On Mon, Oct 20, 2014 at 01:45:19PM +0200, Boris Brezillon wrote: > Add support for the sunxi NAND Flash Controller (NFC). > > Signed-off-by: Boris Brezillon <boris.brezillon@xxxxxxxxxxxxxxxxxx> This driver looks mostly good. Sorry for the delays, and thanks for the patience. > --- > drivers/mtd/nand/Kconfig | 6 + > drivers/mtd/nand/Makefile | 1 + > drivers/mtd/nand/sunxi_nand.c | 1400 +++++++++++++++++++++++++++++++++++++++++ > 3 files changed, 1407 insertions(+) > create mode 100644 drivers/mtd/nand/sunxi_nand.c > > diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig > index dd10646..4c51d2c 100644 > --- a/drivers/mtd/nand/Kconfig > +++ b/drivers/mtd/nand/Kconfig > @@ -516,4 +516,10 @@ config MTD_NAND_XWAY > Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached > to the External Bus Unit (EBU). > > +config MTD_NAND_SUNXI > + tristate "Support for NAND on Allwinner SoCs" > + depends on ARCH_SUNXI > + help > + Enables support for NAND Flash chips on Allwinner SoCs. > + > endif # MTD_NAND > diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile > index 9c847e4..bd38f21 100644 > --- a/drivers/mtd/nand/Makefile > +++ b/drivers/mtd/nand/Makefile > @@ -50,5 +50,6 @@ obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o > obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ > obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o > obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ > +obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o > > nand-objs := nand_base.o nand_bbt.o nand_timings.o > diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/sunxi_nand.c > new file mode 100644 > index 0000000..c4e0559 > --- /dev/null > +++ b/drivers/mtd/nand/sunxi_nand.c > @@ -0,0 +1,1400 @@ > +/* > + * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@xxxxxxxxx> > + * > + * Derived from: > + * https://github.com/yuq/sunxi-nfc-mtd > + * Copyright (C) 2013 Qiang Yu <yuq825@xxxxxxxxx> > + * > + * https://github.com/hno/Allwinner-Info > + * Copyright (C) 2013 Henrik Nordström <Henrik Nordström> > + * > + * Copyright (C) 2013 Dmitriy B. <rzk333@xxxxxxxxx> > + * Copyright (C) 2013 Sergey Lapin <slapin@xxxxxxxxxxx> > + * > + * This program is free software; you can redistribute it and/or modify > + * it under the terms of the GNU General Public License as published by > + * the Free Software Foundation; either version 2 of the License, or > + * (at your option) any later version. > + * > + * This program is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > + * GNU General Public License for more details. > + */ > + > +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt > + > +#include <linux/dma-mapping.h> > +#include <linux/slab.h> > +#include <linux/module.h> > +#include <linux/moduleparam.h> > +#include <linux/platform_device.h> > +#include <linux/of.h> > +#include <linux/of_device.h> > +#include <linux/of_gpio.h> > +#include <linux/of_mtd.h> > +#include <linux/mtd/mtd.h> > +#include <linux/mtd/nand.h> > +#include <linux/mtd/partitions.h> > +#include <linux/clk.h> > +#include <linux/delay.h> > +#include <linux/dmaengine.h> > +#include <linux/gpio.h> > +#include <linux/interrupt.h> > +#include <linux/io.h> > + > +#define NFC_REG_CTL 0x0000 > +#define NFC_REG_ST 0x0004 > +#define NFC_REG_INT 0x0008 > +#define NFC_REG_TIMING_CTL 0x000C > +#define NFC_REG_TIMING_CFG 0x0010 > +#define NFC_REG_ADDR_LOW 0x0014 > +#define NFC_REG_ADDR_HIGH 0x0018 > +#define NFC_REG_SECTOR_NUM 0x001C > +#define NFC_REG_CNT 0x0020 > +#define NFC_REG_CMD 0x0024 > +#define NFC_REG_RCMD_SET 0x0028 > +#define NFC_REG_WCMD_SET 0x002C > +#define NFC_REG_IO_DATA 0x0030 > +#define NFC_REG_ECC_CTL 0x0034 > +#define NFC_REG_ECC_ST 0x0038 > +#define NFC_REG_DEBUG 0x003C > +#define NFC_REG_ECC_CNT0 0x0040 > +#define NFC_REG_ECC_CNT1 0x0044 > +#define NFC_REG_ECC_CNT2 0x0048 > +#define NFC_REG_ECC_CNT3 0x004c > +#define NFC_REG_USER_DATA_BASE 0x0050 > +#define NFC_REG_SPARE_AREA 0x00A0 > +#define NFC_RAM0_BASE 0x0400 > +#define NFC_RAM1_BASE 0x0800 > + > +/* define bit use in NFC_CTL */ > +#define NFC_EN BIT(0) > +#define NFC_RESET BIT(1) > +#define NFC_BUS_WIDYH BIT(2) > +#define NFC_RB_SEL BIT(3) > +#define NFC_CE_SEL GENMASK(26, 24) > +#define NFC_CE_CTL BIT(6) > +#define NFC_CE_CTL1 BIT(7) > +#define NFC_PAGE_SIZE GENMASK(11, 8) > +#define NFC_SAM BIT(12) > +#define NFC_RAM_METHOD BIT(14) > +#define NFC_DEBUG_CTL BIT(31) > + > +/* define bit use in NFC_ST */ > +#define NFC_RB_B2R BIT(0) > +#define NFC_CMD_INT_FLAG BIT(1) > +#define NFC_DMA_INT_FLAG BIT(2) > +#define NFC_CMD_FIFO_STATUS BIT(3) > +#define NFC_STA BIT(4) > +#define NFC_NATCH_INT_FLAG BIT(5) > +#define NFC_RB_STATE0 BIT(8) > +#define NFC_RB_STATE1 BIT(9) > +#define NFC_RB_STATE2 BIT(10) > +#define NFC_RB_STATE3 BIT(11) > + > +/* define bit use in NFC_INT */ > +#define NFC_B2R_INT_ENABLE BIT(0) > +#define NFC_CMD_INT_ENABLE BIT(1) > +#define NFC_DMA_INT_ENABLE BIT(2) > +#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ > + NFC_CMD_INT_ENABLE | \ > + NFC_DMA_INT_ENABLE) > + > +/* define bit use in NFC_CMD */ > +#define NFC_CMD_LOW_BYTE GENMASK(7, 0) > +#define NFC_CMD_HIGH_BYTE GENMASK(15, 8) > +#define NFC_ADR_NUM GENMASK(18, 16) > +#define NFC_SEND_ADR BIT(19) > +#define NFC_ACCESS_DIR BIT(20) > +#define NFC_DATA_TRANS BIT(21) > +#define NFC_SEND_CMD1 BIT(22) > +#define NFC_WAIT_FLAG BIT(23) > +#define NFC_SEND_CMD2 BIT(24) > +#define NFC_SEQ BIT(25) > +#define NFC_DATA_SWAP_METHOD BIT(26) > +#define NFC_ROW_AUTO_INC BIT(27) > +#define NFC_SEND_CMD3 BIT(28) > +#define NFC_SEND_CMD4 BIT(29) > +#define NFC_CMD_TYPE GENMASK(31, 30) > + > +/* define bit use in NFC_RCMD_SET */ > +#define NFC_READ_CMD GENMASK(7, 0) > +#define NFC_RANDOM_READ_CMD0 GENMASK(15, 8) > +#define NFC_RANDOM_READ_CMD1 GENMASK(23, 16) > + > +/* define bit use in NFC_WCMD_SET */ > +#define NFC_PROGRAM_CMD GENMASK(7, 0) > +#define NFC_RANDOM_WRITE_CMD GENMASK(15, 8) > +#define NFC_READ_CMD0 GENMASK(23, 16) > +#define NFC_READ_CMD1 GENMASK(31, 24) > + > +/* define bit use in NFC_ECC_CTL */ > +#define NFC_ECC_EN BIT(0) > +#define NFC_ECC_PIPELINE BIT(3) > +#define NFC_ECC_EXCEPTION BIT(4) > +#define NFC_ECC_BLOCK_SIZE BIT(5) > +#define NFC_RANDOM_EN BIT(9) > +#define NFC_RANDOM_DIRECTION BIT(10) > +#define NFC_ECC_MODE_SHIFT 12 > +#define NFC_ECC_MODE GENMASK(15, 12) > +#define NFC_RANDOM_SEED GENMASK(30, 16) > + > +#define DEFAULT_NAME_FORMAT "nand@%d" > +#define MAX_NAME_SIZE (sizeof("nand@") + 2) > + > +#define NFC_DEFAULT_TIMEOUT_MS 1000 > + > +/* > + * Ready/Busy detection type: describes the Ready/Busy detection modes > + * > + * @RB_NONE: no external detection available, rely on STATUS command > + * and software timeouts > + * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy > + * pin of the NAND flash chip must be connected to one of the > + * native NAND R/B pins (those which can be muxed to the NAND > + * Controller) > + * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy > + * pin of the NAND flash chip must be connected to a GPIO capable > + * pin. > + */ > +enum sunxi_nand_rb_type { > + RB_NONE, > + RB_NATIVE, > + RB_GPIO, > +}; > + > +/* > + * Ready/Busy structure: stores information related to Ready/Busy detection > + * > + * @type: the Ready/Busy detection mode > + * @info: information related to the R/B detection mode. Either a gpio > + * id or a native R/B id (those supported by the NAND controller). > + */ > +struct sunxi_nand_rb { > + enum sunxi_nand_rb_type type; > + union { > + int gpio; > + int nativeid; > + } info; > +}; > + > +/* > + * Chip Select structure: stores information related to NAND Chip Select > + * > + * @cs: the NAND CS id used to communicate with a NAND Chip > + * @rb: the Ready/Busy description > + */ > +struct sunxi_nand_chip_sel { > + u8 cs; > + struct sunxi_nand_rb rb; > +}; > + > +/* > + * sunxi HW ECC infos: stores information related to HW ECC support > + * > + * @mode: the sunxi ECC mode field deduced from ECC requirements > + * @layout: the OOB layout depending on the ECC requirements and the > + * selected ECC mode > + */ > +struct sunxi_nand_hw_ecc { > + int mode; > + struct nand_ecclayout layout; > +}; > + > +/* > + * NAND chip structure: stores NAND chip device related information > + * > + * @node: used to store NAND chips into a list > + * @nand: base NAND chip structure > + * @mtd: base MTD structure > + * @default_name: name used if no name was provided by the DT > + * @clk_rate: clk_rate required for this NAND chip > + * @selected: current active CS > + * @nsels: number of CS lines required by the NAND chip > + * @sels: array of CS lines descriptions > + */ > +struct sunxi_nand_chip { > + struct list_head node; > + struct nand_chip nand; > + struct mtd_info mtd; > + char default_name[MAX_NAME_SIZE]; > + unsigned long clk_rate; > + int selected; > + int nsels; > + struct sunxi_nand_chip_sel sels[0]; > +}; > + > +static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) > +{ > + return container_of(nand, struct sunxi_nand_chip, nand); > +} > + > +/* > + * NAND Controller structure: stores sunxi NAND controller information > + * > + * @controller: base controller structure > + * @regs: NAND controller registers > + * @ahb_clk: NAND Controller AHB clock > + * @mod_clk: NAND Controller mod clock > + * @assigned_cs: bitmask describing already assigned CS lines > + * @clk_rate: NAND controller current clock rate > + * @chips: a list containing all the NAND chips attached to > + * this NAND controller > + * @complete: a completion object used to wait for NAND > + * controller events > + */ > +struct sunxi_nfc { > + struct nand_hw_control controller; > + void __iomem *regs; > + struct clk *ahb_clk; > + struct clk *mod_clk; > + unsigned long assigned_cs; > + unsigned long clk_rate; > + struct list_head chips; > + struct completion complete; > +}; > + > +static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) > +{ > + return container_of(ctrl, struct sunxi_nfc, controller); > +} > + > +static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) > +{ > + struct sunxi_nfc *nfc = dev_id; > + u32 st = readl(nfc->regs + NFC_REG_ST); > + u32 ien = readl(nfc->regs + NFC_REG_INT); > + > + if (!(ien & st)) > + return IRQ_NONE; > + > + if ((ien & st) == ien) > + complete(&nfc->complete); > + > + writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); > + writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); > + > + return IRQ_HANDLED; > +} > + > +static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags, > + unsigned int timeout_ms) > +{ > + init_completion(&nfc->complete); > + > + writel(flags, nfc->regs + NFC_REG_INT); > + > + if (!timeout_ms) > + timeout_ms = NFC_DEFAULT_TIMEOUT_MS; > + > + if (!wait_for_completion_timeout(&nfc->complete, > + msecs_to_jiffies(timeout_ms))) > + return -ETIMEDOUT; > + > + return 0; > +} > + > +static void sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) > +{ > + unsigned long timeout = jiffies + > + msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS); > + > + while ((readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS) && > + time_before(jiffies, timeout)) > + ; It's typically good form to return an error and/or print a message on timeouts. > +} > + > +static void sunxi_nfc_rst(struct sunxi_nfc *nfc) > +{ > + unsigned long timeout = jiffies + > + msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS); > + > + writel(0, nfc->regs + NFC_REG_ECC_CTL); > + writel(NFC_RESET, nfc->regs + NFC_REG_CTL); > + while ((readl(nfc->regs + NFC_REG_CTL) & NFC_RESET) && > + time_before(jiffies, timeout)) > + ; Same here. > +} > + > +static int sunxi_nfc_dev_ready(struct mtd_info *mtd) > +{ > + struct nand_chip *nand = mtd->priv; > + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); > + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); > + struct sunxi_nand_rb *rb; > + unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20); > + int ret; > + > + if (sunxi_nand->selected < 0) > + return 0; > + > + rb = &sunxi_nand->sels[sunxi_nand->selected].rb; > + > + switch (rb->type) { > + case RB_NATIVE: > + ret = !!(readl(nfc->regs + NFC_REG_ST) & > + (NFC_RB_STATE0 << rb->info.nativeid)); > + if (ret) > + break; > + > + sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo); > + ret = !!(readl(nfc->regs + NFC_REG_ST) & > + (NFC_RB_STATE0 << rb->info.nativeid)); > + break; > + case RB_GPIO: > + ret = gpio_get_value(rb->info.gpio); > + break; > + case RB_NONE: > + default: > + ret = 0; > + pr_err("cannot check R/B NAND status!"); > + break; > + } > + > + return ret; > +} > + > +static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip) > +{ > + struct nand_chip *nand = mtd->priv; > + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); > + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); > + struct sunxi_nand_chip_sel *sel; > + u32 ctl; > + > + if (chip > 0 && chip >= sunxi_nand->nsels) > + return; > + > + if (chip == sunxi_nand->selected) > + return; > + > + ctl = readl(nfc->regs + NFC_REG_CTL) & > + ~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN); > + > + if (chip >= 0) { > + sel = &sunxi_nand->sels[chip]; > + > + ctl |= (sel->cs << 24) | NFC_EN | > + (((nand->page_shift - 10) & 0xf) << 8); > + if (sel->rb.type == RB_NONE) { > + nand->dev_ready = NULL; > + } else { > + nand->dev_ready = sunxi_nfc_dev_ready; > + if (sel->rb.type == RB_NATIVE) > + ctl |= (sel->rb.info.nativeid << 3); > + } > + > + writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); > + > + if (nfc->clk_rate != sunxi_nand->clk_rate) { > + clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); > + nfc->clk_rate = sunxi_nand->clk_rate; > + } > + } > + > + writel(ctl, nfc->regs + NFC_REG_CTL); > + > + sunxi_nand->selected = chip; > +} > + > +static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) > +{ > + struct nand_chip *nand = mtd->priv; > + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); > + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); > + int cnt; > + int offs = 0; > + u32 tmp; > + > + while (len > offs) { > + cnt = len - offs; > + if (cnt > 1024) > + cnt = 1024; '1024' might deserve its own macro, to represent the controller's buffer size. And more succinctly: cnt = min(len - offs, 1024); > + > + sunxi_nfc_wait_cmd_fifo_empty(nfc); > + writel(cnt, nfc->regs + NFC_REG_CNT); > + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; > + writel(tmp, nfc->regs + NFC_REG_CMD); > + sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); > + if (buf) > + memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, > + cnt); > + offs += cnt; > + } > +} > + > +static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, > + int len) > +{ > + struct nand_chip *nand = mtd->priv; > + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); > + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); > + int cnt; > + int offs = 0; > + u32 tmp; > + > + while (len > offs) { > + cnt = len - offs; > + if (cnt > 1024) > + cnt = 1024; Same here. > + > + sunxi_nfc_wait_cmd_fifo_empty(nfc); > + writel(cnt, nfc->regs + NFC_REG_CNT); > + memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); > + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | > + NFC_ACCESS_DIR; > + writel(tmp, nfc->regs + NFC_REG_CMD); > + sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); > + offs += cnt; > + } > +} > + > +static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd) > +{ > + uint8_t ret; > + > + sunxi_nfc_read_buf(mtd, &ret, 1); > + > + return ret; > +} > + > +static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, > + unsigned int ctrl) > +{ > + struct nand_chip *nand = mtd->priv; > + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); > + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); > + u32 tmp; > + > + sunxi_nfc_wait_cmd_fifo_empty(nfc); > + > + if (ctrl & NAND_CTRL_CHANGE) { > + tmp = readl(nfc->regs + NFC_REG_CTL); > + if (ctrl & NAND_NCE) > + tmp |= NFC_CE_CTL; > + else > + tmp &= ~NFC_CE_CTL; > + writel(tmp, nfc->regs + NFC_REG_CTL); > + } > + > + if (dat == NAND_CMD_NONE) > + return; > + > + if (ctrl & NAND_CLE) { > + writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD); > + } else { > + writel(dat, nfc->regs + NFC_REG_ADDR_LOW); > + writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD); > + } > + > + sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); > +} > + > +static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, > + struct nand_chip *chip, uint8_t *buf, > + int oob_required, int page) > +{ > + struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + struct nand_ecclayout *layout = ecc->layout; > + struct sunxi_nand_hw_ecc *data = ecc->priv; > + int steps = mtd->writesize / ecc->size; Could you just use ecc->steps? > + unsigned int max_bitflips = 0; > + int offset; > + u32 tmp; > + int i; > + int cnt; > + > + tmp = readl(nfc->regs + NFC_REG_ECC_CTL); > + tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE); > + tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) | > + NFC_ECC_EXCEPTION; > + > + writel(tmp, nfc->regs + NFC_REG_ECC_CTL); > + > + for (i = 0; i < steps; i++) { > + if (i) > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1); > + > + offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4; > + > + chip->read_buf(mtd, NULL, ecc->size); > + > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); > + sunxi_nfc_wait_cmd_fifo_empty(nfc); > + > + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30); > + writel(tmp, nfc->regs + NFC_REG_CMD); > + sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); > + memcpy_fromio(buf + (i * ecc->size), > + nfc->regs + NFC_RAM0_BASE, ecc->size); > + > + if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) { > + mtd->ecc_stats.failed++; > + } else { > + tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff; > + mtd->ecc_stats.corrected += tmp; > + max_bitflips = max_t(unsigned int, max_bitflips, tmp); > + } > + > + if (oob_required) { > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); > + sunxi_nfc_wait_cmd_fifo_empty(nfc); > + offset -= mtd->writesize; > + chip->read_buf(mtd, chip->oob_poi + offset, > + ecc->bytes + 4); > + } > + } > + > + if (oob_required) { > + cnt = ecc->layout->oobfree[steps].length; > + if (cnt > 0) { > + offset = mtd->writesize + > + ecc->layout->oobfree[steps].offset; > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); > + offset -= mtd->writesize; > + chip->read_buf(mtd, chip->oob_poi + offset, cnt); > + } > + } > + > + tmp = readl(nfc->regs + NFC_REG_ECC_CTL); > + tmp &= ~NFC_ECC_EN; > + > + writel(tmp, nfc->regs + NFC_REG_ECC_CTL); > + > + return max_bitflips; > +} > + > +static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, > + struct nand_chip *chip, > + const uint8_t *buf, int oob_required) > +{ > + struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + struct nand_ecclayout *layout = ecc->layout; > + struct sunxi_nand_hw_ecc *data = ecc->priv; > + int offset; > + u32 tmp; > + int i; > + int cnt; > + > + tmp = readl(nfc->regs + NFC_REG_ECC_CTL); > + tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE); > + tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) | > + NFC_ECC_EXCEPTION; > + > + writel(tmp, nfc->regs + NFC_REG_ECC_CTL); > + > + for (i = 0; i < mtd->writesize / ecc->size; i++) { > + if (i) > + chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1); > + > + chip->write_buf(mtd, buf + (i * ecc->size), ecc->size); > + > + offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize; > + > + /* Fill OOB data in */ > + if (oob_required) { > + tmp = 0xffffffff; > + memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp, > + 4); > + } else { > + memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, > + chip->oob_poi + offset - mtd->writesize, > + 4); > + } > + > + chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); > + sunxi_nfc_wait_cmd_fifo_empty(nfc); > + > + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR | > + (1 << 30); > + writel(tmp, nfc->regs + NFC_REG_CMD); > + sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); > + } > + > + if (oob_required) { > + cnt = ecc->layout->oobfree[i].length; > + if (cnt > 0) { > + offset = mtd->writesize + > + ecc->layout->oobfree[i].offset; > + chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); > + offset -= mtd->writesize; > + chip->write_buf(mtd, chip->oob_poi + offset, cnt); > + } > + } > + > + tmp = readl(nfc->regs + NFC_REG_ECC_CTL); > + tmp &= ~NFC_ECC_EN; > + > + writel(tmp, nfc->regs + NFC_REG_ECC_CTL); > + > + return 0; > +} > + > +static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, > + struct nand_chip *chip, > + uint8_t *buf, int oob_required, > + int page) > +{ > + struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + struct sunxi_nand_hw_ecc *data = ecc->priv; > + int steps = mtd->writesize / ecc->size; ecc->steps? > + unsigned int max_bitflips = 0; > + uint8_t *oob = chip->oob_poi; > + int offset = 0; > + int cnt; > + u32 tmp; > + int i; > + > + tmp = readl(nfc->regs + NFC_REG_ECC_CTL); > + tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE); > + tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) | > + NFC_ECC_EXCEPTION; > + > + writel(tmp, nfc->regs + NFC_REG_ECC_CTL); > + > + for (i = 0; i < steps; i++) { > + chip->read_buf(mtd, NULL, ecc->size); > + > + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30); > + writel(tmp, nfc->regs + NFC_REG_CMD); > + sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); > + memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size); > + buf += ecc->size; > + offset += ecc->size; > + > + if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) { > + mtd->ecc_stats.failed++; > + } else { > + tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff; > + mtd->ecc_stats.corrected += tmp; > + max_bitflips = max_t(unsigned int, max_bitflips, tmp); > + } > + > + if (oob_required) { > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); > + chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad); > + oob += ecc->bytes + ecc->prepad; > + } > + > + offset += ecc->bytes + ecc->prepad; > + } > + > + if (oob_required) { > + cnt = mtd->oobsize - (oob - chip->oob_poi); > + if (cnt > 0) { > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); > + chip->read_buf(mtd, oob, cnt); > + } > + } > + > + writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, > + nfc->regs + NFC_REG_ECC_CTL); > + > + return max_bitflips; > +} > + > +static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, > + struct nand_chip *chip, > + const uint8_t *buf, > + int oob_required) > +{ > + struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); > + struct nand_ecc_ctrl *ecc = &chip->ecc; > + struct sunxi_nand_hw_ecc *data = ecc->priv; > + int steps = mtd->writesize / ecc->size; ecc->steps? > + uint8_t *oob = chip->oob_poi; > + int offset = 0; > + int cnt; > + u32 tmp; > + int i; > + > + tmp = readl(nfc->regs + NFC_REG_ECC_CTL); > + tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE); > + tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) | > + NFC_ECC_EXCEPTION; > + > + writel(tmp, nfc->regs + NFC_REG_ECC_CTL); > + > + for (i = 0; i < steps; i++) { > + chip->write_buf(mtd, buf + (i * ecc->size), ecc->size); > + offset += ecc->size; > + > + /* Fill OOB data in */ > + if (oob_required) { > + tmp = 0xffffffff; > + memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp, > + 4); > + } else { > + memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, oob , Stray space before the comma. > + 4); > + } > + > + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR | > + (1 << 30); > + writel(tmp, nfc->regs + NFC_REG_CMD); > + sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); > + > + offset += ecc->bytes + ecc->prepad; > + oob += ecc->bytes + ecc->prepad; > + } > + > + if (oob_required) { > + cnt = mtd->oobsize - (oob - chip->oob_poi); > + if (cnt > 0) { > + chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); > + chip->write_buf(mtd, oob, cnt); > + } > + } > + > + tmp = readl(nfc->regs + NFC_REG_ECC_CTL); > + tmp &= ~NFC_ECC_EN; > + > + writel(tmp, nfc->regs + NFC_REG_ECC_CTL); > + > + return 0; > +} > + > +static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip, > + const struct nand_sdr_timings *timings) > +{ > + u32 min_clk_period = 0; > + > + /* T1 <=> tCLS */ > + if (timings->tCLS_min > min_clk_period) > + min_clk_period = timings->tCLS_min; > + > + /* T2 <=> tCLH */ > + if (timings->tCLH_min > min_clk_period) > + min_clk_period = timings->tCLH_min; > + > + /* T3 <=> tCS */ > + if (timings->tCS_min > min_clk_period) > + min_clk_period = timings->tCS_min; > + > + /* T4 <=> tCH */ > + if (timings->tCH_min > min_clk_period) > + min_clk_period = timings->tCH_min; > + > + /* T5 <=> tWP */ > + if (timings->tWP_min > min_clk_period) > + min_clk_period = timings->tWP_min; > + > + /* T6 <=> tWH */ > + if (timings->tWH_min > min_clk_period) > + min_clk_period = timings->tWH_min; > + > + /* T7 <=> tALS */ > + if (timings->tALS_min > min_clk_period) > + min_clk_period = timings->tALS_min; > + > + /* T8 <=> tDS */ > + if (timings->tDS_min > min_clk_period) > + min_clk_period = timings->tDS_min; > + > + /* T9 <=> tDH */ > + if (timings->tDH_min > min_clk_period) > + min_clk_period = timings->tDH_min; > + > + /* T10 <=> tRR */ > + if (timings->tRR_min > (min_clk_period * 3)) > + min_clk_period = (timings->tRR_min + 2) / 3; Could be: min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); > + > + /* T11 <=> tALH */ > + if (timings->tALH_min > min_clk_period) > + min_clk_period = timings->tALH_min; > + > + /* T12 <=> tRP */ > + if (timings->tRP_min > min_clk_period) > + min_clk_period = timings->tRP_min; > + > + /* T13 <=> tREH */ > + if (timings->tREH_min > min_clk_period) > + min_clk_period = timings->tREH_min; > + > + /* T14 <=> tRC */ > + if (timings->tRC_min > (min_clk_period * 2)) > + min_clk_period = (timings->tRC_min + 1) / 2; DIV_ROUND_UP()? > + > + /* T15 <=> tWC */ > + if (timings->tWC_min > (min_clk_period * 2)) > + min_clk_period = (timings->tWC_min + 1) / 2; DIV_ROUND_UP()? > + > + > + /* min_clk_period = (NAND-clk-period * 2) */ > + if (min_clk_period < 1000) > + min_clk_period = 1000; > + > + min_clk_period /= 1000; Perhaps the above three lines would work better as: min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); Although that does change the computation a bit. Also, I think this is a picoseconds to nanoseconds conversion, right? That deserves at least a comment, if not a named macro. > + chip->clk_rate = (2 * 1000000000) / min_clk_period; Hmm, can you be a little more explicit about what conversion is going on here? A comment could help, to include units (Hz, nanoseconds, etc.) > + > + /* TODO: configure T16-T19 */ > + > + return 0; > +} > + > +static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip, > + struct device_node *np) > +{ > + const struct nand_sdr_timings *timings; > + int ret; > + int mode; > + > + mode = onfi_get_async_timing_mode(&chip->nand); > + if (mode == ONFI_TIMING_MODE_UNKNOWN) { > + mode = chip->nand.onfi_timing_mode_default; > + } else { > + uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {}; > + > + mode = fls(mode) - 1; > + if (mode < 0) > + mode = 0; > + > + feature[0] = mode; > + ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand, > + ONFI_FEATURE_ADDR_TIMING_MODE, > + feature); > + if (ret) > + return ret; > + } > + > + timings = onfi_async_timing_mode_to_sdr_timings(mode); > + if (IS_ERR(timings)) > + return PTR_ERR(timings); > + > + return sunxi_nand_chip_set_timings(chip, timings); > +} > + > +static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, > + struct nand_ecc_ctrl *ecc, > + struct device_node *np) > +{ > + struct sunxi_nand_hw_ecc *data; > + struct nand_ecclayout *layout; > + int nsectors; > + int ret; > + > + if (!ecc->strength || !ecc->size) > + return -EINVAL; > + > + data = kzalloc(sizeof(*data), GFP_KERNEL); > + if (!data) > + return -ENOMEM; > + > + /* Add ECC info retrieval from DT */ > + if (ecc->strength <= 16) { > + ecc->strength = 16; > + data->mode = 0; > + } else if (ecc->strength <= 24) { > + ecc->strength = 24; > + data->mode = 1; > + } else if (ecc->strength <= 28) { > + ecc->strength = 28; > + data->mode = 2; > + } else if (ecc->strength <= 32) { > + ecc->strength = 32; > + data->mode = 3; > + } else if (ecc->strength <= 40) { > + ecc->strength = 40; > + data->mode = 4; > + } else if (ecc->strength <= 48) { > + ecc->strength = 48; > + data->mode = 5; > + } else if (ecc->strength <= 56) { > + ecc->strength = 56; > + data->mode = 6; > + } else if (ecc->strength <= 60) { > + ecc->strength = 60; > + data->mode = 7; > + } else if (ecc->strength <= 64) { > + ecc->strength = 64; > + data->mode = 8; > + } else { > + pr_err("unsupported strength\n"); > + ret = -ENOTSUPP; > + goto err; > + } Not strictly necessary, but this if/else structure might be better served by a loop over a sorted array of mode/strength pairs. > + > + /* HW ECC always request ECC bytes for 1024 bytes blocks */ > + ecc->bytes = ((ecc->strength * fls(8 * 1024)) + 7) / 8; Could be: ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); > + > + /* HW ECC always work with even numbers of ECC bytes */ > + if (ecc->bytes % 2) > + ecc->bytes++; Could be: ecc->bytes = ALIGN(ecc->bytes, 2); > + > + layout = &data->layout; > + nsectors = mtd->writesize / ecc->size; > + > + if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { > + ret = -EINVAL; > + goto err; > + } > + > + layout->eccbytes = (ecc->bytes * nsectors); > + > + ecc->layout = layout; > + ecc->priv = data; > + > + return 0; > + > +err: > + kfree(data); > + > + return ret; > +} > + > +static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) > +{ > + kfree(ecc->priv); > +} > + > +static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, > + struct nand_ecc_ctrl *ecc, > + struct device_node *np) > +{ > + struct nand_ecclayout *layout; > + int nsectors; > + int i, j; > + int ret; > + > + ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); > + if (ret) > + return ret; > + > + ecc->read_page = sunxi_nfc_hw_ecc_read_page; > + ecc->write_page = sunxi_nfc_hw_ecc_write_page; > + layout = ecc->layout; > + nsectors = mtd->writesize / ecc->size; > + > + for (i = 0; i < nsectors; i++) { > + if (i) { > + layout->oobfree[i].offset = > + layout->oobfree[i - 1].offset + > + layout->oobfree[i - 1].length + > + ecc->bytes; > + layout->oobfree[i].length = 4; > + } else { > + /* > + * The first 2 bytes are used for BB markers, hence we > + * only have 2 bytes available in the first user data > + * section. > + */ > + layout->oobfree[i].length = 2; > + layout->oobfree[i].offset = 2; > + } > + > + for (j = 0; j < ecc->bytes; j++) > + layout->eccpos[(ecc->bytes * i) + j] = > + layout->oobfree[i].offset + > + layout->oobfree[i].length + j; > + } > + > + if (mtd->oobsize > (ecc->bytes + 4) * nsectors) { > + layout->oobfree[nsectors].offset = > + layout->oobfree[nsectors - 1].offset + > + layout->oobfree[nsectors - 1].length + > + ecc->bytes; > + layout->oobfree[nsectors].length = mtd->oobsize - > + ((ecc->bytes + 4) * nsectors); > + } > + > + return 0; > +} > + > +static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, > + struct nand_ecc_ctrl *ecc, > + struct device_node *np) > +{ > + struct nand_ecclayout *layout; > + int nsectors; > + int i; > + int ret; > + > + ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); > + if (ret) > + return ret; > + > + ecc->prepad = 4; > + ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; > + ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; > + > + layout = ecc->layout; > + nsectors = mtd->writesize / ecc->size; > + > + for (i = 0; i < (ecc->bytes * nsectors); i++) > + layout->eccpos[i] = i; > + > + layout->oobfree[0].length = mtd->oobsize - i; > + layout->oobfree[0].offset = i; > + > + return 0; > +} > + > +static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) > +{ > + switch (ecc->mode) { > + case NAND_ECC_HW: > + case NAND_ECC_HW_SYNDROME: > + sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); > + break; > + case NAND_ECC_NONE: > + kfree(ecc->layout); > + default: > + break; > + } > +} > + > +static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, > + struct device_node *np) > +{ > + struct nand_chip *nand = mtd->priv; > + int strength; > + int blk_size; > + int ret; > + > + blk_size = of_get_nand_ecc_step_size(np); > + strength = of_get_nand_ecc_strength(np); > + if (blk_size > 0 && strength > 0) { > + ecc->size = blk_size; > + ecc->strength = strength; > + } else { > + ecc->size = nand->ecc_step_ds; > + ecc->strength = nand->ecc_strength_ds; > + } Might you just want to catch the case where you neither got ECC info from DT nor from the *_ds parameters? This could happen, for instance, if you have CONFIG_OF=n. Then, you won't need to catch the !ecc->size || !ecc->strength cases elsewhere. > + > + ecc->mode = NAND_ECC_HW; > + > + ret = of_get_nand_ecc_mode(np); > + if (ret >= 0) > + ecc->mode = ret; > + > + switch (ecc->mode) { > + case NAND_ECC_SOFT_BCH: > + if (!ecc->size || !ecc->strength) > + return -EINVAL; > + ecc->bytes = ((ecc->strength * fls(8 * ecc->size)) + 7) / 8; DIV_ROUND_UP() > + break; > + case NAND_ECC_HW: > + ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np); > + if (ret) > + return ret; > + break; > + case NAND_ECC_HW_SYNDROME: > + ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np); > + if (ret) > + return ret; > + break; > + case NAND_ECC_NONE: > + ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL); > + if (!ecc->layout) > + return -ENOMEM; > + ecc->layout->oobfree[0].length = mtd->oobsize; > + case NAND_ECC_SOFT: > + break; > + default: > + return -EINVAL; > + } > + > + return 0; > +} > + > +static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, > + struct device_node *np) > +{ > + const struct nand_sdr_timings *timings; > + struct sunxi_nand_chip *chip; > + struct mtd_part_parser_data ppdata; > + struct mtd_info *mtd; > + struct nand_chip *nand; > + int nsels; > + int ret; > + int i; > + u32 tmp; > + > + if (!of_get_property(np, "reg", &nsels)) > + return -EINVAL; > + > + nsels /= sizeof(u32); > + if (!nsels) { > + dev_err(dev, "invalid reg porperty size\n"); s/porperty/property/ > + return -EINVAL; > + } > + > + chip = devm_kzalloc(dev, > + sizeof(*chip) + > + (nsels * sizeof(struct sunxi_nand_chip_sel)), > + GFP_KERNEL); > + if (!chip) { > + dev_err(dev, "could not allocate chip\n"); > + return -ENOMEM; > + } > + > + chip->nsels = nsels; > + chip->selected = -1; > + > + for (i = 0; i < nsels; i++) { > + ret = of_property_read_u32_index(np, "reg", i, &tmp); > + if (ret) { > + dev_err(dev, "could not retrieve reg property: %d\n", > + ret); > + return ret; > + } > + > + if (tmp > 7) { > + dev_err(dev, > + "invalid reg value: %u (max CS = 7)\n", Could use a macro for the constant '7'. And placing its definition near the definition of MAX_NAME_SIZE could help guide the reader. > + tmp); > + return -EINVAL; > + } > + > + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { > + dev_err(dev, "CS %d already assigned\n", tmp); > + return -EINVAL; > + } > + > + chip->sels[i].cs = tmp; > + > + if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && > + tmp < 2) { > + chip->sels[i].rb.type = RB_NATIVE; > + chip->sels[i].rb.info.nativeid = tmp; > + } else { > + ret = of_get_named_gpio(np, "rb-gpios", i); > + if (ret >= 0) { > + tmp = ret; > + chip->sels[i].rb.type = RB_GPIO; > + chip->sels[i].rb.info.gpio = tmp; > + ret = devm_gpio_request(dev, tmp, "nand-rb"); > + if (ret) > + return ret; > + > + ret = gpio_direction_input(tmp); > + if (ret) > + return ret; > + } else { > + chip->sels[i].rb.type = RB_NONE; > + } > + } > + } > + > + timings = onfi_async_timing_mode_to_sdr_timings(0); > + if (IS_ERR(timings)) { > + ret = PTR_ERR(timings); > + dev_err(dev, > + "could not retrieve timings for ONFI mode 0: %d\n", > + ret); > + return ret; > + } > + > + ret = sunxi_nand_chip_set_timings(chip, timings); > + if (ret) { > + dev_err(dev, "could not configure chip timings: %d\n", ret); > + return ret; > + } > + > + nand = &chip->nand; > + /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ > + nand->chip_delay = 200; > + nand->controller = &nfc->controller; > + nand->select_chip = sunxi_nfc_select_chip; > + nand->cmd_ctrl = sunxi_nfc_cmd_ctrl; > + nand->read_buf = sunxi_nfc_read_buf; > + nand->write_buf = sunxi_nfc_write_buf; > + nand->read_byte = sunxi_nfc_read_byte; > + > + if (of_get_nand_on_flash_bbt(np)) > + nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; > + > + mtd = &chip->mtd; > + mtd->dev.parent = dev; > + mtd->priv = nand; > + mtd->owner = THIS_MODULE; > + > + ret = nand_scan_ident(mtd, nsels, NULL); > + if (ret) > + return ret; > + > + ret = sunxi_nand_chip_init_timings(chip, np); > + if (ret) { > + dev_err(dev, "could not configure chip timings: %d\n", ret); > + return ret; > + } > + > + ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np); > + if (ret) { > + dev_err(dev, "ECC init failed: %d\n", ret); > + return ret; > + } > + > + ret = nand_scan_tail(mtd); > + if (ret) { > + dev_err(dev, "nand_scan_tail failed: %d\n", ret); > + return ret; > + } > + > + if (of_property_read_string(np, "nand-name", &mtd->name)) { > + snprintf(chip->default_name, MAX_NAME_SIZE, > + DEFAULT_NAME_FORMAT, chip->sels[i].cs); > + mtd->name = chip->default_name; > + } > + > + ppdata.of_node = np; > + ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); > + if (ret) { > + dev_err(dev, "failed to register mtd device: %d\n", ret); > + nand_release(mtd); > + return ret; > + } > + > + list_add_tail(&chip->node, &nfc->chips); > + > + return 0; > +} > + > +static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) > +{ > + struct device_node *np = dev->of_node; > + struct device_node *nand_np; > + int nchips = of_get_child_count(np); > + int ret; > + > + if (nchips > 8) { > + dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips); > + return -EINVAL; > + } > + > + for_each_child_of_node(np, nand_np) { > + ret = sunxi_nand_chip_init(dev, nfc, nand_np); > + if (ret) > + return ret; > + } > + > + return 0; > +} > + > +static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) > +{ > + struct sunxi_nand_chip *chip; > + > + while (!list_empty(&nfc->chips)) { > + chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip, > + node); > + nand_release(&chip->mtd); > + sunxi_nand_ecc_cleanup(&chip->nand.ecc); > + } > +} > + > +static int sunxi_nfc_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct resource *r; > + struct sunxi_nfc *nfc; > + int irq; > + int ret; > + > + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); > + if (!nfc) > + return -ENOMEM; > + > + spin_lock_init(&nfc->controller.lock); > + init_waitqueue_head(&nfc->controller.wq); > + INIT_LIST_HEAD(&nfc->chips); > + > + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); > + nfc->regs = devm_ioremap_resource(dev, r); > + if (IS_ERR(nfc->regs)) > + return PTR_ERR(nfc->regs); > + > + irq = platform_get_irq(pdev, 0); > + if (irq < 0) { > + dev_err(dev, "failed to retrieve irq\n"); > + return irq; > + } > + > + nfc->ahb_clk = devm_clk_get(dev, "ahb"); > + if (IS_ERR(nfc->ahb_clk)) { > + dev_err(dev, "failed to retrieve ahb clk\n"); > + return PTR_ERR(nfc->ahb_clk); > + } > + > + ret = clk_prepare_enable(nfc->ahb_clk); > + if (ret) > + return ret; > + > + nfc->mod_clk = devm_clk_get(dev, "mod"); > + if (IS_ERR(nfc->mod_clk)) { > + dev_err(dev, "failed to retrieve mod clk\n"); > + ret = PTR_ERR(nfc->mod_clk); > + goto out_ahb_clk_unprepare; > + } > + > + ret = clk_prepare_enable(nfc->mod_clk); > + if (ret) > + goto out_ahb_clk_unprepare; > + > + sunxi_nfc_rst(nfc); > + > + writel(0, nfc->regs + NFC_REG_INT); > + ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, > + 0, "sunxi-nand", nfc); > + if (ret) > + goto out_mod_clk_unprepare; > + > + platform_set_drvdata(pdev, nfc); > + > + /* > + * TODO: replace these magic values with proper flags as soon as we > + * know what they are encoding. > + */ > + writel(0x100, nfc->regs + NFC_REG_TIMING_CTL); > + writel(0x7ff, nfc->regs + NFC_REG_TIMING_CFG); > + > + ret = sunxi_nand_chips_init(dev, nfc); > + if (ret) { > + dev_err(dev, "failed to init nand chips\n"); > + goto out_mod_clk_unprepare; > + } > + > + return 0; > + > +out_mod_clk_unprepare: > + clk_disable_unprepare(nfc->mod_clk); > +out_ahb_clk_unprepare: > + clk_disable_unprepare(nfc->ahb_clk); > + > + return ret; > +} > + > +static int sunxi_nfc_remove(struct platform_device *pdev) > +{ > + struct sunxi_nfc *nfc = platform_get_drvdata(pdev); > + > + sunxi_nand_chips_cleanup(nfc); > + > + return 0; > +} > + > +static const struct of_device_id sunxi_nfc_ids[] = { > + { .compatible = "allwinner,sun4i-a10-nand" }, > + { /* sentinel */ } > +}; > +MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); > + > +static struct platform_driver sunxi_nfc_driver = { > + .driver = { > + .name = "sunxi_nand", > + .owner = THIS_MODULE, > + .of_match_table = sunxi_nfc_ids, > + }, > + .probe = sunxi_nfc_probe, > + .remove = sunxi_nfc_remove, > +}; > +module_platform_driver(sunxi_nfc_driver); > + > +MODULE_LICENSE("GPL v2"); > +MODULE_AUTHOR("Boris BREZILLON"); > +MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); > +MODULE_ALIAS("platform:sunxi_nand"); Brian -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html