Hello, On Fri, Aug 04, 2023 at 10:19:26AM +0300, Александр Шубин wrote: > пн, 10 июл. 2023 г. в 12:14, Uwe Kleine-König <u.kleine-koenig@xxxxxxxxxxxxxx>: > > On Tue, Jun 27, 2023 at 11:23:25AM +0300, Aleksandr Shubin wrote: > > > Allwinner's D1, T113-S3 and R329 SoCs have a quite different PWM > > > controllers with ones supported by pwm-sun4i driver. > > > > > > This patch adds a PWM controller driver for Allwinner's D1, > > > T113-S3 and R329 SoCs. The main difference between these SoCs > > > is the number of channels defined by the DT property. > > > > > > Signed-off-by: Aleksandr Shubin <privatesub2@xxxxxxxxx> > > > --- > > > drivers/pwm/Kconfig | 10 ++ > > > drivers/pwm/Makefile | 1 + > > > drivers/pwm/pwm-sun20i.c | 322 +++++++++++++++++++++++++++++++++++++++ > > > 3 files changed, 333 insertions(+) > > > create mode 100644 drivers/pwm/pwm-sun20i.c > > > > > > diff --git a/drivers/pwm/Kconfig b/drivers/pwm/Kconfig > > > index 8df861b1f4a3..05c48a36969e 100644 > > > --- a/drivers/pwm/Kconfig > > > +++ b/drivers/pwm/Kconfig > > > @@ -594,6 +594,16 @@ config PWM_SUN4I > > > To compile this driver as a module, choose M here: the module > > > will be called pwm-sun4i. > > > > > > +config PWM_SUN20I > > > + tristate "Allwinner D1/T113s/R329 PWM support" > > > + depends on ARCH_SUNXI || COMPILE_TEST > > > + depends on COMMON_CLK > > > + help > > > + Generic PWM framework driver for Allwinner D1/T113s/R329 SoCs. > > > + > > > + To compile this driver as a module, choose M here: the module > > > + will be called pwm-sun20i. > > > + > > > config PWM_SUNPLUS > > > tristate "Sunplus PWM support" > > > depends on ARCH_SUNPLUS || COMPILE_TEST > > > diff --git a/drivers/pwm/Makefile b/drivers/pwm/Makefile > > > index 19899b912e00..cea872e22c78 100644 > > > --- a/drivers/pwm/Makefile > > > +++ b/drivers/pwm/Makefile > > > @@ -55,6 +55,7 @@ obj-$(CONFIG_PWM_STM32) += pwm-stm32.o > > > obj-$(CONFIG_PWM_STM32_LP) += pwm-stm32-lp.o > > > obj-$(CONFIG_PWM_STMPE) += pwm-stmpe.o > > > obj-$(CONFIG_PWM_SUN4I) += pwm-sun4i.o > > > +obj-$(CONFIG_PWM_SUN20I) += pwm-sun20i.o > > > obj-$(CONFIG_PWM_SUNPLUS) += pwm-sunplus.o > > > obj-$(CONFIG_PWM_TEGRA) += pwm-tegra.o > > > obj-$(CONFIG_PWM_TIECAP) += pwm-tiecap.o > > > diff --git a/drivers/pwm/pwm-sun20i.c b/drivers/pwm/pwm-sun20i.c > > > new file mode 100644 > > > index 000000000000..63e9c64e0e18 > > > --- /dev/null > > > +++ b/drivers/pwm/pwm-sun20i.c > > > @@ -0,0 +1,322 @@ > > > +// SPDX-License-Identifier: GPL-2.0 > > > +/* > > > + * PWM Controller Driver for sunxi platforms (D1, T113-S3 and R329) > > > + * > > > + * Limitations: > > > + * - When the parameters change, current running period will not be completed > > > + * and run new settings immediately. > > > + * - It output HIGH-Z state when PWM channel disabled. > > > + * > > > + * Copyright (c) 2023 Aleksandr Shubin <privatesub2@xxxxxxxxx> > > > + */ > > > + > > > +#include <linux/bitfield.h> > > > +#include <linux/clk.h> > > > +#include <linux/err.h> > > > +#include <linux/io.h> > > > +#include <linux/module.h> > > > +#include <linux/of_device.h> > > > +#include <linux/pwm.h> > > > +#include <linux/reset.h> > > > + > > > +#define PWM_CLK_CFG_REG(chan) (0x20 + (((chan) >> 1) * 0x4)) > > > +#define PWM_CLK_SRC GENMASK(8, 7) > > > +#define PWM_CLK_DIV_M GENMASK(3, 0) > > > + > > > +#define PWM_CLK_GATE_REG 0x40 > > > +#define PWM_CLK_BYPASS(chan) BIT((chan) - 16) > > > +#define PWM_CLK_GATING(chan) BIT(chan) > > > + > > > +#define PWM_ENABLE_REG 0x80 > > > +#define PWM_EN(chan) BIT(chan) > > > + > > > +#define PWM_CTL_REG(chan) (0x100 + (chan) * 0x20) > > > +#define PWM_ACT_STA BIT(8) > > > +#define PWM_PRESCAL_K GENMASK(7, 0) > > > + > > > +#define PWM_PERIOD_REG(chan) (0x104 + (chan) * 0x20) > > > +#define PWM_ENTIRE_CYCLE GENMASK(31, 16) > > > +#define PWM_ACT_CYCLE GENMASK(15, 0) > > > > Can you please adapt the register field names to include the register > > name? I'd use: > > > > #define PWM_CTL(chan) (0x100 + (chan) * 0x20) > > #define PWM_CTL_ACT_STA BIT(8) > > #define PWM_CTL_PRESCAL_K GENMASK(7, 0) > > > > then you get a chance to spot when PWM_CLK_BYPASS(x) is written to > > PWM_CLK_CFG. > > > > > > > +struct sun20i_pwm_chip { > > > + struct pwm_chip chip; > > > + struct clk *clk_bus, *clk_hosc; > > > + struct reset_control *rst; > > > + void __iomem *base; > > > + /* Mutex to protect pwm apply state */ > > > + struct mutex mutex; > > > +}; > > > + > > > +static inline struct sun20i_pwm_chip *to_sun20i_pwm_chip(struct pwm_chip *chip) > > > +{ > > > + return container_of(chip, struct sun20i_pwm_chip, chip); > > > +} > > > + > > > +static inline u32 sun20i_pwm_readl(struct sun20i_pwm_chip *chip, > > > + unsigned long offset) > > > +{ > > > + return readl(chip->base + offset); > > > +} > > > + > > > +static inline void sun20i_pwm_writel(struct sun20i_pwm_chip *chip, > > > + u32 val, unsigned long offset) > > > +{ > > > + writel(val, chip->base + offset); > > > +} > > > + > > > +static int sun20i_pwm_get_state(struct pwm_chip *chip, > > > + struct pwm_device *pwm, > > > + struct pwm_state *state) > > > +{ > > > + struct sun20i_pwm_chip *sun20i_chip = to_sun20i_pwm_chip(chip); > > > + u64 clk_rate, tmp; > > > + u32 val; > > > + u16 ent_cycle, act_cycle; > > > + u8 prescal, div_id; > > > + > > > + mutex_lock(&sun20i_chip->mutex); > > > + > > > + val = sun20i_pwm_readl(sun20i_chip, PWM_CLK_CFG_REG(pwm->hwpwm)); > > > + div_id = FIELD_GET(PWM_CLK_DIV_M, val); > > > + if (FIELD_GET(PWM_CLK_SRC, val) == 0) > > > + clk_rate = clk_get_rate(sun20i_chip->clk_hosc); > > > + else > > > + clk_rate = clk_get_rate(sun20i_chip->clk_bus); > > > + > > > + val = sun20i_pwm_readl(sun20i_chip, PWM_CTL_REG(pwm->hwpwm)); > > > + state->polarity = (PWM_ACT_STA & val) ? PWM_POLARITY_NORMAL : PWM_POLARITY_INVERSED; > > > + > > > + prescal = FIELD_GET(PWM_PRESCAL_K, val) + 1; > > > > If PWM_PRESCAL_K is 0xff, prescal ends up being 0. This isn't right, is > > it? > > > > > + val = sun20i_pwm_readl(sun20i_chip, PWM_ENABLE_REG); > > > + state->enabled = (PWM_EN(pwm->hwpwm) & val) ? true : false; > > > + > > > + val = sun20i_pwm_readl(sun20i_chip, PWM_PERIOD_REG(pwm->hwpwm)); > > > + act_cycle = FIELD_GET(PWM_ACT_CYCLE, val); > > > + ent_cycle = FIELD_GET(PWM_ENTIRE_CYCLE, val); > > > + if (act_cycle > ent_cycle) > > > + act_cycle = ent_cycle; > > > + > > > > A comment that with the width of the used factors this cannot overflow > > would be nice here. > > > > > + tmp = (u64)(act_cycle) * prescal * (1U << div_id) * NSEC_PER_SEC; > > > > Can be simplified to: > > > > tmp = (u64)act_cycle * prescal << div_id * NSEC_PER_SEC; > > > > > + state->duty_cycle = DIV_ROUND_UP_ULL(tmp, clk_rate); > > > + tmp = (u64)(ent_cycle) * prescal * (1U << div_id) * NSEC_PER_SEC; > > > + state->period = DIV_ROUND_UP_ULL(tmp, clk_rate); > > > + mutex_unlock(&sun20i_chip->mutex); > > > + > > > + return 0; > > > +} > > > + > > > +static int sun20i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, > > > + const struct pwm_state *state) > > > +{ > > > + int ret = 0; > > > + u32 clk_gate, clk_cfg, pwm_en, ctl, period; > > > + u64 bus_rate, hosc_rate, clk_div, val; > > > + u16 prescaler, div_m; > > > + bool use_bus_clk, calc_div_m; > > > + struct sun20i_pwm_chip *sun20i_chip = to_sun20i_pwm_chip(chip); > > > + > > > + mutex_lock(&sun20i_chip->mutex); > > > + > > > + pwm_en = sun20i_pwm_readl(sun20i_chip, PWM_ENABLE_REG); > > > + > > > + if (state->enabled != pwm->state.enabled) > > > + clk_gate = sun20i_pwm_readl(sun20i_chip, PWM_CLK_GATE_REG); > > > + > > > + if (state->enabled != pwm->state.enabled && !state->enabled) { > > > + clk_gate &= ~PWM_CLK_GATING(pwm->hwpwm); > > > + pwm_en &= ~PWM_EN(pwm->hwpwm); > > > + sun20i_pwm_writel(sun20i_chip, pwm_en, PWM_ENABLE_REG); > > > + sun20i_pwm_writel(sun20i_chip, clk_gate, PWM_CLK_GATE_REG); > > > + } > > > + > > > + if (state->polarity != pwm->state.polarity || > > > + state->duty_cycle != pwm->state.duty_cycle || > > > + state->period != pwm->state.period) { > > > + ctl = sun20i_pwm_readl(sun20i_chip, PWM_CTL_REG(pwm->hwpwm)); > > > + clk_cfg = sun20i_pwm_readl(sun20i_chip, PWM_CLK_CFG_REG(pwm->hwpwm)); > > > + hosc_rate = clk_get_rate(sun20i_chip->clk_hosc); > > > + bus_rate = clk_get_rate(sun20i_chip->clk_bus); > > > + if (pwm_en & PWM_EN(pwm->hwpwm ^ 1)) { > > > + /* if the neighbor channel is enable, check period only */ > > > + use_bus_clk = FIELD_GET(PWM_CLK_SRC, clk_cfg) != 0; > > > + if (use_bus_clk) > > > + val = state->period * bus_rate; > > > + else > > > + val = state->period * hosc_rate; > > > + do_div(val, NSEC_PER_SEC); > > > + > > > + div_m = FIELD_GET(PWM_CLK_DIV_M, clk_cfg); > > > + calc_div_m = false; > > > + } else { > > > + /* check period and select clock source */ > > > + use_bus_clk = false; > > > + val = state->period * hosc_rate; > > > + do_div(val, NSEC_PER_SEC); > > > + if (val <= 1) { > > > + use_bus_clk = true; > > > + val = state->period * bus_rate; > > > + do_div(val, NSEC_PER_SEC); > > > + if (val <= 1) { > > > + ret = -EINVAL; > > > + goto unlock_mutex; > > > + } > > > + } > > > + div_m = 0; > > > + calc_div_m = true; > > > + > > > + /* set up the CLK_DIV_M and clock CLK_SRC */ > > > + clk_cfg = FIELD_PREP(PWM_CLK_DIV_M, div_m); > > > + clk_cfg |= FIELD_PREP(PWM_CLK_SRC, use_bus_clk ? 1 : 0); > > > + > > > + sun20i_pwm_writel(sun20i_chip, clk_cfg, PWM_CLK_CFG_REG(pwm->hwpwm)); > > > + } > > > + > > > + /* calculate prescaler, M factor, PWM entire cycle */ > > > + clk_div = val; > > > > This assignment is useless as it is overwritten in the loop below, isn't > > it? > > > > > + for (prescaler = 0;; prescaler++) { > > > + if (prescaler >= 256) { > > > + if (calc_div_m) { > > > + prescaler = 0; > > > + div_m++; > > > + if (div_m >= 9) { > > > + ret = -EINVAL; > > > + goto unlock_mutex; > > > + } > > > + } else { > > > + ret = -EINVAL; > > > + goto unlock_mutex; > > > + } > > > + } > > > + > > > + clk_div = val >> div_m; > > > + do_div(clk_div, prescaler + 1); > > > + if (clk_div <= 65534) > > > + break; > > > > This can be calculated without a loop. > > Point me please where can I see the calculation of two divisors without a loop? for a given value of div_m you search the smallest prescaler such that (val >> div_m) // (prescaler + 1) ≤ 65534 (Using Python syntax where // denotes the usual round-down-to-next-integer division and / normal exact division.) This is equivalent to: (val >> div_m) // (prescaler + 1) ≤ 65534 ⟺ (val >> div_m) ≤ 65534 * (prescaler + 1) + prescaler ⟺ (val >> div_m) ≤ 65535 * prescaler + 65534 ⟺ (val >> div_m) - 65534 ≤ 65535 * prescaler ⟺ ((val >> div_m) - 65534) / 65535 ≤ prescaler And as prescaler is integer, this is ... ⟺ ((val >> div_m) - 65534) // 65535 ≤ prescaler So the prescaler value you're looking for is: ((val >> div_m) - 65534) // 65535 And then you have to pick the smallest div_m such that prescaler ≤ 255: ((val >> div_m) - 65534) // 65535 ≤ 255 ⟺ (val >> div_m) - 65534 ≤ 255 * 65535 + 65534 ⟺ val >> div_m ≤ 255 * 65535 + 2 * 65534 ⟺ val >> div_m ≤ 16842493 ⟺ val >> div_m < 16842494 so div_m is fls((val) / 16842494). You might want to double check this and explain the algorithm in a comment similar to the above calculation. > > > + } > > > + > > > + period = FIELD_PREP(PWM_ENTIRE_CYCLE, clk_div); > > > + > > > + /* set duty cycle */ > > > + if (use_bus_clk) > > > + val = state->duty_cycle * bus_rate; > > > + else > > > + val = state->duty_cycle * hosc_rate; maybe better use: if (use_bus_clk) rate = bus_rate; else rate = hosc_rate; val = state->duty_cycle * rate > > > + do_div(val, NSEC_PER_SEC); > > > + clk_div = val >> div_m; > > > + do_div(clk_div, prescaler + 1); > > > + > > > + if (state->duty_cycle == state->period) > > > + clk_div++; > > > > I don't understand that one. Can you explain that in a comment please? > > The formula of the output period and the duty-cycle for PWM are as follows. > T period = (PWM01_CLK / PWM0_PRESCALE_K)^-1 * (PPR0.PWM_ENTIRE_CYCLE + 1) That can be simpler written as: Tperiod = PWM0_PRESCALE_K / PWM01_CLK * (PPR0.PWM_ENTIRE_CYCLE + 1) right? > T high-level = (PWM01_CLK / PWM0_PRESCALE_K)^-1 * PPR0.PWM_ACT_CYCLE simlar: Thigh = PWM0_PRESCALE_K / PWM01_CLK * PPR0.PWM_ACT_CYCLE > Duty-cycle = T high-level / T period > In accordance with this formula, in order to set the duty-cycle to 100%, > it is necessary that PWM_ACT_CYCLE >= PWM_ENTIRE_CYCLE + 1 The +1 is also relevant for duty_cycles other than state->period, right? > > > + period |= FIELD_PREP(PWM_ACT_CYCLE, clk_div); > > > + sun20i_pwm_writel(sun20i_chip, period, PWM_PERIOD_REG(pwm->hwpwm)); > > > + > > > + ctl = FIELD_PREP(PWM_PRESCAL_K, prescaler); > > > + if (state->polarity == PWM_POLARITY_NORMAL) > > > + ctl |= PWM_ACT_STA; > > > + > > > + sun20i_pwm_writel(sun20i_chip, ctl, PWM_CTL_REG(pwm->hwpwm)); > > > > Is this racy? I.e. does the write to PWM_PERIOD_REG(pwm->hwpwm) above > > already has an effect before PWM_CTL_REG(pwm->hwpwm) is written? > > > > > + } > > > + > > > + if (state->enabled != pwm->state.enabled && state->enabled) { > > > + clk_gate &= ~PWM_CLK_BYPASS(pwm->hwpwm); > > > + clk_gate |= PWM_CLK_GATING(pwm->hwpwm); > > > + pwm_en |= PWM_EN(pwm->hwpwm); > > > + sun20i_pwm_writel(sun20i_chip, pwm_en, PWM_ENABLE_REG); > > > + sun20i_pwm_writel(sun20i_chip, clk_gate, PWM_CLK_GATE_REG); > > > > This is (I guess) racy. If your PWM is running with > > > > .period = 10000 > > .duty_cyle = 0 > > .enabled = true > > > > and you configure it to > > > > .period = 10000 > > .duty_cyle = 10000 > > .enabled = false > > > > you get a short spike. For a enabled=true -> enabled=false transition > > you should disable first before configuring duty+period (or skip the > > latter completely). > > When switching enabled=true -> enabled=false then before setting the period, > the enable register will be written false and the pvm will become inactive. > this is the place: > if (state->enabled != pwm->state.enabled && !state->enabled) { Ah, it seems I missed that (or I just don't understand any more what meant back then :-) Best regards Uwe -- Pengutronix e.K. | Uwe Kleine-König | Industrial Linux Solutions | https://www.pengutronix.de/ |
Attachment:
signature.asc
Description: PGP signature