On 15/07/2020 14:31, Sumit Gupta wrote: > Add support for CPU frequency scaling on Tegra194. The frequency > of each core can be adjusted by writing a clock divisor value to > a MSR on the core. The range of valid divisors is queried from > the BPMP. > > Signed-off-by: Mikko Perttunen <mperttunen@xxxxxxxxxx> > Signed-off-by: Sumit Gupta <sumitg@xxxxxxxxxx> > --- > drivers/cpufreq/Kconfig.arm | 7 + > drivers/cpufreq/Makefile | 1 + > drivers/cpufreq/tegra194-cpufreq.c | 397 +++++++++++++++++++++++++++++++++++++ > 3 files changed, 405 insertions(+) > create mode 100644 drivers/cpufreq/tegra194-cpufreq.c > > diff --git a/drivers/cpufreq/Kconfig.arm b/drivers/cpufreq/Kconfig.arm > index 15c1a12..7e99a46 100644 > --- a/drivers/cpufreq/Kconfig.arm > +++ b/drivers/cpufreq/Kconfig.arm > @@ -314,6 +314,13 @@ config ARM_TEGRA186_CPUFREQ > help > This adds the CPUFreq driver support for Tegra186 SOCs. > > +config ARM_TEGRA194_CPUFREQ > + tristate "Tegra194 CPUFreq support" > + depends on ARCH_TEGRA_194_SOC && TEGRA_BPMP > + default y > + help > + This adds CPU frequency driver support for Tegra194 SOCs. > + > config ARM_TI_CPUFREQ > bool "Texas Instruments CPUFreq support" > depends on ARCH_OMAP2PLUS > diff --git a/drivers/cpufreq/Makefile b/drivers/cpufreq/Makefile > index f6670c4..66b5563 100644 > --- a/drivers/cpufreq/Makefile > +++ b/drivers/cpufreq/Makefile > @@ -83,6 +83,7 @@ obj-$(CONFIG_ARM_TANGO_CPUFREQ) += tango-cpufreq.o > obj-$(CONFIG_ARM_TEGRA20_CPUFREQ) += tegra20-cpufreq.o > obj-$(CONFIG_ARM_TEGRA124_CPUFREQ) += tegra124-cpufreq.o > obj-$(CONFIG_ARM_TEGRA186_CPUFREQ) += tegra186-cpufreq.o > +obj-$(CONFIG_ARM_TEGRA194_CPUFREQ) += tegra194-cpufreq.o > obj-$(CONFIG_ARM_TI_CPUFREQ) += ti-cpufreq.o > obj-$(CONFIG_ARM_VEXPRESS_SPC_CPUFREQ) += vexpress-spc-cpufreq.o > > diff --git a/drivers/cpufreq/tegra194-cpufreq.c b/drivers/cpufreq/tegra194-cpufreq.c > new file mode 100644 > index 0000000..b52a5e2 > --- /dev/null > +++ b/drivers/cpufreq/tegra194-cpufreq.c > @@ -0,0 +1,397 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved > + */ > + > +#include <linux/cpu.h> > +#include <linux/cpufreq.h> > +#include <linux/delay.h> > +#include <linux/dma-mapping.h> > +#include <linux/module.h> > +#include <linux/of.h> > +#include <linux/of_platform.h> > +#include <linux/platform_device.h> > +#include <linux/slab.h> > + > +#include <asm/smp_plat.h> > + > +#include <soc/tegra/bpmp.h> > +#include <soc/tegra/bpmp-abi.h> > + > +#define KHZ 1000 > +#define REF_CLK_MHZ 408 /* 408 MHz */ > +#define US_DELAY 500 > +#define US_DELAY_MIN 2 > +#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) > +#define MAX_CNT ~0U > + > +/* cpufreq transisition latency */ > +#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ > + > +enum cluster { > + CLUSTER0, > + CLUSTER1, > + CLUSTER2, > + CLUSTER3, > + MAX_CLUSTERS, > +}; > + > +struct tegra194_cpufreq_data { > + void __iomem *regs; > + size_t num_clusters; > + struct cpufreq_frequency_table **tables; > +}; > + > +struct tegra_cpu_ctr { > + u32 cpu; > + u32 delay; > + u32 coreclk_cnt, last_coreclk_cnt; > + u32 refclk_cnt, last_refclk_cnt; > +}; > + > +struct read_counters_work { > + struct work_struct work; > + struct tegra_cpu_ctr c; > +}; > + > +static struct workqueue_struct *read_counters_wq; > + > +static enum cluster get_cpu_cluster(u8 cpu) > +{ > + return MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); > +} > + > +/* > + * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. > + * The register provides frequency feedback information to > + * determine the average actual frequency a core has run at over > + * a period of time. > + * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) > + * [63:32] Core clock counter: counts on every core clock cycle > + * where the core is architecturally clocking > + */ > +static u64 read_freq_feedback(void) > +{ > + u64 val = 0; > + > + asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); > + > + return val; > +} > + > +static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response > + *nltbl, u16 ndiv) > +{ > + return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); > +} > + > +static void tegra_read_counters(struct work_struct *work) > +{ > + struct read_counters_work *read_counters_work; > + struct tegra_cpu_ctr *c; > + u64 val; > + > + /* > + * ref_clk_counter(32 bit counter) runs on constant clk, > + * pll_p(408MHz). > + * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter > + * = 10526880 usec = 10.527 sec to overflow > + * > + * Like wise core_clk_counter(32 bit counter) runs on core clock. > + * It's synchronized to crab_clk (cpu_crab_clk) which runs at > + * freq of cluster. Assuming max cluster clock ~2000MHz, > + * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter > + * = ~2.147 sec to overflow > + */ > + read_counters_work = container_of(work, struct read_counters_work, > + work); > + c = &read_counters_work->c; > + > + val = read_freq_feedback(); > + c->last_refclk_cnt = lower_32_bits(val); > + c->last_coreclk_cnt = upper_32_bits(val); > + udelay(c->delay); > + val = read_freq_feedback(); > + c->refclk_cnt = lower_32_bits(val); > + c->coreclk_cnt = upper_32_bits(val); > +} > + > +/* > + * Return instantaneous cpu speed > + * Instantaneous freq is calculated as - > + * -Takes sample on every query of getting the freq. > + * - Read core and ref clock counters; > + * - Delay for X us > + * - Read above cycle counters again > + * - Calculates freq by subtracting current and previous counters > + * divided by the delay time or eqv. of ref_clk_counter in delta time > + * - Return Kcycles/second, freq in KHz > + * > + * delta time period = x sec > + * = delta ref_clk_counter / (408 * 10^6) sec > + * freq in Hz = cycles/sec > + * = (delta cycles / x sec > + * = (delta cycles * 408 * 10^6) / delta ref_clk_counter > + * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter > + * > + * @cpu - logical cpu whose freq to be updated > + * Returns freq in KHz on success, 0 if cpu is offline > + */ > +static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay) > +{ > + struct read_counters_work read_counters_work; > + struct tegra_cpu_ctr c; > + u32 delta_refcnt; > + u32 delta_ccnt; > + u32 rate_mhz; > + > + /* > + * udelay() is required to reconstruct cpu frequency over an > + * observation window. Using workqueue to call udelay() with > + * interrupts enabled. > + */ > + read_counters_work.c.cpu = cpu; > + read_counters_work.c.delay = delay; > + INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); > + queue_work_on(cpu, read_counters_wq, &read_counters_work.work); > + flush_work(&read_counters_work.work); > + c = read_counters_work.c; > + > + if (c.coreclk_cnt < c.last_coreclk_cnt) > + delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); > + else > + delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; > + if (!delta_ccnt) > + return 0; > + > + /* ref clock is 32 bits */ > + if (c.refclk_cnt < c.last_refclk_cnt) > + delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); > + else > + delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; > + if (!delta_refcnt) { > + pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); > + return 0; > + } > + rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; > + > + return (rate_mhz * KHZ); /* in KHz */ > +} > + > +static unsigned int tegra194_get_speed(u32 cpu) > +{ > + return tegra194_get_speed_common(cpu, US_DELAY); > +} > + > +static unsigned int tegra194_fast_get_speed(u32 cpu) > +{ > + return tegra194_get_speed_common(cpu, US_DELAY_MIN); > +} Personally, I would not bother with the above function as it is only used in one place. > + > +static int tegra194_cpufreq_init(struct cpufreq_policy *policy) > +{ > + struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); > + int cl = get_cpu_cluster(policy->cpu); > + u32 cpu; > + > + if (cl >= data->num_clusters) > + return -EINVAL; > + > + policy->cur = tegra194_fast_get_speed(policy->cpu); /* boot freq */ > + > + /* set same policy for all cpus in a cluster */ > + for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++) > + cpumask_set_cpu(cpu, policy->cpus); > + > + policy->freq_table = data->tables[cl]; > + policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; > + > + return 0; > +} > + > +static void set_cpu_ndiv(void *data) > +{ > + struct cpufreq_frequency_table *tbl = data; > + u64 ndiv_val = (u64)tbl->driver_data; > + > + asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); > +} > + > +static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, > + unsigned int index) > +{ > + struct cpufreq_frequency_table *tbl = policy->freq_table + index; > + > + /* > + * Each core writes frequency in per core register. Then both cores > + * in a cluster run at same frequency which is the maximum frequency > + * request out of the values requested by both cores in that cluster. > + */ > + on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true); > + > + return 0; > +} > + > +static struct cpufreq_driver tegra194_cpufreq_driver = { > + .name = "tegra194", > + .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS | > + CPUFREQ_NEED_INITIAL_FREQ_CHECK, > + .verify = cpufreq_generic_frequency_table_verify, > + .target_index = tegra194_cpufreq_set_target, > + .get = tegra194_get_speed, > + .init = tegra194_cpufreq_init, > + .attr = cpufreq_generic_attr, > +}; > + > +static void tegra194_cpufreq_free_resources(void) > +{ > + destroy_workqueue(read_counters_wq); > +} I would not bother with adding this function either. > + > +static struct cpufreq_frequency_table * > +init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, > + unsigned int cluster_id) > +{ > + struct cpufreq_frequency_table *freq_table; > + struct mrq_cpu_ndiv_limits_response resp; > + unsigned int num_freqs, ndiv, delta_ndiv; > + struct mrq_cpu_ndiv_limits_request req; > + struct tegra_bpmp_message msg; > + u16 freq_table_step_size; > + int err, index; > + > + memset(&req, 0, sizeof(req)); > + req.cluster_id = cluster_id; > + > + memset(&msg, 0, sizeof(msg)); > + msg.mrq = MRQ_CPU_NDIV_LIMITS; > + msg.tx.data = &req; > + msg.tx.size = sizeof(req); > + msg.rx.data = &resp; > + msg.rx.size = sizeof(resp); > + > + err = tegra_bpmp_transfer(bpmp, &msg); > + if (err) > + return ERR_PTR(err); > + > + /* > + * Make sure frequency table step is a multiple of mdiv to match > + * vhint table granularity. > + */ > + freq_table_step_size = resp.mdiv * > + DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); > + > + dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", > + cluster_id, freq_table_step_size); > + > + delta_ndiv = resp.ndiv_max - resp.ndiv_min; > + > + if (unlikely(delta_ndiv == 0)) { > + num_freqs = 1; > + } else { > + /* We store both ndiv_min and ndiv_max hence the +1 */ > + num_freqs = delta_ndiv / freq_table_step_size + 1; > + } > + > + num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; > + > + freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, > + sizeof(*freq_table), GFP_KERNEL); > + if (!freq_table) > + return ERR_PTR(-ENOMEM); > + > + for (index = 0, ndiv = resp.ndiv_min; > + ndiv < resp.ndiv_max; > + index++, ndiv += freq_table_step_size) { > + freq_table[index].driver_data = ndiv; > + freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); > + } > + > + freq_table[index].driver_data = resp.ndiv_max; > + freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); > + freq_table[index].frequency = CPUFREQ_TABLE_END; > + > + return freq_table; > +} > + > +static int tegra194_cpufreq_probe(struct platform_device *pdev) > +{ > + struct tegra194_cpufreq_data *data; > + struct tegra_bpmp *bpmp; > + int err, i; > + > + data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); > + if (!data) > + return -ENOMEM; > + > + data->num_clusters = MAX_CLUSTERS; > + data->tables = devm_kcalloc(&pdev->dev, data->num_clusters, > + sizeof(*data->tables), GFP_KERNEL); > + if (!data->tables) > + return -ENOMEM; > + > + platform_set_drvdata(pdev, data); > + > + bpmp = tegra_bpmp_get(&pdev->dev); > + if (IS_ERR(bpmp)) > + return PTR_ERR(bpmp); > + > + read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); > + if (!read_counters_wq) { > + dev_err(&pdev->dev, "fail to create_workqueue\n"); > + err = -EINVAL; > + goto put_bpmp; > + } > + > + for (i = 0; i < data->num_clusters; i++) { > + data->tables[i] = init_freq_table(pdev, bpmp, i); > + if (IS_ERR(data->tables[i])) { > + err = PTR_ERR(data->tables[i]); > + goto err_free_res; > + } > + } > + > + tegra194_cpufreq_driver.driver_data = data; > + > + err = cpufreq_register_driver(&tegra194_cpufreq_driver); > + if (err) > + goto err_free_res; You don't need the above if statement now you added the below. > + > + if (!err) > + goto put_bpmp; > + > +err_free_res: > + tegra194_cpufreq_free_resources(); > +put_bpmp: > + tegra_bpmp_put(bpmp); > + return err; > +} > + > +static int tegra194_cpufreq_remove(struct platform_device *pdev) > +{ > + cpufreq_unregister_driver(&tegra194_cpufreq_driver); > + tegra194_cpufreq_free_resources(); > + > + return 0; > +} > + > +static const struct of_device_id tegra194_cpufreq_of_match[] = { > + { .compatible = "nvidia,tegra194-ccplex", }, > + { /* sentinel */ } > +}; > +MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); > + > +static struct platform_driver tegra194_ccplex_driver = { > + .driver = { > + .name = "tegra194-cpufreq", > + .of_match_table = tegra194_cpufreq_of_match, > + }, > + .probe = tegra194_cpufreq_probe, > + .remove = tegra194_cpufreq_remove, > +}; > +module_platform_driver(tegra194_ccplex_driver); > + > +MODULE_AUTHOR("Mikko Perttunen <mperttunen@xxxxxxxxxx>"); > +MODULE_AUTHOR("Sumit Gupta <sumitg@xxxxxxxxxx>"); > +MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); > +MODULE_LICENSE("GPL v2"); > Cheers Jon -- nvpublic