Good day, I have started reviewing this patchset. Comments will be scattered over multiple days and as such, I will explicitly inform you when am done with the review. On Fri, Apr 26, 2024 at 02:18:08PM -0500, Andrew Davis wrote: > From: Martyn Welch <martyn.welch@xxxxxxxxxxxxx> > > The AM62x and AM64x SoCs of the TI K3 family has a Cortex M4F core in > the MCU domain. This core is typically used for safety applications in a > stand alone mode. However, some application (non safety related) may > want to use the M4F core as a generic remote processor with IPC to the > host processor. The M4F core has internal IRAM and DRAM memories and are > exposed to the system bus for code and data loading. > > A remote processor driver is added to support this subsystem, including > being able to load and boot the M4F core. Loading includes to M4F > internal memories and predefined external code/data memories. The > carve outs for external contiguous memory is defined in the M4F device > node and should match with the external memory declarations in the M4F > image binary. The M4F subsystem has two resets. One reset is for the > entire subsystem i.e including the internal memories and the other, a > local reset is only for the M4F processing core. When loading the image, > the driver first releases the subsystem reset, loads the firmware image > and then releases the local reset to let the M4F processing core run. > > Signed-off-by: Martyn Welch <martyn.welch@xxxxxxxxxxxxx> > Signed-off-by: Hari Nagalla <hnagalla@xxxxxx> > Signed-off-by: Andrew Davis <afd@xxxxxx> > --- > drivers/remoteproc/Kconfig | 13 + > drivers/remoteproc/Makefile | 1 + > drivers/remoteproc/ti_k3_m4_remoteproc.c | 785 +++++++++++++++++++++++ > 3 files changed, 799 insertions(+) > create mode 100644 drivers/remoteproc/ti_k3_m4_remoteproc.c > > diff --git a/drivers/remoteproc/Kconfig b/drivers/remoteproc/Kconfig > index 48845dc8fa852..1a7c0330c91a9 100644 > --- a/drivers/remoteproc/Kconfig > +++ b/drivers/remoteproc/Kconfig > @@ -339,6 +339,19 @@ config TI_K3_DSP_REMOTEPROC > It's safe to say N here if you're not interested in utilizing > the DSP slave processors. > > +config TI_K3_M4_REMOTEPROC > + tristate "TI K3 M4 remoteproc support" > + depends on ARCH_K3 || COMPILE_TEST > + select MAILBOX > + select OMAP2PLUS_MBOX > + help > + Say m here to support TI's M4 remote processor subsystems > + on various TI K3 family of SoCs through the remote processor > + framework. > + > + It's safe to say N here if you're not interested in utilizing > + a remote processor. > + > config TI_K3_R5_REMOTEPROC > tristate "TI K3 R5 remoteproc support" > depends on ARCH_K3 > diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile > index 91314a9b43cef..5ff4e2fee4abd 100644 > --- a/drivers/remoteproc/Makefile > +++ b/drivers/remoteproc/Makefile > @@ -37,5 +37,6 @@ obj-$(CONFIG_ST_REMOTEPROC) += st_remoteproc.o > obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o > obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o > obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o > +obj-$(CONFIG_TI_K3_M4_REMOTEPROC) += ti_k3_m4_remoteproc.o > obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o > obj-$(CONFIG_XLNX_R5_REMOTEPROC) += xlnx_r5_remoteproc.o > diff --git a/drivers/remoteproc/ti_k3_m4_remoteproc.c b/drivers/remoteproc/ti_k3_m4_remoteproc.c > new file mode 100644 > index 0000000000000..0030e509f6b5d > --- /dev/null > +++ b/drivers/remoteproc/ti_k3_m4_remoteproc.c > @@ -0,0 +1,785 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * TI K3 Cortex-M4 Remote Processor(s) driver > + * > + * Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/ > + * Hari Nagalla <hnagalla@xxxxxx> > + */ > + > +#include <linux/io.h> > +#include <linux/mailbox_client.h> > +#include <linux/module.h> > +#include <linux/of_address.h> > +#include <linux/of_reserved_mem.h> > +#include <linux/platform_device.h> > +#include <linux/remoteproc.h> > +#include <linux/reset.h> > +#include <linux/slab.h> > + > +#include "omap_remoteproc.h" > +#include "remoteproc_internal.h" > +#include "ti_sci_proc.h" > + > +/** > + * struct k3_m4_rproc_mem - internal memory structure > + * @cpu_addr: MPU virtual address of the memory region > + * @bus_addr: Bus address used to access the memory region > + * @dev_addr: Device address of the memory region from remote processor view > + * @size: Size of the memory region > + */ > +struct k3_m4_rproc_mem { > + void __iomem *cpu_addr; > + phys_addr_t bus_addr; > + u32 dev_addr; > + size_t size; > +}; > + > +/** > + * struct k3_m4_rproc_mem_data - memory definitions for a remote processor > + * @name: name for this memory entry > + * @dev_addr: device address for the memory entry > + */ > +struct k3_m4_rproc_mem_data { > + const char *name; > + const u32 dev_addr; > +}; > + > +/** > + * struct k3_m4_rproc_dev_data - device data structure for a remote processor > + * @mems: pointer to memory definitions for a remote processor > + * @num_mems: number of memory regions in @mems > + * @uses_lreset: flag to denote the need for local reset management > + */ > +struct k3_m4_rproc_dev_data { > + const struct k3_m4_rproc_mem_data *mems; > + u32 num_mems; > + bool uses_lreset; > +}; > + > +/** > + * struct k3_m4_rproc - k3 remote processor driver structure > + * @dev: cached device pointer > + * @rproc: remoteproc device handle > + * @mem: internal memory regions data > + * @num_mems: number of internal memory regions > + * @rmem: reserved memory regions data > + * @num_rmems: number of reserved memory regions > + * @reset: reset control handle > + * @data: pointer to device data > + * @tsp: TI-SCI processor control handle > + * @ti_sci: TI-SCI handle > + * @ti_sci_id: TI-SCI device identifier > + * @mbox: mailbox channel handle > + * @client: mailbox client to request the mailbox channel > + */ > +struct k3_m4_rproc { > + struct device *dev; > + struct rproc *rproc; > + struct k3_m4_rproc_mem *mem; > + int num_mems; > + struct k3_m4_rproc_mem *rmem; > + int num_rmems; > + struct reset_control *reset; > + const struct k3_m4_rproc_dev_data *data; > + struct ti_sci_proc *tsp; > + const struct ti_sci_handle *ti_sci; > + u32 ti_sci_id; > + struct mbox_chan *mbox; > + struct mbox_client client; > +}; > + > +/** > + * k3_m4_rproc_mbox_callback() - inbound mailbox message handler > + * @client: mailbox client pointer used for requesting the mailbox channel > + * @data: mailbox payload > + * > + * This handler is invoked by the K3 mailbox driver whenever a mailbox > + * message is received. Usually, the mailbox payload simply contains > + * the index of the virtqueue that is kicked by the remote processor, > + * and we let remoteproc core handle it. > + * > + * In addition to virtqueue indices, we also have some out-of-band values > + * that indicate different events. Those values are deliberately very > + * large so they don't coincide with virtqueue indices. > + */ > +static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) > +{ > + struct k3_m4_rproc *kproc = container_of(client, struct k3_m4_rproc, > + client); > + struct device *dev = kproc->rproc->dev.parent; > + const char *name = kproc->rproc->name; > + u32 msg = (u32)(uintptr_t)(data); > + > + dev_dbg(dev, "mbox msg: 0x%x\n", msg); > + > + switch (msg) { > + case RP_MBOX_CRASH: > + /* > + * remoteproc detected an exception, but error recovery is not > + * supported. So, just log this for now > + */ > + dev_err(dev, "K3 rproc %s crashed\n", name); > + break; > + case RP_MBOX_ECHO_REPLY: > + dev_info(dev, "received echo reply from %s\n", name); > + break; > + default: > + /* silently handle all other valid messages */ > + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) > + return; > + if (msg > kproc->rproc->max_notifyid) { > + dev_dbg(dev, "dropping unknown message 0x%x", msg); > + return; > + } > + /* msg contains the index of the triggered vring */ > + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) > + dev_dbg(dev, "no message was found in vqid %d\n", msg); > + } > +} > + > +/* > + * Kick the remote processor to notify about pending unprocessed messages. > + * The vqid usage is not used and is inconsequential, as the kick is performed > + * through a simulated GPIO (a bit in an IPC interrupt-triggering register), > + * the remote processor is expected to process both its Tx and Rx virtqueues. > + */ > +static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = rproc->dev.parent; > + u32 msg = (u32)vqid; > + int ret; > + > + /* send the index of the triggered virtqueue in the mailbox payload */ > + ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg); > + if (ret < 0) > + dev_err(dev, "failed to send mailbox message, status = %d\n", > + ret); > +} > + > +/* Put the remote processor into reset */ > +static int k3_m4_rproc_reset(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + int ret; > + > + ret = reset_control_assert(kproc->reset); > + if (ret) { > + dev_err(dev, "local-reset assert failed, ret = %d\n", ret); > + return ret; > + } > + > + if (kproc->data->uses_lreset) > + return ret; > + > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > + if (reset_control_deassert(kproc->reset)) > + dev_warn(dev, "local-reset deassert back failed\n"); > + } > + > + return ret; > +} > + > +/* Release the remote processor from reset */ > +static int k3_m4_rproc_release(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + int ret; > + > + if (kproc->data->uses_lreset) > + goto lreset; > + > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); > + return ret; > + } > + > +lreset: > + ret = reset_control_deassert(kproc->reset); > + if (ret) { > + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); > + if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id)) > + dev_warn(dev, "module-reset assert back failed\n"); > + } > + > + return ret; > +} > + > +static int k3_m4_rproc_request_mbox(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct mbox_client *client = &kproc->client; > + struct device *dev = kproc->dev; > + int ret; > + > + client->dev = dev; > + client->tx_done = NULL; > + client->rx_callback = k3_m4_rproc_mbox_callback; > + client->tx_block = false; > + client->knows_txdone = false; > + > + kproc->mbox = mbox_request_channel(client, 0); > + if (IS_ERR(kproc->mbox)) { > + ret = -EBUSY; > + dev_err(dev, "mbox_request_channel failed: %ld\n", > + PTR_ERR(kproc->mbox)); > + return ret; > + } > + > + /* > + * Ping the remote processor, this is only for sanity-sake for now; > + * there is no functional effect whatsoever. > + * > + * Note that the reply will _not_ arrive immediately: this message > + * will wait in the mailbox fifo until the remote processor is booted. > + */ > + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); > + if (ret < 0) { > + dev_err(dev, "mbox_send_message failed: %d\n", ret); > + mbox_free_channel(kproc->mbox); > + return ret; > + } > + > + return 0; > +} > + > +/* > + * The M4 cores have a local reset that affects only the CPU, and a > + * generic module reset that powers on the device and allows the internal > + * memories to be accessed while the local reset is asserted. This function is > + * used to release the global reset on remote cores to allow loading into the > + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any > + * firmware loading, and is followed by the .start() ops after loading to > + * actually let the remote cores to run. This callback is invoked only in > + * remoteproc mode. > + */ > +static int k3_m4_rproc_prepare(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) > + dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", > + ret); > + > + return ret; > +} > + > +/* > + * This function implements the .unprepare() ops and performs the complimentary > + * operations to that of the .prepare() ops. The function is used to assert the > + * global reset on applicable cores. This completes the second portion of > + * powering down the remote core. The cores themselves are only halted in the > + * .stop() callback through the local reset, and the .unprepare() ops is invoked > + * by the remoteproc core after the remoteproc is stopped to balance the global > + * reset. This callback is invoked only in remoteproc mode. > + */ > +static int k3_m4_rproc_unprepare(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > + > + return ret; > +} > + > +/* > + * This function implements the .get_loaded_rsc_table() callback and is used > + * to provide the resource table for a booted remote processor in IPC-only > + * mode. The remote processor firmwares follow a design-by-contract approach > + * and are expected to have the resource table at the base of the DDR region > + * reserved for firmware usage. This provides flexibility for the remote > + * processor to be booted by different bootloaders that may or may not have the > + * ability to publish the resource table address and size through a DT > + * property. > + */ > +static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, > + size_t *rsc_table_sz) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + if (!kproc->rmem[0].cpu_addr) { > + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); > + return ERR_PTR(-ENOMEM); > + } > + > + /* > + * NOTE: The resource table size is currently hard-coded to a maximum > + * of 256 bytes. The most common resource table usage for K3 firmwares > + * is to only have the vdev resource entry and an optional trace entry. > + * The exact size could be computed based on resource table address, but > + * the hard-coded value suffices to support the IPC-only mode. > + */ > + *rsc_table_sz = 256; > + return (__force struct resource_table *)kproc->rmem[0].cpu_addr; > +} > + > +/* > + * Custom function to translate a remote processor device address (internal > + * RAMs only) to a kernel virtual address. The remote processors can access > + * their RAMs at either an internal address visible only from a remote > + * processor, or at the SoC-level bus address. Both these addresses need to be > + * looked through for translation. The translated addresses can be used either > + * by the remoteproc core for loading (when using kernel remoteproc loader), or > + * by any rpmsg bus drivers. > + */ > +static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + void __iomem *va = NULL; > + phys_addr_t bus_addr; > + u32 dev_addr, offset; > + size_t size; > + int i; > + > + if (len == 0) > + return NULL; > + > + for (i = 0; i < kproc->num_mems; i++) { > + bus_addr = kproc->mem[i].bus_addr; > + dev_addr = kproc->mem[i].dev_addr; > + size = kproc->mem[i].size; > + > + /* handle M4-view addresses */ > + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + > + /* handle SoC-view addresses */ > + if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { > + offset = da - bus_addr; > + va = kproc->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + > + /* handle static DDR reserved memory regions */ > + for (i = 0; i < kproc->num_rmems; i++) { > + dev_addr = kproc->rmem[i].dev_addr; > + size = kproc->rmem[i].size; > + > + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->rmem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + > + return NULL; > +} > + > +static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, > + struct k3_m4_rproc *kproc) > +{ > + const struct k3_m4_rproc_dev_data *data = kproc->data; > + struct device *dev = &pdev->dev; > + struct resource *res; > + int num_mems = 0; > + int i; > + > + num_mems = kproc->data->num_mems; > + kproc->mem = devm_kcalloc(kproc->dev, num_mems, > + sizeof(*kproc->mem), GFP_KERNEL); > + if (!kproc->mem) > + return -ENOMEM; > + > + for (i = 0; i < num_mems; i++) { > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > + data->mems[i].name); > + if (!res) { > + dev_err(dev, "found no memory resource for %s\n", > + data->mems[i].name); > + return -EINVAL; > + } > + if (!devm_request_mem_region(dev, res->start, > + resource_size(res), > + dev_name(dev))) { > + dev_err(dev, "could not request %s region for resource\n", > + data->mems[i].name); > + return -EBUSY; > + } > + > + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, > + resource_size(res)); > + if (!kproc->mem[i].cpu_addr) { > + dev_err(dev, "failed to map %s memory\n", > + data->mems[i].name); > + return -ENOMEM; > + } > + kproc->mem[i].bus_addr = res->start; > + kproc->mem[i].dev_addr = data->mems[i].dev_addr; > + kproc->mem[i].size = resource_size(res); > + > + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + data->mems[i].name, &kproc->mem[i].bus_addr, > + kproc->mem[i].size, kproc->mem[i].cpu_addr, > + kproc->mem[i].dev_addr); > + } > + kproc->num_mems = num_mems; > + > + return 0; > +} > + > +static void k3_m4_rproc_dev_mem_release(void *data) > +{ > + struct device *dev = data; > + > + of_reserved_mem_device_release(dev); > +} > + > +static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + struct device_node *np = dev->of_node; > + struct device_node *rmem_np; > + struct reserved_mem *rmem; > + int num_rmems; > + int ret, i; > + > + num_rmems = of_property_count_elems_of_size(np, "memory-region", > + sizeof(phandle)); > + if (num_rmems < 0) { > + dev_err(dev, "device does not reserved memory regions (%pe)\n", > + ERR_PTR(num_rmems)); > + return -EINVAL; > + } > + if (num_rmems < 2) { > + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", > + num_rmems); > + return -EINVAL; > + } > + > + /* use reserved memory region 0 for vring DMA allocations */ > + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); > + if (ret) { > + dev_err(dev, "device cannot initialize DMA pool (%pe)\n", > + ERR_PTR(ret)); > + return ret; > + } > + ret = devm_add_action_or_reset(dev, k3_m4_rproc_dev_mem_release, dev); > + if (ret) > + return ret; > + > + num_rmems--; > + kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); > + if (!kproc->rmem) > + return -ENOMEM; > + > + /* use remaining reserved memory regions for static carveouts */ > + for (i = 0; i < num_rmems; i++) { > + rmem_np = of_parse_phandle(np, "memory-region", i + 1); > + if (!rmem_np) > + return -EINVAL; > + > + rmem = of_reserved_mem_lookup(rmem_np); > + if (!rmem) { > + of_node_put(rmem_np); > + return -EINVAL; > + } > + of_node_put(rmem_np); > + > + kproc->rmem[i].bus_addr = rmem->base; > + /* 64-bit address regions currently not supported */ > + kproc->rmem[i].dev_addr = (u32)rmem->base; > + kproc->rmem[i].size = rmem->size; > + kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size); > + if (!kproc->rmem[i].cpu_addr) { > + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", > + i + 1, &rmem->base, &rmem->size); > + return -ENOMEM; > + } > + > + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + i + 1, &kproc->rmem[i].bus_addr, > + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, > + kproc->rmem[i].dev_addr); > + } > + kproc->num_rmems = num_rmems; > + > + return 0; > +} > + > +static struct ti_sci_proc *k3_m4_rproc_of_get_tsp(struct device *dev, > + const struct ti_sci_handle *sci) > +{ > + struct ti_sci_proc *tsp; > + u32 temp[2]; > + int ret; > + > + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", > + temp, 2); > + if (ret < 0) > + return ERR_PTR(ret); > + > + tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); > + if (!tsp) > + return ERR_PTR(-ENOMEM); > + > + tsp->dev = dev; > + tsp->sci = sci; > + tsp->ops = &sci->ops.proc_ops; > + tsp->proc_id = temp[0]; > + tsp->host_id = temp[1]; > + > + return tsp; > +} > + > +static void k3_m4_release_tsp(void *data) > +{ > + struct ti_sci_proc *tsp = data; > + > + ti_sci_proc_release(tsp); > +} > + > +/* > + * Power up the M4F remote processor. > + * > + * This function will be invoked only after the firmware for this rproc > + * was loaded, parsed successfully, and all of its resource requirements > + * were met. This callback is invoked only in remoteproc mode. > + */ > +static int k3_m4_rproc_start(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + int ret; > + > + ret = k3_m4_rproc_request_mbox(rproc); > + if (ret) > + return ret; > + > + ret = k3_m4_rproc_release(kproc); > + if (ret) > + goto put_mbox; > + > + return 0; > + > +put_mbox: > + mbox_free_channel(kproc->mbox); > + return ret; > +} > + > +/* > + * Stop the M4 remote processor. > + * > + * This function puts the M4 processor into reset, and finishes processing > + * of any pending messages. This callback is invoked only in remoteproc mode. > + */ > +static int k3_m4_rproc_stop(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + > + mbox_free_channel(kproc->mbox); > + > + k3_m4_rproc_reset(kproc); > + > + return 0; > +} > + > +/* > + * Attach to a running M4 remote processor (IPC-only mode) > + * > + * This rproc attach callback only needs to request the mailbox, the remote > + * processor is already booted, so there is no need to issue any TI-SCI > + * commands to boot the M4 core. This callback is used only in IPC-only mode. > + */ > +static int k3_m4_rproc_attach(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + ret = k3_m4_rproc_request_mbox(rproc); > + if (ret) > + return ret; > + > + dev_info(dev, "M4 initialized in IPC-only mode\n"); > + return 0; > +} > + > +/* > + * Detach from a running M4 remote processor (IPC-only mode) > + * > + * This rproc detach callback performs the opposite operation to attach callback > + * and only needs to release the mailbox, the M4 core is not stopped and will > + * be left to continue to run its booted firmware. This callback is invoked only in > + * IPC-only mode. > + */ > +static int k3_m4_rproc_detach(struct rproc *rproc) > +{ > + struct k3_m4_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + mbox_free_channel(kproc->mbox); > + dev_info(dev, "M4 deinitialized in IPC-only mode\n"); > + return 0; > +} > + > +static const struct rproc_ops k3_m4_rproc_ops = { > + .start = k3_m4_rproc_start, > + .stop = k3_m4_rproc_stop, > + .attach = k3_m4_rproc_attach, > + .detach = k3_m4_rproc_detach, > + .kick = k3_m4_rproc_kick, > + .da_to_va = k3_m4_rproc_da_to_va, > + .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, > +}; > + > +static int k3_m4_rproc_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + const struct k3_m4_rproc_dev_data *data; > + struct k3_m4_rproc *kproc; > + struct rproc *rproc; > + const char *fw_name; > + bool r_state = false; > + bool p_state = false; > + int ret = 0; > + > + data = device_get_match_data(dev); > + if (!data) > + return -ENODEV; > + > + ret = rproc_of_parse_firmware(dev, 0, &fw_name); > + if (ret) > + return dev_err_probe(dev, ret, "failed to parse firmware-name property\n"); > + > + rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, > + sizeof(*kproc)); > + if (!rproc) > + return -ENOMEM; > + > + rproc->has_iommu = false; > + rproc->recovery_disabled = true; > + if (data->uses_lreset) { > + rproc->ops->prepare = k3_m4_rproc_prepare; > + rproc->ops->unprepare = k3_m4_rproc_unprepare; > + } > + kproc = rproc->priv; > + kproc->rproc = rproc; > + kproc->dev = dev; > + kproc->data = data; > + > + kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); > + if (IS_ERR(kproc->ti_sci)) > + return dev_err_probe(dev, PTR_ERR(kproc->ti_sci), > + "failed to get ti-sci handle\n"); > + > + ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id); > + if (ret) > + return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n"); > + > + kproc->reset = devm_reset_control_get_exclusive(dev, NULL); > + if (IS_ERR(kproc->reset)) > + return dev_err_probe(dev, PTR_ERR(kproc->reset), "failed to get reset\n"); What happens when devm_reset_control_get_exclusive() returns NULL? > + > + kproc->tsp = k3_m4_rproc_of_get_tsp(dev, kproc->ti_sci); > + if (IS_ERR(kproc->tsp)) > + return dev_err_probe(dev, PTR_ERR(kproc->tsp), > + "failed to construct ti-sci proc control\n"); > + > + ret = ti_sci_proc_request(kproc->tsp); > + if (ret < 0) > + return dev_err_probe(dev, ret, "ti_sci_proc_request failed\n"); > + ret = devm_add_action_or_reset(dev, k3_m4_release_tsp, kproc->tsp); > + if (ret) > + return ret; > + > + ret = k3_m4_rproc_of_get_memories(pdev, kproc); > + if (ret) > + return ret; > + > + ret = k3_m4_reserved_mem_init(kproc); > + if (ret) > + return dev_err_probe(dev, ret, "reserved memory init failed\n"); > + > + ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, > + &r_state, &p_state); > + if (ret) > + return dev_err_probe(dev, ret, > + "failed to get initial state, mode cannot be determined\n"); > + > + /* configure devices for either remoteproc or IPC-only mode */ > + if (p_state) { > + dev_info(dev, "configured M4 for IPC-only mode\n"); > + rproc->state = RPROC_DETACHED; > + /* override rproc ops with only required IPC-only mode ops */ > + rproc->ops->prepare = NULL; > + rproc->ops->unprepare = NULL; > + rproc->ops->start = NULL; > + rproc->ops->stop = NULL; > + rproc->ops->attach = k3_m4_rproc_attach; > + rproc->ops->detach = k3_m4_rproc_detach; > + rproc->ops->get_loaded_rsc_table = k3_m4_get_loaded_rsc_table; Why are the last 3 assignment needed when they are already set in the declaration of k3_m4_rproc_ops? > + } else { > + dev_info(dev, "configured M4 for remoteproc mode\n"); > + /* > + * ensure the M4 local reset is asserted to ensure the core > + * doesn't execute bogus code in .prepare() when the module > + * reset is released. > + */ > + if (data->uses_lreset) { > + ret = reset_control_status(kproc->reset); > + if (ret < 0) { > + return dev_err_probe(dev, ret, "failed to get reset status\n"); > + } else if (ret == 0) { > + dev_warn(dev, "local reset is deasserted for device\n"); > + k3_m4_rproc_reset(kproc); > + } > + } > + } > + > + ret = devm_rproc_add(dev, rproc); > + if (ret) > + return dev_err_probe(dev, ret, > + "failed to add register device with remoteproc core\n"); > + > + return 0; > +} > + > +static const struct k3_m4_rproc_mem_data am64_m4_mems[] = { > + { .name = "iram", .dev_addr = 0x0 }, > + { .name = "dram", .dev_addr = 0x30000 }, > +}; Is this hardcoded in the hardware and never expected to change? If not please add to the DT bindings. More comments later or tomorrow. Thanks, Mathieu > + > +static const struct k3_m4_rproc_dev_data am64_m4_data = { > + .mems = am64_m4_mems, > + .num_mems = ARRAY_SIZE(am64_m4_mems), > + .uses_lreset = true, > +}; > + > +static const struct of_device_id k3_m4_of_match[] = { > + { .compatible = "ti,am64-m4fss", .data = &am64_m4_data, }, > + { /* sentinel */ }, > +}; > +MODULE_DEVICE_TABLE(of, k3_m4_of_match); > + > +static struct platform_driver k3_m4_rproc_driver = { > + .probe = k3_m4_rproc_probe, > + .driver = { > + .name = "k3-m4-rproc", > + .of_match_table = k3_m4_of_match, > + }, > +}; > +module_platform_driver(k3_m4_rproc_driver); > + > +MODULE_AUTHOR("Hari Nagalla <hnagalla@xxxxxx>"); > +MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver"); > +MODULE_LICENSE("GPL"); > -- > 2.39.2 >