Re: [PATCH V7 0/3] Generate device tree node for pci devices

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 3/7/23 01:54, Stefan Roese wrote:
> On 3/7/23 01:52, Rob Herring wrote:
>> On Mon, Mar 6, 2023 at 3:24 PM Frank Rowand <frowand.list@xxxxxxxxx> wrote:
>>>
>>> On 3/6/23 02:35, clement.leger@xxxxxxxxxxx wrote:
>>>> Le 2023-03-04 00:42, Frank Rowand a écrit :
>>>>> On 2/27/23 04:31, Clément Léger wrote:
>>>>>> Le Mon, 27 Feb 2023 00:51:29 -0600,
>>>>>> Frank Rowand <frowand.list@xxxxxxxxx> a écrit :
>>>>>>
>>>>>>> On 1/19/23 21:02, Lizhi Hou wrote:
>>>>>>>> This patch series introduces OF overlay support for PCI devices
>>>>>>>> which
>>>>>>>> primarily addresses two use cases. First, it provides a data driven
>>>>>>>> method
>>>>>>>> to describe hardware peripherals that are present in a PCI endpoint
>>>>>>>> and
>>>>>>>> hence can be accessed by the PCI host. Second, it allows reuse of a
>>>>>>>> OF
>>>>>>>> compatible driver -- often used in SoC platforms -- in a PCI host
>>>>>>>> based
>>>>>>>> system.
>>>>>>>>
>>>>>>>> There are 2 series devices rely on this patch:
>>>>>>>>
>>>>>>>>    1) Xilinx Alveo Accelerator cards (FPGA based device)
>>>>>>>>    2) Microchip LAN9662 Ethernet Controller
>>>>>>>>
>>>>>>>>       Please see:
>>>>>>>> https://lore.kernel.org/lkml/20220427094502.456111-1-clement.leger@xxxxxxxxxxx/
>>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>> Normally, the PCI core discovers PCI devices and their BARs using
>>>>>>>> the
>>>>>>>> PCI enumeration process. However, the process does not provide a way
>>>>>>>> to
>>>>>>>> discover the hardware peripherals that are present in a PCI device,
>>>>>>>> and
>>>>>>>> which can be accessed through the PCI BARs. Also, the enumeration
>>>>>>>> process
>>>>>>>
>>>>>>> I'm confused.  The PCI Configuration Header Registers should describe
>>>>>>> the
>>>>>>> hardware on the PCI card.
>>>>>>>
>>>>>>> Ignoring case 1 above _for the moment_ (FPGA devices are a world unto
>>>>>>> themselves, so I would like to analyze that case separately), does
>>>>>>> the
>>>>>>> second device, "Microchip LAN9662 Ethernet Controller" properly
>>>>>>> implement
>>>>>>> the PCI Configuration Header Registers?  What additional information
>>>>>>> is
>>>>>>> needed that is not provided in those registers?
>>>>>>
>>>>>> Hi Frank,
>>>>>>
>>>>>> I guess Lizhi wanted to say that it does not provide a way to describe
>>>>>> all the "platform" devices that are exposed by this PCI device. Which
>>>>>> is of course the whole point of the work we are doing right now. But
>>>>>> all the BARs are correctly described by the LAN9662 PCI card.
>>>>>>
>>>>>> Clément
>>>>>
>>>>> I remain confused.
>>>>>
>>>>> [RFC 00/10] add support for fwnode in i2c mux system and sfp
>>>>> https://lore.kernel.org/lkml/YhQHqDJvahgriDZK@xxxxxxx/t/
>>>>>
>>>>>    references a PCIe driver:
>>>>>    [2]
>>>>> https://github.com/clementleger/linux/blob/fwnode_support/drivers/mfd/lan966x_pci_mfd.c
>>>>>
>>>>> So there is a PCIe driver that works.
>>>>>
>>>>> However, the RFC patch series was proposing adding fwnode support to
>>>>> the driver.  My first
>>>>> surface reading (just part of that one email, not the entire series or
>>>>> the replies yet),
>>>>> notes:
>>>>>
>>>>>    ... However, when
>>>>>    plugged in a PCIe slot (on a x86), there is no device-tree support
>>>>> and
>>>>>    the peripherals that are present must be described in some other way.
>>>>>
>>>>> I am assuming that the peripherals are what you mentioned above as
>>>>> '"platform"
>>>>> devices'.  This is where my current confusion lies.  Are the "platform"
>>>>> devices accessed via the PCI bus or is there some other electrical
>>>>> connection
>>>>> between the host system and the PCIe card?
>>>>
>>>> Hi Frank,
>>>>
>>>> The platform devices exposed by this PCIe card are available via some
>>>> BAR using PCI memory mapped areas, so it's totally standard PCI stuff.
>>>>
>>>>>
>>>>> If the "platform" devices are accessed via the PCI bus, then I would
>>>>> expect them
>>>>> to be described by PCI configuration header registers.  Are the PCI
>>>>> configuration
>>>>> registers to describe the "platform" devices not present?
>>>>
>>>> I'm not sure to understand what you mean here. PCI configuration headers
>>>> only provides some basic registers allowing to identify the PCI device
>>>> (vendor/product) and some memory areas that are exposed (BAR). They do
>>>> not provides the "list" of peripherals that are exposed by the devices,
>>>> only some BARs that can be mapped and that allows to access.
>>>
>>> Yes, "identify the PCI device (vendor/product) and some memory areas".
>>> The driver for the (vendor/product) 'knows' what peripherals are exposed
>>> by the device and where within the BAR to find the registers for each
>>> of the devices.
>>>
>>> A normal PCI driver would contain this information.  If I understand the
>>> proposal of this patch series, of_pci_make_dev_node() adds a node to
>>> the devicetree, when invoked via a PCI quirk for certain specific
>>> vendor/product cards.  This node must exist for the flattened device
>>> tree (FDT) overlay for the card to be loaded.  The driver for the card
>>> will get the overlay FDT from the card and load it into the kernel.
>>> The driver will use the information that then exists in the devicetree
>>> describing the card, instead of using information from the PCI configuration
>>> headers from the card.
>>
>> How would all the sub devices be defined by the PCI config space other
>> than a VID/PID implies *everything*. That's the same as the pre-DT
>> world where the ARM machine ID number (from RMK's registry) implied
>> everything. These days, we can have an entire SoC exposed behind a PCI
>> BAR which I think is pretty much Clement's usecase. Putting an SoC
>> behind a PCI BAR is no more discoverable than a "normal" SoC.
>>
>>>
>>> The intent is to be able to re-use devicetree based drivers instead of
>>> having the driver be a native PCI driver.
>>
>> Not instead of. There's the PCI driver for the FPGA or SoC bus with
>> multiple unrelated devices behind it. The PCI driver is just a bus
>> driver much like we have for various custom SoC bus drivers.
>>
>>> This goes against historical Linux practice.  The idea of taking a driver
>>> from another environment (eg Windows, HP Unix, Sun Unix, IBM Unix, etc)
>>> and adding a shim layer to translate between Linux and the other
>>> environment has been rejected.  Ironically, in this case, the other
>>> environment is Linux (more specifically the Linux OF implementation).
>>
>> I don't see how your example relates to this in any way whatsoever.
>> We're talking about different discovery mechanisms, not different
>> driver models/environments.
>>
>>> Even thought the other environment is Linux, this is still adding a
>>> shim layer to translate between that other environment and the native
>>> Linux PCI environment for which the driver would normally be written.
>>>
>>> In other words, this is not acceptable.  Normal alternatives would be
>>> something like
>>> (1) add the PCI awareness to the existing drivers,
>>
>> The downstream devices don't have their own PCI config space. That
>> won't work. PCI drivers expect a device with PCI config space. Devices
>> to drivers are always 1:1, so we couldn't share the config space among
>> multiple drivers or something. For devices which are not discoverable
>> like these are, our choices are DT, ACPI or s/w nodes (aka
>> platform_data 2.0).
>>
>>> (2) split the devicetree aware and PCI aware portions of the driver
>>> to common code that would be invoked from separate devicetree and PCI
>>> drivers,
>>
>> That only makes sense for something that is a single driver. Not the
>> case here. For the FPGA, the devices are not known up front.
>>
>>> (3) write entirely separate devicetree and PCI drivers, or
>>
>> For the same reason as 1, that simply won't work.
>>
>>> (4) some other creative solution.
>>>
>>> Am I mis-interpretting or misunderstanding anything crucial here?
>>
>> Yes...
>>
>> We now have 3 different use cases all needing the same thing. The
>> 3rd[1] is the recent test infrastructure change to have test devices
>> added. They all have non-discoverable devices downstream of a PCI
>> device. We need a solution here.
> 
> Thanks Rob for this explanation. I would like to second that, as I've
> been looking for a "solution" for exact this situation for a few years
> now in multiple system configurations. The setup mostly being identical:

Please don't hijack this subthread.

I am really struggling to get a correct understanding of the issues
specifically related to the example of the Microchip LAN9662 Ethernet
Controller on a PCI card.  I want this subthread to remain focused
on that, as much as possible.

The below info will be useful in the bigger picture discussion, and
the main thread discussion, but I want to keep this subthread focused
on the one specific example item of hardware.

Thanks (and thanks for all your useful participation over many years),

Frank

> An FPGA connected via PCIe to the host CPU, embedded in the FPGA misc
> devices like NS16550 UART, GPIO controller, etc which often have
> existing drivers in the Kernel. Using this dynamic device tree node
> approach for the PCIe EP with the possibility to describe the FPGA-
> internal devices via device tree seems to be the most elegant solution
> IMHO.
> 
> Thanks,
> Stefan
> 
>> Rob
>>
>> [1] https://lore.kernel.org/lkml/20230120-simple-mfd-pci-v1-1-c46b3d6601ef@xxxxxxxx/




[Index of Archives]     [Device Tree Compilter]     [Device Tree Spec]     [Linux Driver Backports]     [Video for Linux]     [Linux USB Devel]     [Linux PCI Devel]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [XFree86]     [Yosemite Backpacking]


  Powered by Linux