Add a driver that supports the Microchip FPGA "soft" PWM IP core. Signed-off-by: Conor Dooley <conor.dooley@xxxxxxxxxxxxx> --- drivers/pwm/Kconfig | 10 + drivers/pwm/Makefile | 1 + drivers/pwm/pwm-microchip-core.c | 402 +++++++++++++++++++++++++++++++ 3 files changed, 413 insertions(+) create mode 100644 drivers/pwm/pwm-microchip-core.c diff --git a/drivers/pwm/Kconfig b/drivers/pwm/Kconfig index 60d13a949bc5..e4de8c02c3c0 100644 --- a/drivers/pwm/Kconfig +++ b/drivers/pwm/Kconfig @@ -393,6 +393,16 @@ config PWM_MEDIATEK To compile this driver as a module, choose M here: the module will be called pwm-mediatek. +config PWM_MICROCHIP_CORE + tristate "Microchip corePWM PWM support" + depends on SOC_MICROCHIP_POLARFIRE || COMPILE_TEST + depends on HAS_IOMEM && OF + help + PWM driver for Microchip FPGA soft IP core. + + To compile this driver as a module, choose M here: the module + will be called pwm-microchip-core. + config PWM_MXS tristate "Freescale MXS PWM support" depends on ARCH_MXS || COMPILE_TEST diff --git a/drivers/pwm/Makefile b/drivers/pwm/Makefile index 7bf1a29f02b8..a65625359ece 100644 --- a/drivers/pwm/Makefile +++ b/drivers/pwm/Makefile @@ -34,6 +34,7 @@ obj-$(CONFIG_PWM_LPSS_PCI) += pwm-lpss-pci.o obj-$(CONFIG_PWM_LPSS_PLATFORM) += pwm-lpss-platform.o obj-$(CONFIG_PWM_MESON) += pwm-meson.o obj-$(CONFIG_PWM_MEDIATEK) += pwm-mediatek.o +obj-$(CONFIG_PWM_MICROCHIP_CORE) += pwm-microchip-core.o obj-$(CONFIG_PWM_MTK_DISP) += pwm-mtk-disp.o obj-$(CONFIG_PWM_MXS) += pwm-mxs.o obj-$(CONFIG_PWM_NTXEC) += pwm-ntxec.o diff --git a/drivers/pwm/pwm-microchip-core.c b/drivers/pwm/pwm-microchip-core.c new file mode 100644 index 000000000000..4ec2f1fce600 --- /dev/null +++ b/drivers/pwm/pwm-microchip-core.c @@ -0,0 +1,402 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * corePWM driver for Microchip "soft" FPGA IP cores. + * + * Copyright (c) 2021-2022 Microchip Corporation. All rights reserved. + * Author: Conor Dooley <conor.dooley@xxxxxxxxxxxxx> + * Documentation: + * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb + * + * Limitations: + * - If the IP block is configured without "shadow registers", all register + * writes will take effect immediately, causing glitches on the output. + * If shadow registers *are* enabled, a write to the "SYNC_UPDATE" register + * notifies the core that it needs to update the registers defining the + * waveform from the contents of the "shadow registers". + * - The IP block has no concept of a duty cycle, only rising/falling edges of + * the waveform. Unfortunately, if the rising & falling edges registers have + * the same value written to them the IP block will do whichever of a rising + * or a falling edge is possible. I.E. a 50% waveform at twice the requested + * period. Therefore to get a 0% waveform, the output is set the max high/low + * time depending on polarity. + * - The PWM period is set for the whole IP block not per channel. The driver + * will only change the period if no other PWM output is enabled. + */ + +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/math.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> +#include <linux/pwm.h> + +#define PREG_TO_VAL(PREG) ((PREG) + 1) + +#define MCHPCOREPWM_PRESCALE_MAX 0x100 +#define MCHPCOREPWM_PERIOD_STEPS_MAX 0xff +#define MCHPCOREPWM_PERIOD_MAX 0xff00 + +#define MCHPCOREPWM_PRESCALE 0x00 +#define MCHPCOREPWM_PERIOD 0x04 +#define MCHPCOREPWM_EN(i) (0x08 + 0x04 * (i)) /* 0x08, 0x0c */ +#define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */ +#define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */ +#define MCHPCOREPWM_SYNC_UPD 0xe4 + +struct mchp_core_pwm_chip { + struct pwm_chip chip; + struct clk *clk; + struct mutex lock; /* protect the shared period */ + void __iomem *base; + u32 sync_update_mask; + u16 channel_enabled; +}; + +static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip) +{ + return container_of(chip, struct mchp_core_pwm_chip, chip); +} + +static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, + bool enable, u64 period) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + u8 channel_enable, reg_offset, shift; + + /* + * There are two adjacent 8 bit control regs, the lower reg controls + * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg + * and if so, offset by the bus width. + */ + reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3); + shift = pwm->hwpwm & 7; + + channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset); + channel_enable &= ~(1 << shift); + channel_enable |= (enable << shift); + + writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset); + mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm); + mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm; + + /* + * Notify the block to update the waveform from the shadow registers. + * The updated values will not appear on the bus until they have been + * applied to the waveform at the beginning of the next period. We must + * write these registers and wait for them to be applied before + * considering the channel enabled. + * If the delay is under 1 us, sleep for at least 1 us anyway. + */ + if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm)) { + u64 delay; + + delay = div_u64(period, 1000u) ? : 1u; + writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD); + usleep_range(delay, delay * 2); + } +} + +static u64 mchp_core_pwm_calc_duty(struct pwm_chip *chip, struct pwm_device *pwm, + const struct pwm_state *state, u8 prescale, u8 period_steps) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + u64 duty_steps, tmp; + u16 prescale_val = PREG_TO_VAL(prescale); + + /* + * Calculate the duty cycle in multiples of the prescaled period: + * duty_steps = duty_in_ns / step_in_ns + * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate + * The code below is rearranged slightly to only divide once. + */ + duty_steps = state->duty_cycle * clk_get_rate(mchp_core_pwm->clk); + tmp = prescale_val * NSEC_PER_SEC; + return div64_u64(duty_steps, tmp); +} + +static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm, + const struct pwm_state *state, u64 duty_steps, u8 period_steps) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + u8 posedge, negedge; + u8 period_steps_val = PREG_TO_VAL(period_steps); + + /* + * Setting posedge == negedge doesn't yield a constant output, + * so that's an unsuitable setting to model duty_steps = 0. + * In that case set the unwanted edge to a value that never + * triggers. + */ + if (state->polarity == PWM_POLARITY_INVERSED) { + negedge = !duty_steps ? period_steps_val : 0u; + posedge = duty_steps; + } else { + posedge = !duty_steps ? period_steps_val : 0u; + negedge = duty_steps; + } + + writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); + writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); +} + +static int mchp_core_pwm_calc_period(struct pwm_chip *chip, const struct pwm_state *state, + u8 *prescale, u8 *period_steps) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + u64 tmp, clk_rate; + + /* + * Calculate the period cycles and prescale values. + * The registers are each 8 bits wide & multiplied to compute the period + * using the formula: + * (clock_period) * (prescale + 1) * (period_steps + 1) + * so the maximum period that can be generated is 0x10000 times the + * period of the input clock. + * However, due to the design of the "hardware", it is not possible to + * attain a 100% duty cycle if the full range of period_steps is used. + * Therefore period_steps is restricted to 0xFE and the maximum multiple + * of the clock period attainable is 0xFF00. + */ + clk_rate = clk_get_rate(mchp_core_pwm->clk); + + /* + * If clk_rate is too big, the following multiplication might overflow. + * However this is implausible, as the fabric of current FPGAs cannot + * provide clocks at a rate high enough. + */ + if (clk_rate >= NSEC_PER_SEC) + return -EINVAL; + + tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC); + + /* + * The hardware adds one to the register value, so decrement by one to + * account for the offset + */ + if (tmp >= MCHPCOREPWM_PERIOD_MAX) { + *prescale = MCHPCOREPWM_PRESCALE_MAX - 1; + *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX - 1; + return 0; + } + + *prescale = div_u64(tmp, MCHPCOREPWM_PERIOD_STEPS_MAX); + /* PREG_TO_VAL() can produce a value larger than UINT8_MAX */ + *period_steps = div_u64(tmp, PREG_TO_VAL(*prescale)) - 1; + + return 0; +} + +static inline void mchp_core_pwm_apply_period(struct mchp_core_pwm_chip *mchp_core_pwm, + u8 prescale, u8 period_steps) +{ + writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); + writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD); +} + +static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, + const struct pwm_state *state) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + struct pwm_state current_state = pwm->state; + bool period_locked; + u64 duty_steps; + u16 prescale; + u8 period_steps; + int ret; + + mutex_lock(&mchp_core_pwm->lock); + + if (!state->enabled) { + mchp_core_pwm_enable(chip, pwm, false, current_state.period); + mutex_unlock(&mchp_core_pwm->lock); + return 0; + } + + /* + * If the only thing that has changed is the duty cycle or the polarity, + * we can shortcut the calculations and just compute/apply the new duty + * cycle pos & neg edges + * As all the channels share the same period, do not allow it to be + * changed if any other channels are enabled. + * If the period is locked, it may not be possible to use a period + * less than that requested. In that case, we just abort. + */ + period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm); + + if (period_locked) { + u16 hw_prescale; + u8 hw_period_steps; + + mchp_core_pwm_calc_period(chip, state, (u8 *)&prescale, &period_steps); + hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); + hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); + + if ((period_steps + 1) * (prescale + 1) < + (hw_period_steps + 1) * (hw_prescale + 1)) { + mutex_unlock(&mchp_core_pwm->lock); + return -EINVAL; + } + + /* + * It is possible that something could have set the period_steps + * register to 0xff, which would prevent us from setting a 100% + * duty cycle, as explained in the mchp_core_pwm_calc_period() + * above. + * The period is locked and we cannot change this, so we abort. + */ + if (period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX) { + mutex_unlock(&mchp_core_pwm->lock); + return -EINVAL; + } + + prescale = hw_prescale; + period_steps = hw_period_steps; + } else if (!current_state.enabled || current_state.period != state->period) { + ret = mchp_core_pwm_calc_period(chip, state, (u8 *)&prescale, &period_steps); + if (ret) { + mutex_unlock(&mchp_core_pwm->lock); + return ret; + } + mchp_core_pwm_apply_period(mchp_core_pwm, prescale, period_steps); + } else { + prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); + period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); + + /* + * As above, it is possible that something could have set the + * period_steps register to 0xff, which would prevent us from + * setting a 100% duty cycle, as explained above. + * As the period is not locked, we are free to fix this. + */ + if (period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX) { + period_steps -= 1; + mchp_core_pwm_apply_period(mchp_core_pwm, prescale, period_steps); + } + } + + duty_steps = mchp_core_pwm_calc_duty(chip, pwm, state, prescale, period_steps); + + /* + * Because the period is per channel, it is possible that the requested + * duty cycle is longer than the period, in which case cap it to the + * period, IOW a 100% duty cycle. + */ + if (duty_steps > period_steps) + duty_steps = period_steps + 1; + + mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps); + + mchp_core_pwm_enable(chip, pwm, true, state->period); + + mutex_unlock(&mchp_core_pwm->lock); + + return 0; +} + +static void mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, + struct pwm_state *state) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + u16 prescale; + u8 period_steps, duty_steps, posedge, negedge; + + mutex_lock(&mchp_core_pwm->lock); + + if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm)) + state->enabled = true; + else + state->enabled = false; + + prescale = PREG_TO_VAL(readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE)); + + period_steps = PREG_TO_VAL(readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD)); + state->period = period_steps * prescale * NSEC_PER_SEC; + state->period = DIV64_U64_ROUND_UP(state->period, clk_get_rate(mchp_core_pwm->clk)); + + posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); + negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); + + if ((negedge == posedge) && state->enabled) { + state->duty_cycle = state->period; + state->period *= 2; + } else { + duty_steps = abs((s16)posedge - (s16)negedge); + state->duty_cycle = duty_steps * prescale * NSEC_PER_SEC; + state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, + clk_get_rate(mchp_core_pwm->clk)); + } + + state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; + + mutex_unlock(&mchp_core_pwm->lock); +} + +static const struct pwm_ops mchp_core_pwm_ops = { + .apply = mchp_core_pwm_apply, + .get_state = mchp_core_pwm_get_state, + .owner = THIS_MODULE, +}; + +static const struct of_device_id mchp_core_of_match[] = { + { + .compatible = "microchip,corepwm-rtl-v4", + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, mchp_core_of_match); + +static int mchp_core_pwm_probe(struct platform_device *pdev) +{ + struct mchp_core_pwm_chip *mchp_pwm; + struct resource *regs; + int ret; + + mchp_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_pwm), GFP_KERNEL); + if (!mchp_pwm) + return -ENOMEM; + + mchp_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); + if (IS_ERR(mchp_pwm->base)) + return PTR_ERR(mchp_pwm->base); + + mchp_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL); + if (IS_ERR(mchp_pwm->clk)) + return dev_err_probe(&pdev->dev, PTR_ERR(mchp_pwm->clk), + "failed to get PWM clock\n"); + + if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask", + &mchp_pwm->sync_update_mask)) + mchp_pwm->sync_update_mask = 0u; + + mutex_init(&mchp_pwm->lock); + + mchp_pwm->chip.dev = &pdev->dev; + mchp_pwm->chip.ops = &mchp_core_pwm_ops; + mchp_pwm->chip.npwm = 16; + + mchp_pwm->channel_enabled = readb_relaxed(mchp_pwm->base + MCHPCOREPWM_EN(0)); + mchp_pwm->channel_enabled |= readb_relaxed(mchp_pwm->base + MCHPCOREPWM_EN(1)) << 8; + + ret = devm_pwmchip_add(&pdev->dev, &mchp_pwm->chip); + if (ret < 0) + return dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n"); + + return 0; +} + +static struct platform_driver mchp_core_pwm_driver = { + .driver = { + .name = "mchp-core-pwm", + .of_match_table = mchp_core_of_match, + }, + .probe = mchp_core_pwm_probe, +}; +module_platform_driver(mchp_core_pwm_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Conor Dooley <conor.dooley@xxxxxxxxxxxxx>"); +MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs"); -- 2.36.1