From: Keguang Zhang <keguang.zhang@xxxxxxxxx> This patch adds NAND Controller driver for Loongson-1 SoCs. Signed-off-by: Keguang Zhang <keguang.zhang@xxxxxxxxx> --- Changes in v7: - Rename the dependency to LOONGSON1_APB_DMA Changes in v6: - Amend Kconfig - Add DT support - Use DT data instead of platform data - Remove MAX_ID_SIZE - Remove case NAND_OP_CMD_INSTR in ls1x_nand_set_controller() - Move ECC configuration to ls1x_nand_attach_chip() - Rename variable "nand" to "ls1x" - Rename variable "nc" to "nfc" - Some minor fixes - Link to v5: https://lore.kernel.org/all/20210520224213.7907-1-keguang.zhang@xxxxxxxxx Changes in v5: - Update the driver to fit the raw NAND framework. - Implement exec_op() instead of legacy cmdfunc(). - Use dma_request_chan() instead of dma_request_channel(). - Some minor fixes and cleanups. Changes in v4: - Retrieve the controller from nand_hw_control. Changes in v3: - Replace __raw_readl/__raw_writel with readl/writel. - Split ls1x_nand into two structures: ls1x_nand_chip and ls1x_nand_controller. Changes in v2: - Modify the dependency in Kconfig due to the changes of DMA module. --- drivers/mtd/nand/raw/Kconfig | 7 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/loongson1_nand.c | 748 ++++++++++++++++++++++++++++++++++ 3 files changed, 756 insertions(+) diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index cbf8ae85e1ae..822bb7a2cea9 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -449,6 +449,13 @@ config MTD_NAND_RENESAS Enables support for the NAND controller found on Renesas R-Car Gen3 and RZ/N1 SoC families. +config MTD_NAND_LOONGSON1 + tristate "Loongson1 NAND controller" + depends on LOONGSON1_APB_DMA || COMPILE_TEST + select REGMAP_MMIO + help + Enables support for NAND controller on Loongson1 SoCs. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 25120a4afada..b3c65cab819c 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o +obj-$(CONFIG_MTD_NAND_LOONGSON1) += loongson1_nand.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/loongson1_nand.c b/drivers/mtd/nand/raw/loongson1_nand.c new file mode 100644 index 000000000000..d0f66a81ba0b --- /dev/null +++ b/drivers/mtd/nand/raw/loongson1_nand.c @@ -0,0 +1,748 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * NAND Controller Driver for Loongson-1 SoC + * + * Copyright (C) 2015-2024 Keguang Zhang <keguang.zhang@xxxxxxxxx> + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/iopoll.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/regmap.h> +#include <linux/sizes.h> + +/* Loongson-1 NAND Controller Registers */ +#define NAND_CMD 0x0 +#define NAND_ADDR1 0x4 +#define NAND_ADDR2 0x8 +#define NAND_TIMING 0xc +#define NAND_IDL 0x10 +#define NAND_IDH_STATUS 0x14 +#define NAND_PARAM 0x18 +#define NAND_OP_NUM 0x1c +#define MAX_DUMP_REGS 0x20 + +#define NAND_DMA_ADDR 0x40 + +/* NAND Command Register Bits */ +#define OP_DONE BIT(10) +#define OP_SPARE BIT(9) +#define OP_MAIN BIT(8) +#define CMD_STATUS BIT(7) +#define CMD_RESET BIT(6) +#define CMD_READID BIT(5) +#define BLOCKS_ERASE BIT(4) +#define CMD_ERASE BIT(3) +#define CMD_WRITE BIT(2) +#define CMD_READ BIT(1) +#define CMD_VALID BIT(0) + +#define MAX_ADDR_CYC 5U + +#define WAIT_CYCLE_MASK GENMASK(7, 0) +#define HOLD_CYCLE_MASK GENMASK(15, 8) +#define CELL_SIZE_MASK GENMASK(11, 8) + +#define BITS_PER_WORD (4 * BITS_PER_BYTE) + +/* macros for registers read/write */ +#define nand_readl(nfc, off) \ + readl((nfc)->reg_base + (off)) + +#define nand_writel(nfc, off, val) \ + writel((val), (nfc)->reg_base + (off)) + +struct ls1x_nfc_data { + unsigned int status_field; + unsigned int op_scope_field; + unsigned int hold_cycle; + unsigned int wait_cycle; + void (*parse_address)(struct nand_chip *chip, const u8 *addrs, + unsigned int naddrs, int cmd); +}; + +struct ls1x_nfc { + void __iomem *reg_base; + struct regmap *regmap; + const struct ls1x_nfc_data *data; + __le32 addr1_reg; + __le32 addr2_reg; + + char *buf; + unsigned int len; + unsigned int rdy_timeout; + + /* DMA Engine stuff */ + struct dma_chan *dma_chan; + dma_cookie_t dma_cookie; + struct completion dma_complete; +}; + +struct ls1x_nand { + struct device *dev; + struct nand_chip chip; + struct nand_controller controller; + struct ls1x_nfc nfc; +}; + +static const struct regmap_config ls1x_nand_regmap_config = { + .reg_bits = 32, + .val_bits = 32, + .reg_stride = 4, +}; + +static inline void ls1b_nand_parse_address(struct nand_chip *chip, + const u8 *addrs, + unsigned int naddrs, int cmd) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + unsigned int page_shift = chip->page_shift + 1; + int i; + + nfc->addr1_reg = 0; + nfc->addr2_reg = 0; + + if (cmd == CMD_ERASE) { + page_shift = chip->page_shift; + + for (i = 0; i < min(MAX_ADDR_CYC - 2, naddrs); i++) + nfc->addr1_reg |= + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * i); + if (i == MAX_ADDR_CYC - 2) + nfc->addr2_reg |= + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - + BITS_PER_BYTE * (i - 1)); + + return; + } + + for (i = 0; i < min(2U, naddrs); i++) + nfc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + for (i = 2; i < min(MAX_ADDR_CYC, naddrs); i++) + nfc->addr1_reg |= + (u32)addrs[i] << (page_shift + BITS_PER_BYTE * (i - 2)); + if (i == MAX_ADDR_CYC) + nfc->addr2_reg |= + (u32)addrs[i] >> (BITS_PER_WORD - page_shift - + BITS_PER_BYTE * (i - 1)); +} + +static inline void ls1c_nand_parse_address(struct nand_chip *chip, + const u8 *addrs, + unsigned int naddrs, int cmd) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + int i; + + nfc->addr1_reg = 0; + nfc->addr2_reg = 0; + + if (cmd == CMD_ERASE) { + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) + nfc->addr2_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + + return; + } + + for (i = 0; i < min(MAX_ADDR_CYC, naddrs); i++) { + if (i < 2) + nfc->addr1_reg |= (u32)addrs[i] << BITS_PER_BYTE * i; + else + nfc->addr2_reg |= + (u32)addrs[i] << BITS_PER_BYTE * (i - 2); + } +} + +static int ls1x_nand_set_controller(struct nand_chip *chip, + const struct nand_subop *subop, int cmd) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + unsigned int op_id; + + nfc->buf = NULL; + nfc->len = 0; + nfc->rdy_timeout = 0; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + const struct nand_op_instr *instr = &subop->instrs[op_id]; + unsigned int offset, naddrs; + const u8 *addrs; + + switch (instr->type) { + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + nfc->data->parse_address(chip, addrs, naddrs, cmd); + /* set NAND address */ + nand_writel(nfc, NAND_ADDR1, nfc->addr1_reg); + nand_writel(nfc, NAND_ADDR2, nfc->addr2_reg); + break; + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + offset = nand_subop_get_data_start_off(subop, op_id); + nfc->len = nand_subop_get_data_len(subop, op_id); + if (instr->type == NAND_OP_DATA_IN_INSTR) + nfc->buf = + (void *)instr->ctx.data.buf.in + offset; + else if (instr->type == NAND_OP_DATA_OUT_INSTR) + nfc->buf = + (void *)instr->ctx.data.buf.out + offset; + + if (cmd & (CMD_READID | CMD_STATUS)) + break; + + if (!IS_ALIGNED((u32)nfc->buf, chip->buf_align)) { + dev_err(ls1x->dev, + "nfc->buf %px is not aligned!\n", + nfc->buf); + return -EOPNOTSUPP; + } else if (!IS_ALIGNED(nfc->len, chip->buf_align)) { + dev_err(ls1x->dev, + "nfc->len %u is not aligned!\n", + nfc->len); + return -EOPNOTSUPP; + } + + /* set NAND data length */ + nand_writel(nfc, NAND_OP_NUM, nfc->len); + + if (nfc->data->op_scope_field) { + int op_scope = nfc->len << ffs(nfc->data->op_scope_field); + + regmap_update_bits(nfc->regmap, NAND_PARAM, + nfc->data->op_scope_field, + op_scope); + } + + break; + case NAND_OP_WAITRDY_INSTR: + nfc->rdy_timeout = instr->ctx.waitrdy.timeout_ms; + break; + default: + break; + } + } + + /* set NAND erase block count */ + if (cmd & CMD_ERASE) + nand_writel(nfc, NAND_OP_NUM, 1); + /* set NAND operation region */ + if (nfc->buf && nfc->len) + cmd |= OP_SPARE | OP_MAIN; + + /* set NAND command */ + nand_writel(nfc, NAND_CMD, cmd); + /* Trigger operation */ + regmap_write_bits(nfc->regmap, NAND_CMD, CMD_VALID, CMD_VALID); + + return 0; +} + +static void ls1x_nand_dma_callback(void *data) +{ + struct ls1x_nand *ls1x = (struct ls1x_nand *)data; + struct ls1x_nfc *nfc = &ls1x->nfc; + enum dma_status status; + + status = dmaengine_tx_status(nfc->dma_chan, nfc->dma_cookie, NULL); + if (likely(status == DMA_COMPLETE)) + dev_dbg(ls1x->dev, "DMA complete with cookie=%d\n", + nfc->dma_cookie); + else + dev_err(ls1x->dev, "DMA error with cookie=%d\n", + nfc->dma_cookie); + + complete(&nfc->dma_complete); +} + +static int ls1x_nand_dma_transfer(struct ls1x_nand *ls1x, bool is_write) +{ + struct ls1x_nfc *nfc = &ls1x->nfc; + struct dma_chan *chan = nfc->dma_chan; + struct dma_async_tx_descriptor *desc; + enum dma_data_direction data_dir = + is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; + enum dma_transfer_direction xfer_dir = + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; + dma_addr_t dma_addr; + int ret; + + dma_addr = dma_map_single(chan->device->dev, nfc->buf, nfc->len, + data_dir); + if (dma_mapping_error(chan->device->dev, dma_addr)) { + dev_err(ls1x->dev, "failed to map DMA buffer!\n"); + return -ENXIO; + } + + desc = dmaengine_prep_slave_single(chan, dma_addr, nfc->len, xfer_dir, + DMA_PREP_INTERRUPT); + if (!desc) { + dev_err(ls1x->dev, "failed to prepare DMA descriptor!\n"); + ret = PTR_ERR(desc); + goto err; + } + desc->callback = ls1x_nand_dma_callback; + desc->callback_param = ls1x; + + nfc->dma_cookie = dmaengine_submit(desc); + ret = dma_submit_error(nfc->dma_cookie); + if (ret) { + dev_err(ls1x->dev, "failed to submit DMA descriptor!\n"); + goto err; + } + + dev_dbg(ls1x->dev, "issue DMA with cookie=%d\n", nfc->dma_cookie); + dma_async_issue_pending(chan); + + ret = wait_for_completion_timeout(&nfc->dma_complete, + msecs_to_jiffies(nfc->rdy_timeout)); + if (ret <= 0) { + dev_err(ls1x->dev, "DMA timeout!%u\n", nfc->rdy_timeout); + dmaengine_terminate_all(chan); + ret = -EIO; + } + ret = 0; +err: + dma_unmap_single(chan->device->dev, dma_addr, nfc->len, data_dir); + + return ret; +} + +static inline int ls1x_nand_wait_for_op_done(struct ls1x_nfc *nfc) +{ + unsigned int val; + int ret = 0; + + /* Wait for operation done */ + if (nfc->rdy_timeout) + ret = regmap_read_poll_timeout(nfc->regmap, NAND_CMD, val, + val & OP_DONE, 0, + nfc->rdy_timeout * 1000); + + return ret; +} + +static int ls1x_nand_reset_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_RESET); + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) + dev_err(ls1x->dev, "CMD_RESET failed! %d\n", ret); + + return ret; +} + +static int ls1x_nand_read_id_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + long long idl = 0; + int i, ret; + + ls1x_nand_set_controller(chip, subop, CMD_READID); + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_READID failed! %d\n", ret); + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nfc->reg_base, MAX_DUMP_REGS, false); + return ret; + } + + idl = __be32_to_cpu(nand_readl(nfc, NAND_IDL)); + memset(nfc->buf, 0x0, nfc->len); + + for (i = 0; i < nfc->len; i++) { + if (i > 0) + nfc->buf[i] = (char)(idl >> (i - 1) * BITS_PER_BYTE); + else + nfc->buf[i] = (char)nand_readl(nfc, NAND_IDH_STATUS); + } + + return ret; +} + +static int ls1x_nand_erase_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_ERASE); + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_ERASE failed! %d\n", ret); + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nfc->reg_base, MAX_DUMP_REGS, false); + } + + return ret; +} + +static int ls1x_nand_read_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + bool is_write = false; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_READ); + + ret = ls1x_nand_dma_transfer(ls1x, is_write); + if (ret) + return ret; + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_READ failed! %d\n", ret); + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nfc->reg_base, MAX_DUMP_REGS, false); + } + + return ret; +} + +static int ls1x_nand_write_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + bool is_write = true; + int ret; + + ls1x_nand_set_controller(chip, subop, CMD_WRITE); + + ret = ls1x_nand_dma_transfer(ls1x, is_write); + if (ret) + return ret; + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_WRITE failed! %d\n", ret); + print_hex_dump_debug("REG: ", DUMP_PREFIX_OFFSET, 16, 4, + nfc->reg_base, MAX_DUMP_REGS, false); + } + + return ret; +} + +static int ls1x_nand_read_status_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + int val, ret; + + ls1x_nand_set_controller(chip, subop, CMD_STATUS); + + ret = ls1x_nand_wait_for_op_done(nfc); + if (ret) { + dev_err(ls1x->dev, "CMD_STATUS failed! %d\n", ret); + return ret; + } + + val = nand_readl(nfc, NAND_IDH_STATUS) & ~nfc->data->status_field; + nfc->buf[0] = val << ffs(nfc->data->status_field); + + return ret; +} + +static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + ls1x_nand_reset_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_id_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_erase_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_write_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN( + ls1x_nand_read_status_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), + ); + +static int ls1x_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op, + check_only); +} + +static int ls1x_nand_attach_chip(struct nand_chip *chip) +{ + struct ls1x_nand *ls1x = nand_get_controller_data(chip); + struct ls1x_nfc *nfc = &ls1x->nfc; + u64 chipsize = nanddev_target_size(&chip->base); + int cell_size = 0; + + switch (chipsize) { + case SZ_128M: + cell_size = 0x0; + break; + case SZ_256M: + cell_size = 0x1; + break; + case SZ_512M: + cell_size = 0x2; + break; + case SZ_1G: + cell_size = 0x3; + break; + case SZ_2G: + cell_size = 0x4; + break; + case SZ_4G: + cell_size = 0x5; + break; + case (SZ_2G * SZ_4G): /* 8G */ + cell_size = 0x6; + break; + case (SZ_4G * SZ_4G): /* 16G */ + cell_size = 0x7; + break; + default: + dev_err(ls1x->dev, "unsupported chip size: %llu MB\n", + chipsize); + break; + } + + /* Set cell size */ + regmap_update_bits(nfc->regmap, NAND_PARAM, CELL_SIZE_MASK, + FIELD_PREP(CELL_SIZE_MASK, cell_size)); + + regmap_update_bits(nfc->regmap, NAND_TIMING, HOLD_CYCLE_MASK, + FIELD_PREP(HOLD_CYCLE_MASK, nfc->data->hold_cycle)); + regmap_update_bits(nfc->regmap, NAND_TIMING, WAIT_CYCLE_MASK, + FIELD_PREP(WAIT_CYCLE_MASK, nfc->data->wait_cycle)); + + chip->ecc.read_page_raw = nand_monolithic_read_page_raw; + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; + chip->options |= NAND_MONOLITHIC_READ; + + return 0; +} + +static const struct nand_controller_ops ls1x_nfc_ops = { + .exec_op = ls1x_nand_exec_op, + .attach_chip = ls1x_nand_attach_chip, +}; + +static void ls1x_nand_controller_cleanup(struct ls1x_nand *ls1x) +{ + if (ls1x->nfc.dma_chan) + dma_release_channel(ls1x->nfc.dma_chan); +} + +static int ls1x_nand_controller_init(struct ls1x_nand *ls1x, + struct platform_device *pdev) +{ + struct ls1x_nfc *nfc = &ls1x->nfc; + struct dma_slave_config cfg; + int ret; + + nfc->reg_base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->reg_base)) + return PTR_ERR(nfc->reg_base); + + nfc->regmap = devm_regmap_init_mmio(ls1x->dev, nfc->reg_base, + &ls1x_nand_regmap_config); + if (IS_ERR(nfc->regmap)) + return dev_err_probe(ls1x->dev, PTR_ERR(nfc->regmap), + "failed to init regmap\n"); + + nfc->dma_chan = dma_request_chan(ls1x->dev, "rxtx"); + if (IS_ERR(nfc->dma_chan)) + return dev_err_probe(ls1x->dev, PTR_ERR(nfc->dma_chan), + "failed to request DMA channel\n"); + dev_info(ls1x->dev, "got %s for %s access\n", + dma_chan_name(nfc->dma_chan), dev_name(ls1x->dev)); + + cfg.src_addr = CPHYSADDR(nfc->reg_base + NAND_DMA_ADDR); + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.dst_addr = CPHYSADDR(nfc->reg_base + NAND_DMA_ADDR); + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + + ret = dmaengine_slave_config(nfc->dma_chan, &cfg); + if (ret) { + dev_err(ls1x->dev, "failed to config DMA channel\n"); + dma_release_channel(nfc->dma_chan); + return ret; + } + + init_completion(&nfc->dma_complete); + + return 0; +} + +static int ls1x_nand_chip_init(struct ls1x_nand *ls1x) +{ + int nchips = of_get_child_count(ls1x->dev->of_node); + struct device_node *chip_np; + struct nand_chip *chip = &ls1x->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret = 0; + + if (nchips != 1) + return dev_err_probe(ls1x->dev, -EINVAL, + "Currently one NAND chip supported\n"); + + chip_np = of_get_next_child(ls1x->dev->of_node, NULL); + if (!chip_np) + return dev_err_probe(ls1x->dev, -ENODEV, + "failed to get child node for NAND chip\n"); + + chip->controller = &ls1x->controller; + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD; + chip->buf_align = 4; + nand_set_controller_data(chip, ls1x); + nand_set_flash_node(chip, chip_np); + + mtd->dev.parent = ls1x->dev; + mtd->name = "ls1x-nand"; + mtd->owner = THIS_MODULE; + + ret = nand_scan(chip, 1); + if (ret) { + of_node_put(chip_np); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(ls1x->dev, "failed to register MTD device! %d\n", ret); + nand_cleanup(chip); + of_node_put(chip_np); + } + + return ret; +} + +static int ls1x_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + const struct ls1x_nfc_data *data; + struct ls1x_nand *ls1x; + int ret; + + data = of_device_get_match_data(&pdev->dev); + if (!data) + return -ENODEV; + + ls1x = devm_kzalloc(dev, sizeof(*ls1x), GFP_KERNEL); + if (!ls1x) + return -ENOMEM; + + ls1x->nfc.data = data; + ls1x->dev = dev; + ls1x->controller.ops = &ls1x_nfc_ops; + nand_controller_init(&ls1x->controller); + + ret = ls1x_nand_controller_init(ls1x, pdev); + if (ret) + return ret; + + ret = ls1x_nand_chip_init(ls1x); + if (ret) + goto err; + + platform_set_drvdata(pdev, ls1x); + + return 0; +err: + ls1x_nand_controller_cleanup(ls1x); + return ret; +} + +static int ls1x_nand_remove(struct platform_device *pdev) +{ + struct ls1x_nand *ls1x = platform_get_drvdata(pdev); + struct nand_chip *chip = &ls1x->chip; + int ret; + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + ls1x_nand_controller_cleanup(ls1x); + + return 0; +} + +static const struct ls1x_nfc_data ls1b_nfc_data = { + .status_field = GENMASK(15, 8), + .hold_cycle = 0x2, + .wait_cycle = 0xc, + .parse_address = ls1b_nand_parse_address, +}; + +static const struct ls1x_nfc_data ls1c_nfc_data = { + .status_field = GENMASK(23, 16), + .op_scope_field = GENMASK(29, 16), + .hold_cycle = 0x2, + .wait_cycle = 0xc, + .parse_address = ls1c_nand_parse_address, +}; + +static const struct of_device_id ls1x_nfc_match[] = { + { .compatible = "loongson,ls1b-nfc", .data = &ls1b_nfc_data }, + { .compatible = "loongson,ls1c-nfc", .data = &ls1c_nfc_data }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, ls1x_nfc_match); + +static struct platform_driver ls1x_nand_driver = { + .probe = ls1x_nand_probe, + .remove = ls1x_nand_remove, + .driver = { + .name = KBUILD_MODNAME, + .of_match_table = ls1x_nfc_match, + }, +}; + +module_platform_driver(ls1x_nand_driver); + +MODULE_AUTHOR("Keguang Zhang <keguang.zhang@xxxxxxxxx>"); +MODULE_DESCRIPTION("Loongson-1 NAND Controller driver"); +MODULE_LICENSE("GPL"); -- 2.40.1