Most of the things in this patch should go in the MTK specific implementation (except for the secure_heap_init changes). Especially the RESERVEDMEM_OF_DECLARE. On Sat, Nov 11, 2023 at 3:18 AM Yong Wu <yong.wu@xxxxxxxxxxxx> wrote: > > Create a new MediaTek CMA heap from the CMA reserved buffer. > > In this heap, When the first allocating buffer, use cma_alloc to prepare > whole the CMA range, then send its range to TEE to protect and manage. > For the later allocating, we just adds the cma_used_size_mtk. > > This CMA flow may be different with the normal CMA heap of next patch. > So I named the variable with _mtk suffix like cma_page_mtk/ > cma_used_size_mtk. This is also to distinguish it from the cma_page of > the buffer structure in the next patch. > > When SVP done, cma_release will release the buffer, then kernel may > reuse it. > > Meanwhile, this patch adds a "heap_init" pointer, while allows some heap > initialization operations. This case also checks if the CMA range is > ready. > > Signed-off-by: Yong Wu <yong.wu@xxxxxxxxxxxx> > --- > drivers/dma-buf/heaps/secure_heap.c | 124 +++++++++++++++++++++++++++- > 1 file changed, 122 insertions(+), 2 deletions(-) > > diff --git a/drivers/dma-buf/heaps/secure_heap.c b/drivers/dma-buf/heaps/secure_heap.c > index 25cc95442c56..f8b84fd16288 100644 > --- a/drivers/dma-buf/heaps/secure_heap.c > +++ b/drivers/dma-buf/heaps/secure_heap.c > @@ -4,11 +4,12 @@ > * > * Copyright (C) 2023 MediaTek Inc. > */ > - > +#include <linux/cma.h> > #include <linux/dma-buf.h> > #include <linux/dma-heap.h> > #include <linux/err.h> > #include <linux/module.h> > +#include <linux/of_reserved_mem.h> > #include <linux/scatterlist.h> > #include <linux/slab.h> > #include <linux/tee_drv.h> > @@ -25,6 +26,8 @@ enum secure_buffer_tee_cmd { /* PARAM NUM always is 4. */ > * [in] value[0].a: The buffer size. > * value[0].b: alignment. > * [in] value[1].a: enum secure_memory_type. > + * [in] value[2].a: pa base in cma case. > + * value[2].b: The buffer size in cma case. > * [out] value[3].a: The secure handle. > */ > TZCMD_SECMEM_ZALLOC = 0, > @@ -45,6 +48,13 @@ enum secure_memory_type { > * management is inside the TEE. > */ > SECURE_MEMORY_TYPE_MTK_CM_TZ = 1, > + /* > + * MediaTek dynamic chunk memory carved out from CMA. > + * In normal case, the CMA could be used in kernel; When SVP start, we will > + * allocate whole this CMA and pass whole the CMA PA and size into TEE to > + * protect it, then the detail memory management also is inside the TEE. > + */ > + SECURE_MEMORY_TYPE_MTK_CM_CMA = 2, > }; > > struct secure_buffer { > @@ -70,6 +80,7 @@ struct secure_heap_prv_data { > */ > const int tee_command_id_base; > > + int (*heap_init)(struct secure_heap *sec_heap); > int (*memory_alloc)(struct secure_heap *sec_heap, struct secure_buffer *sec_buf); > void (*memory_free)(struct secure_heap *sec_heap, struct secure_buffer *sec_buf); > > @@ -86,6 +97,13 @@ struct secure_heap { > u32 tee_session; > > const struct secure_heap_prv_data *data; > + > + struct cma *cma; > + struct page *cma_page_mtk; > + unsigned long cma_paddr; > + unsigned long cma_size; > + unsigned long cma_used_size_mtk; > + struct mutex lock; /* lock for cma_used_size_mtk */ > }; > > struct secure_heap_attachment { > @@ -168,7 +186,10 @@ static int secure_heap_tee_secure_memory(struct secure_heap *sec_heap, > params[1].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT; > params[1].u.value.a = sec_heap->mem_type; > params[2].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT; > - > + if (sec_heap->cma && sec_heap->mem_type == SECURE_MEMORY_TYPE_MTK_CM_CMA) { > + params[2].u.value.a = sec_heap->cma_paddr; > + params[2].u.value.b = sec_heap->cma_size; > + } > params[3].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT; > ret = secure_heap_tee_service_call(sec_heap->tee_ctx, sec_heap->tee_session, > data->tee_command_id_base + TZCMD_SECMEM_ZALLOC, > @@ -197,6 +218,66 @@ static void secure_heap_tee_unsecure_memory(struct secure_heap *sec_heap, > sec_heap->name, sec_buf->sec_handle, params[1].u.value.a); > } > > +static int mtk_secure_memory_cma_allocate(struct secure_heap *sec_heap, > + struct secure_buffer *sec_buf) > +{ > + /* > + * Allocate CMA only when allocating buffer for the first time, and just > + * increase cma_used_size_mtk at the other time. > + */ > + mutex_lock(&sec_heap->lock); > + if (sec_heap->cma_used_size_mtk) > + goto add_size; > + > + mutex_unlock(&sec_heap->lock); > + sec_heap->cma_page_mtk = cma_alloc(sec_heap->cma, sec_heap->cma_size >> PAGE_SHIFT, > + get_order(PAGE_SIZE), false); > + if (!sec_heap->cma_page_mtk) > + return -ENOMEM; > + > + mutex_lock(&sec_heap->lock); > +add_size: > + sec_heap->cma_used_size_mtk += sec_buf->size; > + mutex_unlock(&sec_heap->lock); > + > + return 0; > +} > + > +static void mtk_secure_memory_cma_free(struct secure_heap *sec_heap, > + struct secure_buffer *sec_buf) > +{ > + bool cma_is_empty; > + > + mutex_lock(&sec_heap->lock); > + sec_heap->cma_used_size_mtk -= sec_buf->size; > + cma_is_empty = !sec_heap->cma_used_size_mtk; > + mutex_unlock(&sec_heap->lock); > + > + if (cma_is_empty) > + cma_release(sec_heap->cma, sec_heap->cma_page_mtk, > + sec_heap->cma_size >> PAGE_SHIFT); > +} > + > +static int mtk_secure_heap_cma_init(struct secure_heap *sec_heap) > +{ > + if (!sec_heap->cma) > + return -EINVAL; > + mutex_init(&sec_heap->lock); > + return 0; > +} > + > +/* Use CMA to prepare the buffer and the memory allocating is within the TEE. */ > +const struct secure_heap_prv_data mtk_sec_mem_data_cma = { > + .uuid = TZ_TA_MEM_UUID_MTK, > + .tee_impl_id = TEE_IMPL_ID_OPTEE, > + .tee_command_id_base = TEE_MEM_COMMAND_ID_BASE_MTK, > + .heap_init = mtk_secure_heap_cma_init, > + .memory_alloc = mtk_secure_memory_cma_allocate, > + .memory_free = mtk_secure_memory_cma_free, > + .secure_the_memory = secure_heap_tee_secure_memory, > + .unsecure_the_memory = secure_heap_tee_unsecure_memory, > +}; > + > /* The memory allocating is within the TEE. */ > const struct secure_heap_prv_data mtk_sec_mem_data = { > .uuid = TZ_TA_MEM_UUID_MTK, > @@ -420,20 +501,59 @@ static struct secure_heap secure_heaps[] = { > .mem_type = SECURE_MEMORY_TYPE_MTK_CM_TZ, > .data = &mtk_sec_mem_data, > }, > + { > + .name = "secure_mtk_cma", > + .mem_type = SECURE_MEMORY_TYPE_MTK_CM_CMA, > + .data = &mtk_sec_mem_data_cma, > + }, > }; > > +static int __init secure_cma_init(struct reserved_mem *rmem) > +{ > + struct secure_heap *sec_heap = secure_heaps; > + struct cma *sec_cma; > + int ret, i; > + > + ret = cma_init_reserved_mem(rmem->base, rmem->size, 0, rmem->name, > + &sec_cma); > + if (ret) { > + pr_err("%s: %s set up CMA fail\n", __func__, rmem->name); > + return ret; > + } > + > + for (i = 0; i < ARRAY_SIZE(secure_heaps); i++, sec_heap++) { > + if (sec_heap->mem_type != SECURE_MEMORY_TYPE_MTK_CM_CMA) > + continue; > + > + sec_heap->cma = sec_cma; > + sec_heap->cma_paddr = rmem->base; > + sec_heap->cma_size = rmem->size; > + } > + return 0; > +} > + > +RESERVEDMEM_OF_DECLARE(secure_cma, "secure_cma_region", secure_cma_init); > + > static int secure_heap_init(void) > { > struct secure_heap *sec_heap = secure_heaps; > struct dma_heap_export_info exp_info; > struct dma_heap *heap; > unsigned int i; > + int ret; > > for (i = 0; i < ARRAY_SIZE(secure_heaps); i++, sec_heap++) { > exp_info.name = sec_heap->name; > exp_info.ops = &sec_heap_ops; > exp_info.priv = (void *)sec_heap; > > + if (sec_heap->data && sec_heap->data->heap_init) { > + ret = sec_heap->data->heap_init(sec_heap); > + if (ret) { > + pr_err("sec_heap %s init fail %d.\n", sec_heap->name, ret); > + continue; > + } > + } > heap = dma_heap_add(&exp_info); > if (IS_ERR(heap)) > return PTR_ERR(heap); > -- > 2.25.1 >