This patch adds NAND flash controller driver for MediaTek MT7621 SoC. The NAND flash controller is similar with controllers described in mtk_nand.c, except that the controller from MT7621 doesn't support DMA transmission, and some registers' offset and fields are different. Signed-off-by: Weijie Gao <weijie.gao@xxxxxxxxxxxx> --- drivers/mtd/nand/raw/Kconfig | 8 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/mt7621_nand.c | 1348 ++++++++++++++++++++++++++++ 3 files changed, 1357 insertions(+) create mode 100644 drivers/mtd/nand/raw/mt7621_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index a80a46bb5b8b..c07dcf174a0f 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -391,6 +391,14 @@ config MTD_NAND_QCOM Enables support for NAND flash chips on SoCs containing the EBI2 NAND controller. This controller is found on IPQ806x SoC. +config MTD_NAND_MT7621 + tristate "MT7621 NAND controller" + depends on SOC_MT7621 || COMPILE_TEST + depends on HAS_IOMEM + help + Enables support for NAND controller on MT7621 SoC. + This driver uses PIO mode for data transmission instead of DMA mode. + config MTD_NAND_MTK tristate "MTK NAND controller" depends on ARCH_MEDIATEK || COMPILE_TEST diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 2d136b158fb7..f374945d6305 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -52,6 +52,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o +obj-$(CONFIG_MTD_NAND_MT7621) += mt7621_nand.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o diff --git a/drivers/mtd/nand/raw/mt7621_nand.c b/drivers/mtd/nand/raw/mt7621_nand.c new file mode 100644 index 000000000000..7763137430f1 --- /dev/null +++ b/drivers/mtd/nand/raw/mt7621_nand.c @@ -0,0 +1,1348 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * MediaTek MT7621 NAND Flash Controller driver + * + * Copyright (C) 2020 MediaTek Inc. All Rights Reserved. + * + * Author: Weijie Gao <weijie.gao@xxxxxxxxxxxx> + */ + +#include <linux/io.h> +#include <linux/clk.h> +#include <linux/init.h> +#include <linux/errno.h> +#include <linux/sizes.h> +#include <linux/iopoll.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/platform_device.h> +#include <asm/addrspace.h> + +/* NFI core registers */ +#define NFI_CNFG 0x000 +#define CNFG_OP_MODE_S 12 +#define CNFG_OP_MODE_M GENMASK(14, 12) +#define CNFG_OP_CUSTOM 6 +#define CNFG_AUTO_FMT_EN BIT(9) +#define CNFG_HW_ECC_EN BIT(8) +#define CNFG_BYTE_RW BIT(6) +#define CNFG_READ_MODE BIT(1) + +#define NFI_PAGEFMT 0x004 +#define PAGEFMT_FDM_ECC_S 12 +#define PAGEFMT_FDM_ECC_M GENMASK(15, 12) +#define PAGEFMT_FDM_S 8 +#define PAGEFMT_FDM_M GENMASK(11, 8) +#define PAGEFMT_SPARE_S 4 +#define PAGEFMT_SPARE_M GENMASK(5, 4) +#define PAGEFMT_PAGE_S 0 +#define PAGEFMT_PAGE_M GENMASK(1, 0) + +#define NFI_CON 0x008 +#define CON_NFI_SEC_S 12 +#define CON_NFI_SEC_M GENMASK(15, 12) +#define CON_NFI_BWR BIT(9) +#define CON_NFI_BRD BIT(8) +#define CON_NFI_RST BIT(1) +#define CON_FIFO_FLUSH BIT(0) + +#define NFI_ACCCON 0x00c +#define ACCCON_POECS_S 28 +#define ACCCON_POECS_MAX 0x0f +#define ACCCON_POECS_DEF 3 +#define ACCCON_PRECS_S 22 +#define ACCCON_PRECS_MAX 0x3f +#define ACCCON_PRECS_DEF 3 +#define ACCCON_C2R_S 16 +#define ACCCON_C2R_MAX 0x3f +#define ACCCON_C2R_DEF 7 +#define ACCCON_W2R_S 12 +#define ACCCON_W2R_MAX 0x0f +#define ACCCON_W2R_DEF 7 +#define ACCCON_WH_S 8 +#define ACCCON_WH_MAX 0x0f +#define ACCCON_WH_DEF 15 +#define ACCCON_WST_S 4 +#define ACCCON_WST_MAX 0x0f +#define ACCCON_WST_DEF 15 +#define ACCCON_WST_MIN 3 +#define ACCCON_RLT_S 0 +#define ACCCON_RLT_MAX 0x0f +#define ACCCON_RLT_DEF 15 +#define ACCCON_RLT_MIN 3 + +#define NFI_CMD 0x020 + +#define NFI_ADDRNOB 0x030 +#define ADDR_ROW_NOB_S 4 +#define ADDR_ROW_NOB_M GENMASK(6, 4) +#define ADDR_COL_NOB_S 0 +#define ADDR_COL_NOB_M GENMASK(2, 0) + +#define NFI_COLADDR 0x034 +#define NFI_ROWADDR 0x038 + +#define NFI_STRDATA 0x040 +#define STR_DATA BIT(0) + +#define NFI_CNRNB 0x044 +#define CB2R_TIME_S 4 +#define CB2R_TIME_M GENMASK(7, 4) +#define STR_CNRNB BIT(0) + +#define NFI_DATAW 0x050 +#define NFI_DATAR 0x054 + +#define NFI_PIO_DIRDY 0x058 +#define PIO_DIRDY BIT(0) + +#define NFI_STA 0x060 +#define STA_NFI_FSM_S 16 +#define STA_NFI_FSM_M GENMASK(19, 16) +#define STA_FSM_CUSTOM_DATA 14 +#define STA_BUSY BIT(8) +#define STA_ADDR BIT(1) +#define STA_CMD BIT(0) + +#define NFI_ADDRCNTR 0x070 +#define SEC_CNTR_S 12 +#define SEC_CNTR_M GENMASK(15, 12) +#define SEC_ADDR_S 0 +#define SEC_ADDR_M GENMASK(9, 0) + +#define NFI_CSEL 0x090 +#define CSEL_S 0 +#define CSEL_M GENMASK(1, 0) + +#define NFI_FDM0L 0x0a0 +#define NFI_FDML(n) (0x0a0 + ((n) << 3)) + +#define NFI_FDM0M 0x0a4 +#define NFI_FDMM(n) (0x0a4 + ((n) << 3)) + +#define NFI_MASTER_STA 0x210 +#define MAS_ADDR GENMASK(11, 9) +#define MAS_RD GENMASK(8, 6) +#define MAS_WR GENMASK(5, 3) +#define MAS_RDDLY GENMASK(2, 0) + +/* ECC engine registers */ +#define ECC_ENCCON 0x000 +#define ENC_EN BIT(0) + +#define ECC_ENCCNFG 0x004 +#define ENC_CNFG_MSG_S 16 +#define ENC_CNFG_MSG_M GENMASK(28, 16) +#define ENC_MODE_S 4 +#define ENC_MODE_M GENMASK(5, 4) +#define ENC_MODE_NFI 1 +#define ENC_TNUM_S 0 +#define ENC_TNUM_M GENMASK(2, 0) + +#define ECC_ENCIDLE 0x00c +#define ENC_IDLE BIT(0) + +#define ECC_DECCON 0x100 +#define DEC_EN BIT(0) + +#define ECC_DECCNFG 0x104 +#define DEC_EMPTY_EN BIT(31) +#define DEC_CS_S 16 +#define DEC_CS_M GENMASK(28, 16) +#define DEC_CON_S 12 +#define DEC_CON_M GENMASK(13, 12) +#define DEC_CON_EL 2 +#define DEC_MODE_S 4 +#define DEC_MODE_M GENMASK(5, 4) +#define DEC_MODE_NFI 1 +#define DEC_TNUM_S 0 +#define DEC_TNUM_M GENMASK(2, 0) + +#define ECC_DECIDLE 0x10c +#define DEC_IDLE BIT(1) + +#define ECC_DECENUM 0x114 +#define ERRNUM_S 2 +#define ERRNUM_M GENMASK(3, 0) + +#define ECC_DECDONE 0x118 +#define DEC_DONE7 BIT(7) +#define DEC_DONE6 BIT(6) +#define DEC_DONE5 BIT(5) +#define DEC_DONE4 BIT(4) +#define DEC_DONE3 BIT(3) +#define DEC_DONE2 BIT(2) +#define DEC_DONE1 BIT(1) +#define DEC_DONE0 BIT(0) + +#define ECC_DECEL(n) (0x11c + (n) * 4) +#define DEC_EL_ODD_S 16 +#define DEC_EL_EVEN_S 0 +#define DEC_EL_M 0x1fff +#define DEC_EL_BYTE_POS_S 3 +#define DEC_EL_BIT_POS_M GENMASK(3, 0) + +#define ECC_FDMADDR 0x13c + +/* ENCIDLE and DECIDLE */ +#define ECC_IDLE BIT(0) + +#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \ + ((tpoecs) << ACCCON_POECS_S | (tprecs) << ACCCON_PRECS_S | \ + (tc2r) << ACCCON_C2R_S | (tw2r) << ACCCON_W2R_S | \ + (twh) << ACCCON_WH_S | (twst) << ACCCON_WST_S | (trlt)) + +#define MASTER_STA_MASK (MAS_ADDR | MAS_RD | MAS_WR | \ + MAS_RDDLY) +#define NFI_RESET_TIMEOUT 1000000 +#define NFI_CORE_TIMEOUT 500000 +#define ECC_ENGINE_TIMEOUT 500000 + +#define ECC_SECTOR_SIZE 512 +#define ECC_PARITY_BITS 13 + +#define NFI_FDM_SIZE 8 + +#define MT7621_NFC_NAME "mt7621-nand" + +struct mt7621_nfc { + struct nand_controller controller; + struct nand_chip nand; + struct clk *nfi_clk; + struct device *dev; + + void __iomem *nfi_regs; + void __iomem *ecc_regs; + + u32 spare_per_sector; +}; + +static const u16 mt7621_nfi_page_size[] = { SZ_512, SZ_2K, SZ_4K }; +static const u8 mt7621_nfi_spare_size[] = { 16, 26, 27, 28 }; +static const u8 mt7621_ecc_strength[] = { 4, 6, 8, 10, 12 }; + +static inline u32 nfi_read32(struct mt7621_nfc *nfc, u32 reg) +{ + return readl(nfc->nfi_regs + reg); +} + +static inline void nfi_write32(struct mt7621_nfc *nfc, u32 reg, u32 val) +{ + writel(val, nfc->nfi_regs + reg); +} + +static inline u16 nfi_read16(struct mt7621_nfc *nfc, u32 reg) +{ + return readw(nfc->nfi_regs + reg); +} + +static inline void nfi_write16(struct mt7621_nfc *nfc, u32 reg, u16 val) +{ + writew(val, nfc->nfi_regs + reg); +} + +static inline void ecc_write16(struct mt7621_nfc *nfc, u32 reg, u16 val) +{ + writew(val, nfc->ecc_regs + reg); +} + +static inline u32 ecc_read32(struct mt7621_nfc *nfc, u32 reg) +{ + return readl(nfc->ecc_regs + reg); +} + +static inline void ecc_write32(struct mt7621_nfc *nfc, u32 reg, u32 val) +{ + return writel(val, nfc->ecc_regs + reg); +} + +static inline u8 *oob_fdm_ptr(struct nand_chip *nand, int sect) +{ + return nand->oob_poi + sect * NFI_FDM_SIZE; +} + +static inline u8 *oob_ecc_ptr(struct mt7621_nfc *nfc, int sect) +{ + struct nand_chip *nand = &nfc->nand; + + return nand->oob_poi + nand->ecc.steps * NFI_FDM_SIZE + + sect * (nfc->spare_per_sector - NFI_FDM_SIZE); +} + +static inline u8 *page_data_ptr(struct nand_chip *nand, const u8 *buf, + int sect) +{ + return (u8 *)buf + sect * nand->ecc.size; +} + +static int mt7621_ecc_wait_idle(struct mt7621_nfc *nfc, u32 reg) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + ret = readw_poll_timeout_atomic(nfc->ecc_regs + reg, val, + val & ECC_IDLE, 10, + ECC_ENGINE_TIMEOUT); + if (ret) { + dev_warn(dev, "ECC engine timed out entering idle mode\n"); + return -EIO; + } + + return 0; +} + +static int mt7621_ecc_decoder_wait_done(struct mt7621_nfc *nfc, u32 sect) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + ret = readw_poll_timeout_atomic(nfc->ecc_regs + ECC_DECDONE, val, + val & (1 << sect), 10, + ECC_ENGINE_TIMEOUT); + + if (ret) { + dev_warn(dev, "ECC decoder for sector %d timed out\n", + sect); + return -ETIMEDOUT; + } + + return 0; +} + +static void mt7621_ecc_encoder_op(struct mt7621_nfc *nfc, bool enable) +{ + mt7621_ecc_wait_idle(nfc, ECC_ENCIDLE); + ecc_write16(nfc, ECC_ENCCON, enable ? ENC_EN : 0); +} + +static void mt7621_ecc_decoder_op(struct mt7621_nfc *nfc, bool enable) +{ + mt7621_ecc_wait_idle(nfc, ECC_DECIDLE); + ecc_write16(nfc, ECC_DECCON, enable ? DEC_EN : 0); +} + +static int mt7621_ecc_correct_check(struct mt7621_nfc *nfc, u8 *sector_buf, + u8 *fdm_buf, u32 sect) +{ + struct nand_chip *nand = &nfc->nand; + u32 decnum, num_error_bits, fdm_end_bits; + u32 error_locations, error_bit_loc; + u32 error_byte_pos, error_bit_pos; + int bitflips = 0; + u32 i; + + decnum = ecc_read32(nfc, ECC_DECENUM); + num_error_bits = (decnum >> (sect << ERRNUM_S)) & ERRNUM_M; + fdm_end_bits = (nand->ecc.size + NFI_FDM_SIZE) << 3; + + if (!num_error_bits) + return 0; + + if (num_error_bits == ERRNUM_M) + return -1; + + for (i = 0; i < num_error_bits; i++) { + error_locations = ecc_read32(nfc, ECC_DECEL(i / 2)); + error_bit_loc = (error_locations >> ((i % 2) * DEC_EL_ODD_S)) & + DEC_EL_M; + error_byte_pos = error_bit_loc >> DEC_EL_BYTE_POS_S; + error_bit_pos = error_bit_loc & DEC_EL_BIT_POS_M; + + if (error_bit_loc < (nand->ecc.size << 3)) { + if (sector_buf) { + sector_buf[error_byte_pos] ^= + (1 << error_bit_pos); + } + } else if (error_bit_loc < fdm_end_bits) { + if (fdm_buf) { + fdm_buf[error_byte_pos - nand->ecc.size] ^= + (1 << error_bit_pos); + } + } + + bitflips++; + } + + return bitflips; +} + +static int mt7621_nfc_wait_write_completion(struct mt7621_nfc *nfc, + struct nand_chip *nand) +{ + struct device *dev = nfc->dev; + u16 val; + int ret; + + ret = readw_poll_timeout_atomic(nfc->nfi_regs + NFI_ADDRCNTR, val, + ((val & SEC_CNTR_M) >> SEC_CNTR_S) >= nand->ecc.steps, 10, + NFI_CORE_TIMEOUT); + + if (ret) { + dev_warn(dev, "NFI core write operation timed out\n"); + return -ETIMEDOUT; + } + + return ret; +} + +static void mt7621_nfc_hw_reset(struct mt7621_nfc *nfc) +{ + u32 val; + int ret; + + /* reset all registers and force the NFI master to terminate */ + nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); + + /* wait for the master to finish the last transaction */ + ret = readw_poll_timeout(nfc->nfi_regs + NFI_MASTER_STA, val, + !(val & MASTER_STA_MASK), 50, + NFI_RESET_TIMEOUT); + if (ret) { + dev_warn(nfc->dev, "Failed to reset NFI master in %dms\n", + NFI_RESET_TIMEOUT); + } + + /* ensure any status register affected by the NFI master is reset */ + nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); + nfi_write16(nfc, NFI_STRDATA, 0); +} + +static inline void mt7621_nfc_hw_init(struct mt7621_nfc *nfc) +{ + u32 acccon; + + /* + * CNRNB: nand ready/busy register + * ------------------------------- + * 7:4: timeout register for polling the NAND busy/ready signal + * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. + */ + nfi_write16(nfc, NFI_CNRNB, CB2R_TIME_M | STR_CNRNB); + + mt7621_nfc_hw_reset(nfc); + + /* Apply default access timing */ + acccon = ACCTIMING(ACCCON_POECS_DEF, ACCCON_PRECS_DEF, ACCCON_C2R_DEF, + ACCCON_W2R_DEF, ACCCON_WH_DEF, ACCCON_WST_DEF, + ACCCON_RLT_DEF); + + nfi_write32(nfc, NFI_ACCCON, acccon); +} + +static int mt7621_nfc_send_command(struct mt7621_nfc *nfc, u8 command) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + nfi_write32(nfc, NFI_CMD, command); + + ret = readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val, + !(val & STA_CMD), 10, + NFI_CORE_TIMEOUT); + if (ret) { + dev_warn(dev, "NFI core timed out entering command mode\n"); + return -EIO; + } + + return 0; +} + +static int mt7621_nfc_send_address_byte(struct mt7621_nfc *nfc, int addr) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + nfi_write32(nfc, NFI_COLADDR, addr); + nfi_write32(nfc, NFI_ROWADDR, 0); + nfi_write16(nfc, NFI_ADDRNOB, 1); + + ret = readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val, + !(val & STA_ADDR), 10, + NFI_CORE_TIMEOUT); + if (ret) { + dev_warn(dev, "NFI core timed out entering address mode\n"); + return -EIO; + } + + return 0; +} + +static int mt7621_nfc_send_address(struct mt7621_nfc *nfc, const u8 *addr, + unsigned int naddrs) +{ + int ret; + + while (naddrs) { + ret = mt7621_nfc_send_address_byte(nfc, *addr); + if (ret) + return ret; + + addr++; + naddrs--; + } + + return 0; +} + +static void mt7621_nfc_wait_pio_ready(struct mt7621_nfc *nfc) +{ + struct device *dev = nfc->dev; + int ret; + u16 val; + + ret = readw_poll_timeout_atomic(nfc->nfi_regs + NFI_PIO_DIRDY, val, + val & PIO_DIRDY, 10, + NFI_CORE_TIMEOUT); + if (ret < 0) + dev_err(dev, "NFI core PIO mode not ready\n"); +} + +static u32 mt7621_nfc_pio_read(struct mt7621_nfc *nfc, bool br) +{ + u32 reg; + + /* after each byte read, the NFI_STA reg is reset by the hardware */ + reg = (nfi_read32(nfc, NFI_STA) & STA_NFI_FSM_M) >> STA_NFI_FSM_S; + if (reg != STA_FSM_CUSTOM_DATA) { + reg = nfi_read16(nfc, NFI_CNFG); + reg |= CNFG_READ_MODE | CNFG_BYTE_RW; + if (!br) + reg &= ~CNFG_BYTE_RW; + nfi_write16(nfc, NFI_CNFG, reg); + + /* + * set to max sector to allow the HW to continue reading over + * unaligned accesses + */ + nfi_write16(nfc, NFI_CON, CON_NFI_SEC_M | CON_NFI_BRD); + + /* trigger to fetch data */ + nfi_write16(nfc, NFI_STRDATA, STR_DATA); + } + + mt7621_nfc_wait_pio_ready(nfc); + + return nfi_read32(nfc, NFI_DATAR); +} + +static void mt7621_nfc_read_data(struct mt7621_nfc *nfc, u8 *buf, u32 len) +{ + while (((uintptr_t)buf & 3) && len) { + *buf = mt7621_nfc_pio_read(nfc, true); + buf++; + len--; + } + + while (len >= 4) { + *(u32 *)buf = mt7621_nfc_pio_read(nfc, false); + buf += 4; + len -= 4; + } + + while (len) { + *buf = mt7621_nfc_pio_read(nfc, true); + buf++; + len--; + } +} + +static void mt7621_nfc_read_data_discard(struct mt7621_nfc *nfc, u32 len) +{ + while (len >= 4) { + mt7621_nfc_pio_read(nfc, false); + len -= 4; + } + + while (len) { + mt7621_nfc_pio_read(nfc, true); + len--; + } +} + +static void mt7621_nfc_pio_write(struct mt7621_nfc *nfc, u32 val, bool bw) +{ + u32 reg; + + reg = (nfi_read32(nfc, NFI_STA) & STA_NFI_FSM_M) >> STA_NFI_FSM_S; + if (reg != STA_FSM_CUSTOM_DATA) { + reg = nfi_read16(nfc, NFI_CNFG); + reg &= ~(CNFG_READ_MODE | CNFG_BYTE_RW); + if (bw) + reg |= CNFG_BYTE_RW; + nfi_write16(nfc, NFI_CNFG, reg); + + nfi_write16(nfc, NFI_CON, CON_NFI_SEC_M | CON_NFI_BWR); + nfi_write16(nfc, NFI_STRDATA, STR_DATA); + } + + mt7621_nfc_wait_pio_ready(nfc); + nfi_write32(nfc, NFI_DATAW, val); +} + +static void mt7621_nfc_write_data(struct mt7621_nfc *nfc, const u8 *buf, + u32 len) +{ + while (((uintptr_t)buf & 3) && len) { + mt7621_nfc_pio_write(nfc, *buf, true); + buf++; + len--; + } + + while (len >= 4) { + mt7621_nfc_pio_write(nfc, *(const u32 *)buf, false); + buf += 4; + len -= 4; + } + + while (len) { + mt7621_nfc_pio_write(nfc, *buf, true); + buf++; + len--; + } +} + +static void mt7621_nfc_write_data_empty(struct mt7621_nfc *nfc, u32 len) +{ + while (len >= 4) { + mt7621_nfc_pio_write(nfc, 0xffffffff, false); + len -= 4; + } + + while (len) { + mt7621_nfc_pio_write(nfc, 0xff, true); + len--; + } +} + +static int mt7621_nfc_dev_ready(struct mt7621_nfc *nfc, + unsigned int timeout_ms) +{ + u32 val; + + return readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val, + !(val & STA_BUSY), 10, + timeout_ms * 1000); +} + +static int mt7621_nfc_exec_instr(struct nand_chip *nand, + const struct nand_op_instr *instr) +{ + struct mt7621_nfc *nfc = nand_get_controller_data(nand); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + mt7621_nfc_hw_reset(nfc); + nfi_write16(nfc, NFI_CNFG, CNFG_OP_CUSTOM << CNFG_OP_MODE_S); + return mt7621_nfc_send_command(nfc, instr->ctx.cmd.opcode); + case NAND_OP_ADDR_INSTR: + return mt7621_nfc_send_address(nfc, instr->ctx.addr.addrs, + instr->ctx.addr.naddrs); + case NAND_OP_DATA_IN_INSTR: + mt7621_nfc_read_data(nfc, instr->ctx.data.buf.in, + instr->ctx.data.len); + return 0; + case NAND_OP_DATA_OUT_INSTR: + mt7621_nfc_write_data(nfc, instr->ctx.data.buf.out, + instr->ctx.data.len); + return 0; + case NAND_OP_WAITRDY_INSTR: + return mt7621_nfc_dev_ready(nfc, + instr->ctx.waitrdy.timeout_ms); + default: + WARN_ONCE(1, "unsupported NAND instruction type: %d\n", + instr->type); + + return -EINVAL; + } +} + +static int mt7621_nfc_exec_op(struct nand_chip *nand, + const struct nand_operation *op, bool check_only) +{ + struct mt7621_nfc *nfc = nand_get_controller_data(nand); + int i, ret; + + if (check_only) + return 0; + + /* Only CS0 available */ + nfi_write16(nfc, NFI_CSEL, 0); + + for (i = 0; i < op->ninstrs; i++) { + ret = mt7621_nfc_exec_instr(nand, &op->instrs[i]); + if (ret) + return ret; + } + + return 0; +} + +static int mt7621_nfc_setup_data_interface(struct nand_chip *nand, int csline, + const struct nand_data_interface *conf) +{ + struct mt7621_nfc *nfc = nand_get_controller_data(nand); + const struct nand_sdr_timings *timings; + u32 acccon, temp, rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt; + + if (!nfc->nfi_clk) + return -ENOTSUPP; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + rate = clk_get_rate(nfc->nfi_clk); + + /* turn clock rate into KHZ */ + rate /= 1000; + + tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000; + tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000); + tpoecs = min_t(u32, tpoecs, ACCCON_POECS_MAX); + + tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000; + tprecs = DIV_ROUND_UP(tprecs * rate, 1000000); + tprecs = min_t(u32, tprecs, ACCCON_PRECS_MAX); + + /* sdr interface has no tCR which means CE# low to RE# low */ + tc2r = 0; + + tw2r = timings->tWHR_min / 1000; + tw2r = DIV_ROUND_UP(tw2r * rate, 1000000); + tw2r = DIV_ROUND_UP(tw2r - 1, 2); + tw2r = min_t(u32, tw2r, ACCCON_W2R_MAX); + + twh = max(timings->tREH_min, timings->tWH_min) / 1000; + twh = DIV_ROUND_UP(twh * rate, 1000000) - 1; + twh = min_t(u32, twh, ACCCON_WH_MAX); + + /* Calculate real WE#/RE# hold time in nanosecond */ + temp = (twh + 1) * 1000000 / rate; + /* nanosecond to picosecond */ + temp *= 1000; + + /* + * WE# low level time should be expaned to meet WE# pulse time + * and WE# cycle time at the same time. + */ + if (temp < timings->tWC_min) + twst = timings->tWC_min - temp; + else + twst = 0; + twst = max(timings->tWP_min, twst) / 1000; + twst = DIV_ROUND_UP(twst * rate, 1000000) - 1; + twst = min_t(u32, twst, ACCCON_WST_MAX); + + /* + * RE# low level time should be expaned to meet RE# pulse time + * and RE# cycle time at the same time. + */ + if (temp < timings->tRC_min) + trlt = timings->tRC_min - temp; + else + trlt = 0; + trlt = max(trlt, timings->tRP_min) / 1000; + trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1; + trlt = min_t(u32, trlt, ACCCON_RLT_MAX); + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) { + if (twst < ACCCON_WST_MIN || trlt < ACCCON_RLT_MIN) + return -ENOTSUPP; + } + + acccon = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt); + + dev_info(nfc->dev, "Using programmed access timing: %08x\n", acccon); + + nfi_write32(nfc, NFI_ACCCON, acccon); + + return 0; +} + +static int mt7621_nfc_calc_ecc_strength(struct mt7621_nfc *nfc, + u32 avail_ecc_bytes) +{ + struct nand_chip *nand = &nfc->nand; + struct mtd_info *mtd = nand_to_mtd(nand); + u32 strength; + int i; + + strength = avail_ecc_bytes * 8 / ECC_PARITY_BITS; + + /* Find the closest supported ecc strength */ + for (i = ARRAY_SIZE(mt7621_ecc_strength) - 1; i >= 0; i--) { + if (mt7621_ecc_strength[i] <= strength) + break; + } + + if (unlikely(i < 0)) { + dev_err(nfc->dev, "OOB size (%u) is not supported\n", + mtd->oobsize); + return -EINVAL; + } + + nand->ecc.strength = mt7621_ecc_strength[i]; + nand->ecc.bytes = + DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8); + + dev_info(nfc->dev, "ECC strength adjusted to %u bits\n", + nand->ecc.strength); + + return i; +} + +static int mt7621_nfc_set_spare_per_sector(struct mt7621_nfc *nfc) +{ + struct nand_chip *nand = &nfc->nand; + struct mtd_info *mtd = nand_to_mtd(nand); + u32 size; + int i; + + size = nand->ecc.bytes + NFI_FDM_SIZE; + + /* Find the closest supported spare size */ + for (i = 0; i < ARRAY_SIZE(mt7621_nfi_spare_size); i++) { + if (mt7621_nfi_spare_size[i] >= size) + break; + } + + if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_spare_size))) { + dev_err(nfc->dev, "OOB size (%u) is not supported\n", + mtd->oobsize); + return -EINVAL; + } + + nfc->spare_per_sector = mt7621_nfi_spare_size[i]; + + return i; +} + +static int mt7621_nfc_ecc_init(struct mt7621_nfc *nfc) +{ + struct nand_chip *nand = &nfc->nand; + struct mtd_info *mtd = nand_to_mtd(nand); + u32 spare_per_sector, encode_block_size, decode_block_size; + u32 ecc_enccfg, ecc_deccfg; + int ecc_cap; + + /* Only hardware ECC mode is supported */ + if (nand->ecc.mode != NAND_ECC_HW_SYNDROME) { + dev_err(nfc->dev, "Only hardware ECC mode is supported\n"); + return -EINVAL; + } + + nand->ecc.size = ECC_SECTOR_SIZE; + nand->ecc.steps = mtd->writesize / nand->ecc.size; + + spare_per_sector = mtd->oobsize / nand->ecc.steps; + + ecc_cap = mt7621_nfc_calc_ecc_strength(nfc, + spare_per_sector - NFI_FDM_SIZE); + if (ecc_cap < 0) + return ecc_cap; + + /* Sector + FDM */ + encode_block_size = (nand->ecc.size + NFI_FDM_SIZE) * 8; + ecc_enccfg = ecc_cap | (ENC_MODE_NFI << ENC_MODE_S) | + (encode_block_size << ENC_CNFG_MSG_S); + + /* Sector + FDM + ECC parity bits */ + decode_block_size = ((nand->ecc.size + NFI_FDM_SIZE) * 8) + + nand->ecc.strength * ECC_PARITY_BITS; + ecc_deccfg = ecc_cap | (DEC_MODE_NFI << DEC_MODE_S) | + (decode_block_size << DEC_CS_S) | + (DEC_CON_EL << DEC_CON_S) | DEC_EMPTY_EN; + + mt7621_ecc_encoder_op(nfc, false); + ecc_write32(nfc, ECC_ENCCNFG, ecc_enccfg); + + mt7621_ecc_decoder_op(nfc, false); + ecc_write32(nfc, ECC_DECCNFG, ecc_deccfg); + + return 0; +} + +static int mt7621_nfc_set_page_format(struct mt7621_nfc *nfc) +{ + struct nand_chip *nand = &nfc->nand; + struct mtd_info *mtd = nand_to_mtd(nand); + int i, spare_size; + u32 pagefmt; + + spare_size = mt7621_nfc_set_spare_per_sector(nfc); + if (spare_size < 0) + return spare_size; + + for (i = 0; i < ARRAY_SIZE(mt7621_nfi_page_size); i++) { + if (mt7621_nfi_page_size[i] == mtd->writesize) + break; + } + + if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_page_size))) { + dev_err(nfc->dev, "Page size (%u) is not supported\n", + mtd->writesize); + return -EINVAL; + } + + pagefmt = i | (spare_size << PAGEFMT_SPARE_S) | + (NFI_FDM_SIZE << PAGEFMT_FDM_S) | + (NFI_FDM_SIZE << PAGEFMT_FDM_ECC_S); + + nfi_write16(nfc, NFI_PAGEFMT, pagefmt); + + return 0; +} + +static int mt7621_nfc_attach_chip(struct nand_chip *nand) +{ + struct mt7621_nfc *nfc = nand_get_controller_data(nand); + int ret; + + if (nand->options & NAND_BUSWIDTH_16) { + dev_err(nfc->dev, "16-bit buswidth is not supported"); + return -EINVAL; + } + + ret = mt7621_nfc_ecc_init(nfc); + if (ret) + return ret; + + return mt7621_nfc_set_page_format(nfc); +} + +static const struct nand_controller_ops mt7621_nfc_controller_ops = { + .attach_chip = mt7621_nfc_attach_chip, + .exec_op = mt7621_nfc_exec_op, + .setup_data_interface = mt7621_nfc_setup_data_interface, +}; + +static int mt7621_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (section >= nand->ecc.steps) + return -ERANGE; + + oob_region->length = NFI_FDM_SIZE - 1; + oob_region->offset = section * NFI_FDM_SIZE + 1; + + return 0; +} + +static int mt7621_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oob_region->offset = NFI_FDM_SIZE * nand->ecc.steps; + oob_region->length = mtd->oobsize - oob_region->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops mt7621_nfc_ooblayout_ops = { + .free = mt7621_nfc_ooblayout_free, + .ecc = mt7621_nfc_ooblayout_ecc, +}; + +static void mt7621_nfc_write_fdm(struct mt7621_nfc *nfc) +{ + struct nand_chip *nand = &nfc->nand; + u32 vall, valm; + u8 *oobptr; + int i, j; + + for (i = 0; i < nand->ecc.steps; i++) { + vall = 0; + valm = 0; + oobptr = oob_fdm_ptr(nand, i); + + for (j = 0; j < 4; j++) + vall |= (u32)oobptr[j] << (j * 8); + + for (j = 0; j < 4; j++) + valm |= (u32)oobptr[j + 4] << ((j - 4) * 8); + + nfi_write32(nfc, NFI_FDML(i), vall); + nfi_write32(nfc, NFI_FDMM(i), valm); + } +} + +static void mt7621_nfc_read_sector_fdm(struct mt7621_nfc *nfc, u32 sect) +{ + struct nand_chip *nand = &nfc->nand; + u32 vall, valm; + u8 *oobptr; + int i; + + vall = nfi_read32(nfc, NFI_FDML(sect)); + valm = nfi_read32(nfc, NFI_FDMM(sect)); + oobptr = oob_fdm_ptr(nand, sect); + + for (i = 0; i < 4; i++) + oobptr[i] = (vall >> (i * 8)) & 0xff; + + for (i = 0; i < 4; i++) + oobptr[i + 4] = (valm >> (i * 8)) & 0xff; +} + +static int mt7621_nfc_read_page_hwecc(struct nand_chip *nand, uint8_t *buf, + int oob_required, int page) +{ + struct mt7621_nfc *nfc = nand_get_controller_data(nand); + struct mtd_info *mtd = nand_to_mtd(nand); + int bitflips = 0; + int rc, i; + + nand_read_page_op(nand, page, 0, NULL, 0); + + nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) | + CNFG_READ_MODE | CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + + mt7621_ecc_decoder_op(nfc, true); + + nfi_write16(nfc, NFI_CON, + CON_NFI_BRD | (nand->ecc.steps << CON_NFI_SEC_S)); + + for (i = 0; i < nand->ecc.steps; i++) { + if (buf) + mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i), + nand->ecc.size); + else + mt7621_nfc_read_data_discard(nfc, nand->ecc.size); + + rc = mt7621_ecc_decoder_wait_done(nfc, i); + + mt7621_nfc_read_sector_fdm(nfc, i); + + if (rc < 0) { + bitflips = -EIO; + continue; + } + + rc = mt7621_ecc_correct_check(nfc, + buf ? page_data_ptr(nand, buf, i) : NULL, + oob_fdm_ptr(nand, i), i); + + if (rc < 0) { + dev_warn(nfc->dev, + "Uncorrectable ECC error at page %d.%d\n", + page, i); + bitflips = -EBADMSG; + mtd->ecc_stats.failed++; + } else if (bitflips >= 0) { + bitflips += rc; + mtd->ecc_stats.corrected += rc; + } + } + + mt7621_ecc_decoder_op(nfc, false); + + nfi_write16(nfc, NFI_CON, 0); + + return bitflips; +} + +static int mt7621_nfc_read_page_raw(struct nand_chip *nand, uint8_t *buf, + int oob_required, int page) +{ + struct mt7621_nfc *nfc = nand_get_controller_data(nand); + int i; + + nand_read_page_op(nand, page, 0, NULL, 0); + + nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) | + CNFG_READ_MODE); + + nfi_write16(nfc, NFI_CON, + CON_NFI_BRD | (nand->ecc.steps << CON_NFI_SEC_S)); + + for (i = 0; i < nand->ecc.steps; i++) { + /* Read data */ + if (buf) + mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i), + nand->ecc.size); + else + mt7621_nfc_read_data_discard(nfc, nand->ecc.size); + + /* Read FDM */ + mt7621_nfc_read_data(nfc, oob_fdm_ptr(nand, i), NFI_FDM_SIZE); + + /* Read ECC parity data */ + mt7621_nfc_read_data(nfc, oob_ecc_ptr(nfc, i), + nfc->spare_per_sector - NFI_FDM_SIZE); + } + + nfi_write16(nfc, NFI_CON, 0); + + return 0; +} + +static int mt7621_nfc_read_oob_hwecc(struct nand_chip *nand, int page) +{ + return mt7621_nfc_read_page_hwecc(nand, NULL, 1, page); +} + +static int mt7621_nfc_read_oob_raw(struct nand_chip *nand, int page) +{ + return mt7621_nfc_read_page_raw(nand, NULL, 1, page); +} + +static int mt7621_nfc_check_empty_page(struct nand_chip *nand, const u8 *buf) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + uint32_t i, j; + u8 *oobptr; + + for (i = 0; i < mtd->writesize; i++) + if (buf[i] != 0xff) + return 0; + + for (i = 0; i < nand->ecc.steps; i++) { + oobptr = oob_fdm_ptr(nand, i); + for (j = 0; j < NFI_FDM_SIZE; j++) + if (oobptr[j] != 0xff) + return 0; + } + + return 1; +} + +static int mt7621_nfc_write_page_hwecc(struct nand_chip *nand, + const uint8_t *buf, int oob_required, + int page) +{ + struct mt7621_nfc *nfc = nand_get_controller_data(nand); + struct mtd_info *mtd = nand_to_mtd(nand); + + if (mt7621_nfc_check_empty_page(nand, buf)) { + /* + * MT7621 ECC engine always generates parity code for input + * pages, even for empty pages. Doing so will write back ECC + * parity code to the oob region, which means such pages will + * no longer be empty pages. + * + * To avoid this, stop write operation if current page is an + * empty page. + */ + return 0; + } + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) | + CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + + mt7621_ecc_encoder_op(nfc, true); + + mt7621_nfc_write_fdm(nfc); + + nfi_write16(nfc, NFI_CON, + CON_NFI_BWR | (nand->ecc.steps << CON_NFI_SEC_S)); + + if (buf) + mt7621_nfc_write_data(nfc, buf, mtd->writesize); + else + mt7621_nfc_write_data_empty(nfc, mtd->writesize); + + mt7621_nfc_wait_write_completion(nfc, nand); + + mt7621_ecc_encoder_op(nfc, false); + + nfi_write16(nfc, NFI_CON, 0); + + return nand_prog_page_end_op(nand); +} + +static int mt7621_nfc_write_page_raw(struct nand_chip *nand, + const uint8_t *buf, int oob_required, + int page) +{ + struct mt7621_nfc *nfc = nand_get_controller_data(nand); + int i; + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S)); + + nfi_write16(nfc, NFI_CON, + CON_NFI_BWR | (nand->ecc.steps << CON_NFI_SEC_S)); + + for (i = 0; i < nand->ecc.steps; i++) { + /* Write data */ + if (buf) + mt7621_nfc_write_data(nfc, page_data_ptr(nand, buf, i), + nand->ecc.size); + else + mt7621_nfc_write_data_empty(nfc, nand->ecc.size); + + /* Write FDM */ + mt7621_nfc_write_data(nfc, oob_fdm_ptr(nand, i), + NFI_FDM_SIZE); + + /* Write dummy ECC parity data */ + mt7621_nfc_write_data_empty(nfc, nfc->spare_per_sector - + NFI_FDM_SIZE); + } + + mt7621_nfc_wait_write_completion(nfc, nand); + + nfi_write16(nfc, NFI_CON, 0); + + return nand_prog_page_end_op(nand); +} + +static int mt7621_nfc_write_oob_hwecc(struct nand_chip *nand, int page) +{ + return mt7621_nfc_write_page_hwecc(nand, NULL, 1, page); +} + +static int mt7621_nfc_write_oob_raw(struct nand_chip *nand, int page) +{ + return mt7621_nfc_write_page_raw(nand, NULL, 1, page); +} + +static int mt7621_nfc_init_chip(struct mt7621_nfc *nfc) +{ + struct nand_chip *nand = &nfc->nand; + struct mtd_info *mtd; + int ret; + + nand->controller = &nfc->controller; + nand_set_controller_data(nand, (void *)nfc); + nand_set_flash_node(nand, nfc->dev->of_node); + + nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_NO_SUBPAGE_WRITE; + if (!nfc->nfi_clk) + nand->options |= NAND_KEEP_TIMINGS; + + nand->ecc.mode = NAND_ECC_HW_SYNDROME; + nand->ecc.read_page = mt7621_nfc_read_page_hwecc; + nand->ecc.read_page_raw = mt7621_nfc_read_page_raw; + nand->ecc.write_page = mt7621_nfc_write_page_hwecc; + nand->ecc.write_page_raw = mt7621_nfc_write_page_raw; + nand->ecc.read_oob = mt7621_nfc_read_oob_hwecc; + nand->ecc.read_oob_raw = mt7621_nfc_read_oob_raw; + nand->ecc.write_oob = mt7621_nfc_write_oob_hwecc; + nand->ecc.write_oob_raw = mt7621_nfc_write_oob_raw; + + mtd = nand_to_mtd(nand); + mtd->owner = THIS_MODULE; + mtd->dev.parent = nfc->dev; + mtd->name = MT7621_NFC_NAME; + mtd_set_ooblayout(mtd, &mt7621_nfc_ooblayout_ops); + + mt7621_nfc_hw_init(nfc); + + ret = nand_scan(nand, 1); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(nfc->dev, "Failed to register MTD: %d\n", ret); + nand_release(nand); + return ret; + } + + return 0; +} + +static int mt7621_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct mt7621_nfc *nfc; + struct resource *res; + int ret; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nand_controller_init(&nfc->controller); + nfc->controller.ops = &mt7621_nfc_controller_ops; + nfc->dev = dev; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nfi"); + nfc->nfi_regs = devm_ioremap_resource(dev, res); + if (IS_ERR(nfc->nfi_regs)) { + ret = PTR_ERR(nfc->nfi_regs); + return ret; + } + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ecc"); + nfc->ecc_regs = devm_ioremap_resource(dev, res); + if (IS_ERR(nfc->ecc_regs)) { + ret = PTR_ERR(nfc->ecc_regs); + return ret; + } + + nfc->nfi_clk = devm_clk_get(dev, "nfi_clk"); + if (IS_ERR(nfc->nfi_clk)) { + dev_warn(dev, "nfi clk not provided\n"); + nfc->nfi_clk = NULL; + } else { + ret = clk_prepare_enable(nfc->nfi_clk); + if (ret) { + dev_err(dev, "Failed to enable nfi core clock\n"); + return ret; + } + } + + platform_set_drvdata(pdev, nfc); + + ret = mt7621_nfc_init_chip(nfc); + if (ret) { + dev_err(dev, "Failed to initialize nand chip\n"); + goto clk_disable; + } + + return 0; + +clk_disable: + clk_disable_unprepare(nfc->nfi_clk); + + return ret; +} + +static int mt7621_nfc_remove(struct platform_device *pdev) +{ + struct mt7621_nfc *nfc = platform_get_drvdata(pdev); + + nand_release(&nfc->nand); + clk_disable_unprepare(nfc->nfi_clk); + + return 0; +} + +static const struct of_device_id mt7621_nfc_id_table[] = { + { .compatible = "mediatek,mt7621-nfc" }, + { }, +}; +MODULE_DEVICE_TABLE(of, match); + +static struct platform_driver mt7621_nfc_driver = { + .probe = mt7621_nfc_probe, + .remove = mt7621_nfc_remove, + .driver = { + .name = MT7621_NFC_NAME, + .owner = THIS_MODULE, + .of_match_table = mt7621_nfc_id_table, + }, +}; +module_platform_driver(mt7621_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Weijie Gao <weijie.gao@xxxxxxxxxxxx>"); +MODULE_DESCRIPTION("MediaTek MT7621 NAND Flash Controller driver"); -- 2.17.1