_HANDLED;
+}
+
+static int stm32_dma3_alloc_chan_resources(struct dma_chan *c)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	u32 id = chan->id, csemcr, ccid;
+	int ret;
+
+	ret = pm_runtime_resume_and_get(ddata->dma_dev.dev);
+	if (ret < 0)
+		return ret;
+
+	/* Ensure the channel is free */
+	if (chan->semaphore_mode &&
+	    readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)) & CSEMCR_SEM_MUTEX) {
+		ret = -EBUSY;
+		goto err_put_sync;
+	}
+
+	chan->lli_pool = dmam_pool_create(dev_name(&c->dev->device), c->device->dev,
+					  sizeof(struct stm32_dma3_hwdesc),
+					  __alignof__(struct stm32_dma3_hwdesc), 0);
+	if (!chan->lli_pool) {
+		dev_err(chan2dev(chan), "Failed to create LLI pool\n");
+		ret = -ENOMEM;
+		goto err_put_sync;
+	}
+
+	/* Take the channel semaphore */
+	if (chan->semaphore_mode) {
+		writel_relaxed(CSEMCR_SEM_MUTEX, ddata->base + STM32_DMA3_CSEMCR(id));
+		csemcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(id));
+		ccid = FIELD_GET(CSEMCR_SEM_CCID, csemcr);
+		/* Check that the channel is well taken */
+		if (ccid != CCIDCFGR_CID1) {
+			dev_err(chan2dev(chan), "Not under CID1 control (in-use by CID%d)\n", ccid);
+			ret = -EPERM;
+			goto err_pool_destroy;
+		}
+		dev_dbg(chan2dev(chan), "Under CID1 control (semcr=0x%08x)\n", csemcr);
+	}
+
+	return 0;
+
+err_pool_destroy:
+	dmam_pool_destroy(chan->lli_pool);
+	chan->lli_pool = NULL;
+
+err_put_sync:
+	pm_runtime_put_sync(ddata->dma_dev.dev);
+
+	return ret;
+}
+
+static void stm32_dma3_free_chan_resources(struct dma_chan *c)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	unsigned long flags;
+
+	/* Ensure channel is in idle state */
+	spin_lock_irqsave(&chan->vchan.lock, flags);
+	stm32_dma3_chan_stop(chan);
+	chan->swdesc = NULL;
+	spin_unlock_irqrestore(&chan->vchan.lock, flags);
+
+	vchan_free_chan_resources(to_virt_chan(c));
+
+	dmam_pool_destroy(chan->lli_pool);
+	chan->lli_pool = NULL;
+
+	/* Release the channel semaphore */
+	if (chan->semaphore_mode)
+		writel_relaxed(0, ddata->base + STM32_DMA3_CSEMCR(chan->id));
+
+	pm_runtime_put_sync(ddata->dma_dev.dev);
+
+	/* Reset configuration */
+	memset(&chan->dt_config, 0, sizeof(chan->dt_config));
+	memset(&chan->dma_config, 0, sizeof(chan->dma_config));
+}
+
+static struct dma_async_tx_descriptor *stm32_dma3_prep_slave_sg(struct dma_chan *c,
+								struct scatterlist *sgl,
+								unsigned int sg_len,
+								enum dma_transfer_direction dir,
+								unsigned long flags, void *context)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+	struct stm32_dma3_swdesc *swdesc;
+	struct scatterlist *sg;
+	size_t len;
+	dma_addr_t sg_addr, dev_addr, src, dst;
+	u32 i, j, count, ctr1, ctr2;
+	int ret;
+
+	count = sg_len;
+	for_each_sg(sgl, sg, sg_len, i) {
+		len = sg_dma_len(sg);
+		if (len > STM32_DMA3_MAX_BLOCK_SIZE)
+			count += DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE) - 1;
+	}
+
+	swdesc = stm32_dma3_chan_desc_alloc(chan, count);
+	if (!swdesc)
+		return NULL;
+
+	/* sg_len and i correspond to the initial sgl; count and j correspond to the hwdesc LL */
+	j = 0;
+	for_each_sg(sgl, sg, sg_len, i) {
+		sg_addr = sg_dma_address(sg);
+		dev_addr = (dir == DMA_MEM_TO_DEV) ? chan->dma_config.dst_addr :
+						     chan->dma_config.src_addr;
+		len = sg_dma_len(sg);
+
+		do {
+			size_t chunk = min_t(size_t, len, STM32_DMA3_MAX_BLOCK_SIZE);
+
+			if (dir == DMA_MEM_TO_DEV) {
+				src = sg_addr;
+				dst = dev_addr;
+
+				ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2,
+							      src, dst, chunk);
+
+				if (FIELD_GET(CTR1_DINC, ctr1))
+					dev_addr += chunk;
+			} else { /* (dir == DMA_DEV_TO_MEM || dir == DMA_MEM_TO_MEM) */
+				src = dev_addr;
+				dst = sg_addr;
+
+				ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2,
+							      src, dst, chunk);
+
+				if (FIELD_GET(CTR1_SINC, ctr1))
+					dev_addr += chunk;
+			}
+
+			if (ret)
+				goto err_desc_free;
+
+			stm32_dma3_chan_prep_hwdesc(chan, swdesc, j, src, dst, chunk,
+						    ctr1, ctr2, j == (count - 1), false);
+
+			sg_addr += chunk;
+			len -= chunk;
+			j++;
+		} while (len);
+	}
+
+	/* Enable Error interrupts */
+	swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
+	/* Enable Transfer state interrupts */
+	swdesc->ccr |= CCR_TCIE;
+
+	swdesc->cyclic = false;
+
+	return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
+
+err_desc_free:
+	stm32_dma3_chan_desc_free(chan, swdesc);
+
+	return NULL;
+}
+
+static void stm32_dma3_caps(struct dma_chan *c, struct dma_slave_caps *caps)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+
+	if (!chan->fifo_size) {
+		caps->max_burst = 0;
+		caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
+		caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
+	} else {
+		/* Burst transfer should not exceed half of the fifo size */
+		caps->max_burst = chan->max_burst;
+		if (caps->max_burst < DMA_SLAVE_BUSWIDTH_8_BYTES) {
+			caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
+			caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
+		}
+	}
+}
+
+static int stm32_dma3_config(struct dma_chan *c, struct dma_slave_config *config)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+
+	memcpy(&chan->dma_config, config, sizeof(*config));
+
+	return 0;
+}
+
+static int stm32_dma3_terminate_all(struct dma_chan *c)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+	unsigned long flags;
+	LIST_HEAD(head);
+
+	spin_lock_irqsave(&chan->vchan.lock, flags);
+
+	if (chan->swdesc) {
+		vchan_terminate_vdesc(&chan->swdesc->vdesc);
+		chan->swdesc = NULL;
+	}
+
+	stm32_dma3_chan_stop(chan);
+
+	vchan_get_all_descriptors(&chan->vchan, &head);
+
+	spin_unlock_irqrestore(&chan->vchan.lock, flags);
+	vchan_dma_desc_free_list(&chan->vchan, &head);
+
+	dev_dbg(chan2dev(chan), "vchan %pK: terminated\n", &chan->vchan);
+
+	return 0;
+}
+
+static void stm32_dma3_synchronize(struct dma_chan *c)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+
+	vchan_synchronize(&chan->vchan);
+}
+
+static void stm32_dma3_issue_pending(struct dma_chan *c)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+	unsigned long flags;
+
+	spin_lock_irqsave(&chan->vchan.lock, flags);
+
+	if (vchan_issue_pending(&chan->vchan) && !chan->swdesc) {
+		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
+		stm32_dma3_chan_start(chan);
+	}
+
+	spin_unlock_irqrestore(&chan->vchan.lock, flags);
+}
+
+static bool stm32_dma3_filter_fn(struct dma_chan *c, void *fn_param)
+{
+	struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
+	struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
+	struct stm32_dma3_dt_conf *conf = fn_param;
+	u32 mask, semcr;
+	int ret;
+
+	dev_dbg(c->device->dev, "%s(%s): req_line=%d ch_conf=%08x tr_conf=%08x\n",
+		__func__, dma_chan_name(c), conf->req_line, conf->ch_conf, conf->tr_conf);
+
+	if (!of_property_read_u32(c->device->dev->of_node, "dma-channel-mask", &mask))
+		if (!(mask & BIT(chan->id)))
+			return false;
+
+	ret = pm_runtime_resume_and_get(ddata->dma_dev.dev);
+	if (ret < 0)
+		return false;
+	semcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id));
+	pm_runtime_put_sync(ddata->dma_dev.dev);
+
+	/* Check if chan is free */
+	if (semcr & CSEMCR_SEM_MUTEX)
+		return false;
+
+	/* Check if chan fifo fits well */
+	if (FIELD_GET(STM32_DMA3_DT_FIFO, conf->ch_conf) != chan->fifo_size)
+		return false;
+
+	return true;
+}
+
+static struct dma_chan *stm32_dma3_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma)
+{
+	struct stm32_dma3_ddata *ddata = ofdma->of_dma_data;
+	dma_cap_mask_t mask = ddata->dma_dev.cap_mask;
+	struct stm32_dma3_dt_conf conf;
+	struct stm32_dma3_chan *chan;
+	struct dma_chan *c;
+
+	if (dma_spec->args_count < 3) {
+		dev_err(ddata->dma_dev.dev, "Invalid args count\n");
+		return NULL;
+	}
+
+	conf.req_line = dma_spec->args[0];
+	conf.ch_conf = dma_spec->args[1];
+	conf.tr_conf = dma_spec->args[2];
+
+	if (conf.req_line >= ddata->dma_requests) {
+		dev_err(ddata->dma_dev.dev, "Invalid request line\n");
+		return NULL;
+	}
+
+	/* Request dma channel among the generic dma controller list */
+	c = dma_request_channel(mask, stm32_dma3_filter_fn, &conf);
+	if (!c) {
+		dev_err(ddata->dma_dev.dev, "No suitable channel found\n");
+		return NULL;
+	}
+
+	chan = to_stm32_dma3_chan(c);
+	chan->dt_config = conf;
+
+	return c;
+}
+
+static u32 stm32_dma3_check_rif(struct stm32_dma3_ddata *ddata)
+{
+	u32 chan_reserved, mask = 0, i, ccidcfgr, invalid_cid = 0;
+
+	/* Reserve Secure channels */
+	chan_reserved = readl_relaxed(ddata->base + STM32_DMA3_SECCFGR);
+
+	/*
+	 * CID filtering must be configured to ensure that the DMA3 channel will inherit the CID of
+	 * the processor which is configuring and using the given channel.
+	 * In case CID filtering is not configured, dma-channel-mask property can be used to
+	 * specify available DMA channels to the kernel.
+	 */
+	of_property_read_u32(ddata->dma_dev.dev->of_node, "dma-channel-mask", &mask);
+
+	/* Reserve !CID-filtered not in dma-channel-mask, static CID != CID1, CID1 not allowed */
+	for (i = 0; i < ddata->dma_channels; i++) {
+		ccidcfgr = readl_relaxed(ddata->base + STM32_DMA3_CCIDCFGR(i));
+
+		if (!(ccidcfgr & CCIDCFGR_CFEN)) { /* !CID-filtered */
+			invalid_cid |= BIT(i);
+			if (!(mask & BIT(i))) /* Not in dma-channel-mask */
+				chan_reserved |= BIT(i);
+		} else { /* CID-filtered */
+			if (!(ccidcfgr & CCIDCFGR_SEM_EN)) { /* Static CID mode */
+				if (FIELD_GET(CCIDCFGR_SCID, ccidcfgr) != CCIDCFGR_CID1)
+					chan_reserved |= BIT(i);
+			} else { /* Semaphore mode */
+				if (!FIELD_GET(CCIDCFGR_SEM_WLIST_CID1, ccidcfgr))
+					chan_reserved |= BIT(i);
+				ddata->chans[i].semaphore_mode = true;
+			}
+		}
+		dev_dbg(ddata->dma_dev.dev, "chan%d: %s mode, %s\n", i,
+			!(ccidcfgr & CCIDCFGR_CFEN) ? "!CID-filtered" :
+			ddata->chans[i].semaphore_mode ? "Semaphore" : "Static CID",
+			(chan_reserved & BIT(i)) ? "denied" :
+			mask & BIT(i) ? "force allowed" : "allowed");
+	}
+
+	if (invalid_cid)
+		dev_warn(ddata->dma_dev.dev, "chan%*pbl have invalid CID configuration\n",
+			 ddata->dma_channels, &invalid_cid);
+
+	return chan_reserved;
+}
+
+static const struct of_device_id stm32_dma3_of_match[] = {
+	{ .compatible = "st,stm32-dma3", },
+	{ /* sentinel */},
+};
+MODULE_DEVICE_TABLE(of, stm32_dma3_of_match);
+
+static int stm32_dma3_probe(struct platform_device *pdev)
+{
+	struct device_node *np = pdev->dev.of_node;
+	struct stm32_dma3_ddata *ddata;
+	struct reset_control *reset;
+	struct stm32_dma3_chan *chan;
+	struct dma_device *dma_dev;
+	u32 master_ports, chan_reserved, i, verr;
+	u64 hwcfgr;
+	int ret;
+
+	ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
+	if (!ddata)
+		return -ENOMEM;
+	platform_set_drvdata(pdev, ddata);
+
+	dma_dev = &ddata->dma_dev;
+
+	ddata->base = devm_platform_ioremap_resource(pdev, 0);
+	if (IS_ERR(ddata->base))
+		return PTR_ERR(ddata->base);
+
+	ddata->clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(ddata->clk))
+		return dev_err_probe(&pdev->dev, PTR_ERR(ddata->clk), "Failed to get clk\n");
+
+	reset = devm_reset_control_get_optional(&pdev->dev, NULL);
+	if (IS_ERR(reset))
+		return dev_err_probe(&pdev->dev, PTR_ERR(reset), "Failed to get reset\n");
+
+	ret = clk_prepare_enable(ddata->clk);
+	if (ret)
+		return dev_err_probe(&pdev->dev, ret, "Failed to enable clk\n");
+
+	reset_control_reset(reset);
+
+	INIT_LIST_HEAD(&dma_dev->channels);
+
+	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
+	dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
+	dma_dev->dev = &pdev->dev;
+	/*
+	 * This controller supports up to 8-byte buswidth depending on the port used and the
+	 * channel, and can only access address at even boundaries, multiple of the buswidth.
+	 */
+	dma_dev->copy_align = DMAENGINE_ALIGN_8_BYTES;
+	dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
+				   BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
+				   BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
+				   BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
+	dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
+				   BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
+				   BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
+				   BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
+	dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_MEM_TO_MEM);
+
+	dma_dev->descriptor_reuse = true;
+	dma_dev->max_sg_burst = STM32_DMA3_MAX_SEG_SIZE;
+	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
+	dma_dev->device_alloc_chan_resources = stm32_dma3_alloc_chan_resources;
+	dma_dev->device_free_chan_resources = stm32_dma3_free_chan_resources;
+	dma_dev->device_prep_slave_sg = stm32_dma3_prep_slave_sg;
+	dma_dev->device_caps = stm32_dma3_caps;
+	dma_dev->device_config = stm32_dma3_config;
+	dma_dev->device_terminate_all = stm32_dma3_terminate_all;
+	dma_dev->device_synchronize = stm32_dma3_synchronize;
+	dma_dev->device_tx_status = dma_cookie_status;
+	dma_dev->device_issue_pending = stm32_dma3_issue_pending;
+
+	/* if dma_channels is not modified, get it from hwcfgr1 */
+	if (of_property_read_u32(np, "dma-channels", &ddata->dma_channels)) {
+		hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1);
+		ddata->dma_channels = FIELD_GET(G_NUM_CHANNELS, hwcfgr);
+	}
+
+	/* if dma_requests is not modified, get it from hwcfgr2 */
+	if (of_property_read_u32(np, "dma-requests", &ddata->dma_requests)) {
+		hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR2);
+		ddata->dma_requests = FIELD_GET(G_MAX_REQ_ID, hwcfgr) + 1;
+	}
+
+	/* G_MASTER_PORTS, G_M0_DATA_WIDTH_ENC, G_M1_DATA_WIDTH_ENC in HWCFGR1 */
+	hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1);
+	master_ports = FIELD_GET(G_MASTER_PORTS, hwcfgr);
+
+	ddata->ports_max_dw[0] = FIELD_GET(G_M0_DATA_WIDTH_ENC, hwcfgr);
+	if (master_ports == AXI64 || master_ports == AHB32) /* Single master port */
+		ddata->ports_max_dw[1] = DW_INVALID;
+	else /* Dual master ports */
+		ddata->ports_max_dw[1] = FIELD_GET(G_M1_DATA_WIDTH_ENC, hwcfgr);
+
+	ddata->chans = devm_kcalloc(&pdev->dev, ddata->dma_channels, sizeof(*ddata->chans),
+				    GFP_KERNEL);
+	if (!ddata->chans) {
+		ret = -ENOMEM;
+		goto err_clk_disable;
+	}
+
+	chan_reserved = stm32_dma3_check_rif(ddata);
+
+	if (chan_reserved == GENMASK(ddata->dma_channels - 1, 0)) {
+		ret = -ENODEV;
+		dev_err_probe(&pdev->dev, ret, "No channel available, abort registration\n");
+		goto err_clk_disable;
+	}
+
+	/* G_FIFO_SIZE x=0..7 in HWCFGR3 and G_FIFO_SIZE x=8..15 in HWCFGR4 */
+	hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR3);
+	hwcfgr |= ((u64)readl_relaxed(ddata->base + STM32_DMA3_HWCFGR4)) << 32;
+
+	for (i = 0; i < ddata->dma_channels; i++) {
+		if (chan_reserved & BIT(i))
+			continue;
+
+		chan = &ddata->chans[i];
+		chan->id = i;
+		chan->fifo_size = get_chan_hwcfg(i, G_FIFO_SIZE(i), hwcfgr);
+		/* If chan->fifo_size > 0 then half of the fifo size, else no burst when no FIFO */
+		chan->max_burst = (chan->fifo_size) ? (1 << (chan->fifo_size + 1)) / 2 : 0;
+		chan->vchan.desc_free = stm32_dma3_chan_vdesc_free;
+
+		vchan_init(&chan->vchan, dma_dev);
+	}
+
+	ret = dmaenginem_async_device_register(dma_dev);
+	if (ret)
+		goto err_clk_disable;
+
+	for (i = 0; i < ddata->dma_channels; i++) {
+		if (chan_reserved & BIT(i))
+			continue;
+
+		ret = platform_get_irq(pdev, i);
+		if (ret < 0)
+			goto err_clk_disable;
+
+		chan = &ddata->chans[i];
+		chan->irq = ret;
+
+		ret = devm_request_irq(&pdev->dev, chan->irq, stm32_dma3_chan_irq, 0,
+				       dev_name(chan2dev(chan)), chan);
+		if (ret) {
+			dev_err_probe(&pdev->dev, ret, "Failed to request channel %s IRQ\n",
+				      dev_name(chan2dev(chan)));
+			goto err_clk_disable;
+		}
+	}
+
+	ret = of_dma_controller_register(np, stm32_dma3_of_xlate, ddata);
+	if (ret) {
+		dev_err_probe(&pdev->dev, ret, "Failed to register controller\n");
+		goto err_clk_disable;
+	}
+
+	verr = readl_relaxed(ddata->base + STM32_DMA3_VERR);
+
+	pm_runtime_set_active(&pdev->dev);
+	pm_runtime_enable(&pdev->dev);
+	pm_runtime_get_noresume(&pdev->dev);
+	pm_runtime_put(&pdev->dev);
+
+	dev_info(&pdev->dev, "STM32 DMA3 registered rev:%lu.%lu\n",
+		 FIELD_GET(VERR_MAJREV, verr), FIELD_GET(VERR_MINREV, verr));
+
+	return 0;
+
+err_clk_disable:
+	clk_disable_unprepare(ddata->clk);
+
+	return ret;
+}
+
+static void stm32_dma3_remove(struct platform_device *pdev)
+{
+	pm_runtime_disable(&pdev->dev);
+}
+
+static int stm32_dma3_runtime_suspend(struct device *dev)
+{
+	struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev);
+
+	clk_disable_unprepare(ddata->clk);
+
+	return 0;
+}
+
+static int stm32_dma3_runtime_resume(struct device *dev)
+{
+	struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev);
+	int ret;
+
+	ret = clk_prepare_enable(ddata->clk);
+	if (ret)
+		dev_err(dev, "Failed to enable clk: %d\n", ret);
+
+	return ret;
+}
+
+static const struct dev_pm_ops stm32_dma3_pm_ops = {
+	SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
+	RUNTIME_PM_OPS(stm32_dma3_runtime_suspend, stm32_dma3_runtime_resume, NULL)
+};
+
+static struct platform_driver stm32_dma3_driver = {
+	.probe = stm32_dma3_probe,
+	.remove_new = stm32_dma3_remove,
+	.driver = {
+		.name = "stm32-dma3",
+		.of_match_table = stm32_dma3_of_match,
+		.pm = pm_ptr(&stm32_dma3_pm_ops),
+	},
+};
+
+static int __init stm32_dma3_init(void)
+{
+	return platform_driver_register(&stm32_dma3_driver);
+}
+
+subsys_initcall(stm32_dma3_init);
+
+MODULE_DESCRIPTION("STM32 DMA3 controller driver");
+MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@xxxxxxxxxxx>");
+MODULE_LICENSE("GPL");
--
2.25.1


Regards,
Amelie




[Index of Archives]     [Device Tree Compilter]     [Device Tree Spec]     [Linux Driver Backports]     [Video for Linux]     [Linux USB Devel]     [Linux PCI Devel]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [XFree86]     [Yosemite Backpacking]


  Powered by Linux