On Sat, 12 Oct 2019 12:04:26 +0100 Jonathan Cameron <jic23@xxxxxxxxxx> wrote: > On Fri, 11 Oct 2019 10:40:37 +0200 > Nuno Sá <nuno.sa@xxxxxxxxxx> wrote: > > > The LTC2983 is a Multi-Sensor High Accuracy Digital Temperature > > Measurement System. It measures a wide variety of temperature sensors and > > digitally outputs the result, in °C or °F, with 0.1°C accuracy and > > 0.001°C resolution. It can measure the temperature of all standard > > thermocouples (type B,E,J,K,N,S,R,T), standard 2-,3-,4-wire RTDs, > > thermistors and diodes. > > > > Signed-off-by: Nuno Sá <nuno.sa@xxxxxxxxxx> > > There are a few mostly stylistic little bits inline. If you don't need > to do a v5 for the binding, I'll probably just apply this and tidy > them up whilst doing so. > > If it looks like I've lost the driver, feel free to poke me in a few > weeks time! There is an issue with the of table that I've just fixed up which came up in build tests. Fixed up. thanks, Jonathan > > Great stuff, > > Thanks, > > Jonathan > > > --- > > Changes in v2: > > * Added some needed blank lines (for readability); > > * Allocate iio_chan in the setup() function; > > * Rename reset to sleep; > > * Remove unneeded dev_dbg calls; > > * Remove unneeded line wrapping; > > * Remove unneeded comments; > > * Remove extend_names. Use the standard ABI; > > * Adapt the scales to report in millivolt and milli degrees; > > * Adapt the of_property readings to the renaming of the properties; > > * For custom thermistors, excitation-current cannot be set to Auto range. > > > > Changes in v3: > > * Use normal `devm_request_irq`; > > * Handle and decode the new devicetree properties for sensor configuration. > > > > Changes in v4: > > * Add 'select REGMAP_SPI'; > > * Use `____cacheline_aligned` for regmap_bulk_read(); > > * Read rsense value as u32 (due to dt bindings change); > > * __ltc2983_custom_sensor_new(): new argument to identify the property name; > > * __ltc2983_custom_sensor_new(): uses u32 api to read steinhart values; > > * Drop sleep flag and calls to mutex_* in suspend/resume; > > * Add error handling for regmap calls in setup(); > > * Drop temp_farenheit boolean. > > > > MAINTAINERS | 7 + > > drivers/iio/temperature/Kconfig | 11 + > > drivers/iio/temperature/Makefile | 1 + > > drivers/iio/temperature/ltc2983.c | 1557 +++++++++++++++++++++++++++++ > > 4 files changed, 1576 insertions(+) > > create mode 100644 drivers/iio/temperature/ltc2983.c > > > > diff --git a/MAINTAINERS b/MAINTAINERS > > index f0c03740b9fb..14a256e785ca 100644 > > --- a/MAINTAINERS > > +++ b/MAINTAINERS > > @@ -9491,6 +9491,13 @@ S: Maintained > > F: Documentation/devicetree/bindings/iio/dac/ltc1660.txt > > F: drivers/iio/dac/ltc1660.c > > > > +LTC2983 IIO TEMPERATURE DRIVER > > +M: Nuno Sá <nuno.sa@xxxxxxxxxx> > > +W: http://ez.analog.com/community/linux-device-drivers > > +L: linux-iio@xxxxxxxxxxxxxxx > > +S: Supported > > +F: drivers/iio/temperature/ltc2983.c > > + > > LTC4261 HARDWARE MONITOR DRIVER > > M: Guenter Roeck <linux@xxxxxxxxxxxx> > > L: linux-hwmon@xxxxxxxxxxxxxxx > > diff --git a/drivers/iio/temperature/Kconfig b/drivers/iio/temperature/Kconfig > > index 737faa0901fe..e1ccb4003015 100644 > > --- a/drivers/iio/temperature/Kconfig > > +++ b/drivers/iio/temperature/Kconfig > > @@ -4,6 +4,17 @@ > > # > > menu "Temperature sensors" > > > > +config LTC2983 > > + tristate "Analog Devices Multi-Sensor Digital Temperature Measurement System" > > + depends on SPI > > + select REGMAP_SPI > > + help > > + Say yes here to build support for the LTC2983 Multi-Sensor > > + high accuracy digital temperature measurement system. > > + > > + To compile this driver as a module, choose M here: the module > > + will be called ltc2983. > > + > > config MAXIM_THERMOCOUPLE > > tristate "Maxim thermocouple sensors" > > depends on SPI > > diff --git a/drivers/iio/temperature/Makefile b/drivers/iio/temperature/Makefile > > index baca4776ca0d..d6b850b0cf63 100644 > > --- a/drivers/iio/temperature/Makefile > > +++ b/drivers/iio/temperature/Makefile > > @@ -3,6 +3,7 @@ > > # Makefile for industrial I/O temperature drivers > > # > > > > +obj-$(CONFIG_LTC2983) += ltc2983.o > > obj-$(CONFIG_HID_SENSOR_TEMP) += hid-sensor-temperature.o > > obj-$(CONFIG_MAXIM_THERMOCOUPLE) += maxim_thermocouple.o > > obj-$(CONFIG_MAX31856) += max31856.o > > diff --git a/drivers/iio/temperature/ltc2983.c b/drivers/iio/temperature/ltc2983.c > > new file mode 100644 > > index 000000000000..9532cbe06574 > > --- /dev/null > > +++ b/drivers/iio/temperature/ltc2983.c > > @@ -0,0 +1,1557 @@ > > +// SPDX-License-Identifier: GPL-2.0 > > +/* > > + * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System > > + * driver > > + * > > + * Copyright 2019 Analog Devices Inc. > > + */ > > +#include <linux/bitfield.h> > > +#include <linux/completion.h> > > +#include <linux/device.h> > > +#include <linux/kernel.h> > > +#include <linux/iio/iio.h> > > +#include <linux/interrupt.h> > > +#include <linux/list.h> > > +#include <linux/module.h> > > +#include <linux/of_gpio.h> > > +#include <linux/regmap.h> > > +#include <linux/spi/spi.h> > > + > > +/* register map */ > > +#define LTC2983_STATUS_REG 0x0000 > > +#define LTC2983_TEMP_RES_START_REG 0x0010 > > +#define LTC2983_TEMP_RES_END_REG 0x005F > > +#define LTC2983_GLOBAL_CONFIG_REG 0x00F0 > > +#define LTC2983_MULT_CHANNEL_START_REG 0x00F4 > > +#define LTC2983_MULT_CHANNEL_END_REG 0x00F7 > > +#define LTC2983_MUX_CONFIG_REG 0x00FF > > +#define LTC2983_CHAN_ASSIGN_START_REG 0x0200 > > +#define LTC2983_CHAN_ASSIGN_END_REG 0x024F > > +#define LTC2983_CUST_SENS_TBL_START_REG 0x0250 > > +#define LTC2983_CUST_SENS_TBL_END_REG 0x03CF > > + > > +#define LTC2983_DIFFERENTIAL_CHAN_MIN 2 > > +#define LTC2983_MAX_CHANNELS_NR 20 > > +#define LTC2983_MIN_CHANNELS_NR 1 > > +#define LTC2983_SLEEP 0x97 > > +#define LTC2983_CUSTOM_STEINHART_SIZE 24 > > +#define LTC2983_CUSTOM_SENSOR_ENTRY_SZ 6 > > +#define LTC2983_CUSTOM_STEINHART_ENTRY_SZ 4 > > + > > +#define LTC2983_CHAN_START_ADDR(chan) \ > > + (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG) > > +#define LTC2983_CHAN_RES_ADDR(chan) \ > > + (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG) > > +#define LTC2983_THERMOCOUPLE_DIFF_MASK BIT(3) > > +#define LTC2983_THERMOCOUPLE_SGL(x) \ > > + FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x) > > +#define LTC2983_THERMOCOUPLE_OC_CURR_MASK GENMASK(1, 0) > > +#define LTC2983_THERMOCOUPLE_OC_CURR(x) \ > > + FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x) > > +#define LTC2983_THERMOCOUPLE_OC_CHECK_MASK BIT(2) > > +#define LTC2983_THERMOCOUPLE_OC_CHECK(x) \ > > + FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x) > > + > > +#define LTC2983_THERMISTOR_DIFF_MASK BIT(2) > > +#define LTC2983_THERMISTOR_SGL(x) \ > > + FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x) > > +#define LTC2983_THERMISTOR_R_SHARE_MASK BIT(1) > > +#define LTC2983_THERMISTOR_R_SHARE(x) \ > > + FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x) > > +#define LTC2983_THERMISTOR_C_ROTATE_MASK BIT(0) > > +#define LTC2983_THERMISTOR_C_ROTATE(x) \ > > + FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x) > > + > > +#define LTC2983_DIODE_DIFF_MASK BIT(2) > > +#define LTC2983_DIODE_SGL(x) \ > > + FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x) > > +#define LTC2983_DIODE_3_CONV_CYCLE_MASK BIT(1) > > +#define LTC2983_DIODE_3_CONV_CYCLE(x) \ > > + FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x) > > +#define LTC2983_DIODE_AVERAGE_ON_MASK BIT(0) > > +#define LTC2983_DIODE_AVERAGE_ON(x) \ > > + FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x) > > + > > +#define LTC2983_RTD_4_WIRE_MASK BIT(3) > > +#define LTC2983_RTD_ROTATION_MASK BIT(1) > > +#define LTC2983_RTD_C_ROTATE(x) \ > > + FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x) > > +#define LTC2983_RTD_KELVIN_R_SENSE_MASK GENMASK(3, 2) > > +#define LTC2983_RTD_N_WIRES_MASK GENMASK(3, 2) > > +#define LTC2983_RTD_N_WIRES(x) \ > > + FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x) > > +#define LTC2983_RTD_R_SHARE_MASK BIT(0) > > +#define LTC2983_RTD_R_SHARE(x) \ > > + FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1) > > + > > +#define LTC2983_COMMON_HARD_FAULT_MASK GENMASK(31, 30) > > +#define LTC2983_COMMON_SOFT_FAULT_MASK GENMASK(27, 25) > > + > > +#define LTC2983_STATUS_START_MASK BIT(7) > > +#define LTC2983_STATUS_START(x) FIELD_PREP(LTC2983_STATUS_START_MASK, x) > > + > > +#define LTC2983_STATUS_CHAN_SEL_MASK GENMASK(4, 0) > > +#define LTC2983_STATUS_CHAN_SEL(x) \ > > + FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x) > > + > > +#define LTC2983_TEMP_UNITS_MASK BIT(2) > > +#define LTC2983_TEMP_UNITS(x) FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x) > > + > > +#define LTC2983_NOTCH_FREQ_MASK GENMASK(1, 0) > > +#define LTC2983_NOTCH_FREQ(x) FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x) > > + > > +#define LTC2983_RES_VALID_MASK BIT(24) > > +#define LTC2983_DATA_MASK GENMASK(23, 0) > > +#define LTC2983_DATA_SIGN_BIT 23 > > + > > +#define LTC2983_CHAN_TYPE_MASK GENMASK(31, 27) > > +#define LTC2983_CHAN_TYPE(x) FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x) > > + > > +/* cold junction for thermocouples and rsense for rtd's and thermistor's */ > > +#define LTC2983_CHAN_ASSIGN_MASK GENMASK(26, 22) > > +#define LTC2983_CHAN_ASSIGN(x) FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x) > > + > > +#define LTC2983_CUSTOM_LEN_MASK GENMASK(5, 0) > > +#define LTC2983_CUSTOM_LEN(x) FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x) > > + > > +#define LTC2983_CUSTOM_ADDR_MASK GENMASK(11, 6) > > +#define LTC2983_CUSTOM_ADDR(x) FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x) > > + > > +#define LTC2983_THERMOCOUPLE_CFG_MASK GENMASK(21, 18) > > +#define LTC2983_THERMOCOUPLE_CFG(x) \ > > + FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x) > > +#define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK GENMASK(31, 29) > > +#define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK GENMASK(28, 25) > > + > > +#define LTC2983_RTD_CFG_MASK GENMASK(21, 18) > > +#define LTC2983_RTD_CFG(x) FIELD_PREP(LTC2983_RTD_CFG_MASK, x) > > +#define LTC2983_RTD_EXC_CURRENT_MASK GENMASK(17, 14) > > +#define LTC2983_RTD_EXC_CURRENT(x) \ > > + FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x) > > +#define LTC2983_RTD_CURVE_MASK GENMASK(13, 12) > > +#define LTC2983_RTD_CURVE(x) FIELD_PREP(LTC2983_RTD_CURVE_MASK, x) > > + > > +#define LTC2983_THERMISTOR_CFG_MASK GENMASK(21, 19) > > +#define LTC2983_THERMISTOR_CFG(x) \ > > + FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x) > > +#define LTC2983_THERMISTOR_EXC_CURRENT_MASK GENMASK(18, 15) > > +#define LTC2983_THERMISTOR_EXC_CURRENT(x) \ > > + FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x) > > + > > +#define LTC2983_DIODE_CFG_MASK GENMASK(26, 24) > > +#define LTC2983_DIODE_CFG(x) FIELD_PREP(LTC2983_DIODE_CFG_MASK, x) > > +#define LTC2983_DIODE_EXC_CURRENT_MASK GENMASK(23, 22) > > +#define LTC2983_DIODE_EXC_CURRENT(x) \ > > + FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x) > > +#define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0) > > +#define LTC2983_DIODE_IDEAL_FACTOR(x) \ > > + FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x) > > + > > +#define LTC2983_R_SENSE_VAL_MASK GENMASK(26, 0) > > +#define LTC2983_R_SENSE_VAL(x) FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x) > > + > > +#define LTC2983_ADC_SINGLE_ENDED_MASK BIT(26) > > +#define LTC2983_ADC_SINGLE_ENDED(x) \ > > + FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x) > > + > > +enum { > > + LTC2983_SENSOR_THERMOCOUPLE = 1, > > + LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9, > > + LTC2983_SENSOR_RTD = 10, > > + LTC2983_SENSOR_RTD_CUSTOM = 18, > > + LTC2983_SENSOR_THERMISTOR = 19, > > + LTC2983_SENSOR_THERMISTOR_STEINHART = 26, > > + LTC2983_SENSOR_THERMISTOR_CUSTOM = 27, > > + LTC2983_SENSOR_DIODE = 28, > > + LTC2983_SENSOR_SENSE_RESISTOR = 29, > > + LTC2983_SENSOR_DIRECT_ADC = 30, > > +}; > > + > > +#define to_thermocouple(_sensor) \ > > + container_of(_sensor, struct ltc2983_thermocouple, sensor) > > + > > +#define to_rtd(_sensor) \ > > + container_of(_sensor, struct ltc2983_rtd, sensor) > > + > > +#define to_thermistor(_sensor) \ > > + container_of(_sensor, struct ltc2983_thermistor, sensor) > > + > > +#define to_diode(_sensor) \ > > + container_of(_sensor, struct ltc2983_diode, sensor) > > + > > +#define to_rsense(_sensor) \ > > + container_of(_sensor, struct ltc2983_rsense, sensor) > > + > > +#define to_adc(_sensor) \ > > + container_of(_sensor, struct ltc2983_adc, sensor) > > + > > +struct ltc2983_data { > > + struct regmap *regmap; > > + struct spi_device *spi; > > + struct mutex lock; > > + struct completion completion; > > + struct iio_chan_spec *iio_chan; > > + struct ltc2983_sensor **sensors; > > + u32 mux_delay_config; > > + u32 filter_notch_freq; > > + u16 custom_table_size; > > + u8 num_channels; > > + u8 iio_channels; > > + /* > > + * DMA (thus cache coherency maintenance) requires the > > + * transfer buffers to live in their own cache lines. > > + * Holds the converted temperature > > + */ > > + __be32 temp ____cacheline_aligned; > > +}; > > + > > +struct ltc2983_sensor { > > + int (*fault_handler)(const struct ltc2983_data *st, const u32 result); > > + int (*assign_chan)(struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor); > > + /* specifies the sensor channel */ > > + u32 chan; > > + /* sensor type */ > > + u32 type; > > +}; > > + > > +struct ltc2983_custom_sensor { > > + /* raw table sensor data */ > > + u8 *table; > > + size_t size; > > + /* address offset */ > > + s8 offset; > > + bool is_steinhart; > > +}; > > + > > +struct ltc2983_thermocouple { > > + struct ltc2983_sensor sensor; > > + struct ltc2983_custom_sensor *custom; > > + u32 sensor_config; > > + u32 cold_junction_chan; > > +}; > > + > > +struct ltc2983_rtd { > > + struct ltc2983_sensor sensor; > > + struct ltc2983_custom_sensor *custom; > > + u32 sensor_config; > > + u32 r_sense_chan; > > + u32 excitation_current; > > + u32 rtd_curve; > > +}; > > + > > +struct ltc2983_thermistor { > > + struct ltc2983_sensor sensor; > > + struct ltc2983_custom_sensor *custom; > > + u32 sensor_config; > > + u32 r_sense_chan; > > + u32 excitation_current; > > +}; > > + > > +struct ltc2983_diode { > > + struct ltc2983_sensor sensor; > > + u32 sensor_config; > > + u32 excitation_current; > > + u32 ideal_factor_value; > > +}; > > + > > +struct ltc2983_rsense { > > + struct ltc2983_sensor sensor; > > + u32 r_sense_val; > > +}; > > + > > +struct ltc2983_adc { > > + struct ltc2983_sensor sensor; > > + bool single_ended; > > +}; > > + > > +/* > > + * Convert to Q format numbers. These number's are integers where > > + * the number of integer and fractional bits are specified. The resolution > > + * is given by 1/@resolution and tell us the number of fractional bits. For > > + * instance a resolution of 2^-10 means we have 10 fractional bits. > > + */ > > +static u32 __convert_to_raw(const u64 val, const u32 resolution) > > +{ > > + u64 __res = val * resolution; > > + > > + /* all values are multiplied by 1000000 to remove the fraction */ > > + do_div(__res, 1000000); > > + > > + return __res; > > +} > > + > > +static u32 __convert_to_raw_sign(const u64 val, const u32 resolution) > > +{ > > + s64 __res = -(s32)val; > > + > > + __res = __convert_to_raw(__res, resolution); > > + > > + return (u32)-__res; > > +} > > + > > +static int __ltc2983_fault_handler(const struct ltc2983_data *st, > > + const u32 result, const u32 hard_mask, > > + const u32 soft_mask) > > +{ > > + const struct device *dev = &st->spi->dev; > > + > > + if (result & hard_mask) { > > + dev_err(dev, "Invalid conversion: Sensor HARD fault\n"); > > + return -EIO; > > + } else if (result & soft_mask) { > > + /* just print a warning */ > > + dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n"); > > + } > > + > > + return 0; > > +} > > + > > +static int __ltc2983_chan_assign_common(const struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor, > > + u32 chan_val) > > +{ > > + u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan); > > + __be32 __chan_val; > > + > > + chan_val |= LTC2983_CHAN_TYPE(sensor->type); > > + dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg, > > + chan_val); > > + __chan_val = cpu_to_be32(chan_val); > > + return regmap_bulk_write(st->regmap, reg, &__chan_val, > > + sizeof(__chan_val)); > > +} > > + > > +static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st, > > + struct ltc2983_custom_sensor *custom, > > + u32 *chan_val) > > +{ > > + u32 reg; > > + u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ : > > + LTC2983_CUSTOM_SENSOR_ENTRY_SZ; > > + const struct device *dev = &st->spi->dev; > > + /* > > + * custom->size holds the raw size of the table. However, when > > + * configuring the sensor channel, we must write the number of > > + * entries of the table minus 1. For steinhart sensors 0 is written > > + * since the size is constant! > > + */ > > + const u8 len = custom->is_steinhart ? 0 : > > + (custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1; > > + /* > > + * Check if the offset was assigned already. It should be for steinhart > > + * sensors. When coming from sleep, it should be assigned for all. > > + */ > > + if (custom->offset < 0) { > > + /* > > + * This needs to be done again here because, from the moment > > + * when this test was done (successfully) for this custom > > + * sensor, a steinhart sensor might have been added changing > > + * custom_table_size... > > + */ > > + if (st->custom_table_size + custom->size > > > + (LTC2983_CUST_SENS_TBL_END_REG - > > + LTC2983_CUST_SENS_TBL_START_REG) + 1) { > > + dev_err(dev, > > + "Not space left(%d) for new custom sensor(%zu)", > > + st->custom_table_size, > > + custom->size); > > + return -EINVAL; > > + } > > + > > + custom->offset = st->custom_table_size / > > + LTC2983_CUSTOM_SENSOR_ENTRY_SZ; > > + st->custom_table_size += custom->size; > > + } > > + > > + reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG; > > + > > + *chan_val |= LTC2983_CUSTOM_LEN(len); > > + *chan_val |= LTC2983_CUSTOM_ADDR(custom->offset); > > + dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu", > > + reg, custom->offset, > > + custom->size); > > + /* write custom sensor table */ > > + return regmap_bulk_write(st->regmap, reg, custom->table, custom->size); > > +} > > + > > +static struct ltc2983_custom_sensor *__ltc2983_custom_sensor_new( > > + struct ltc2983_data *st, > > + const struct device_node *np, > > + const char *propname, > > + const bool is_steinhart, > > + const u32 resolution, > > + const bool has_signed) > > +{ > > + struct ltc2983_custom_sensor *new_custom; > > + u8 index, n_entries, tbl = 0; > > + struct device *dev = &st->spi->dev; > > + /* > > + * For custom steinhart, the full u32 is taken. For all the others > > + * the MSB is discarded. > > + */ > > + const u8 n_size = (is_steinhart == true) ? 4 : 3; > > + const u8 e_size = (is_steinhart == true) ? sizeof(u32) : sizeof(u64); > > + > > + n_entries = of_property_count_elems_of_size(np, propname, e_size); > > + /* n_entries must be an even number */ > > + if (!n_entries || (n_entries % 2) != 0) { > > + dev_err(dev, "Number of entries either 0 or not even\n"); > > + return ERR_PTR(-EINVAL); > > + } > > + > > + new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL); > > + if (!new_custom) > > + return ERR_PTR(-ENOMEM); > > + > > + new_custom->size = n_entries * n_size; > > + /* check Steinhart size */ > > + if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) { > > + dev_err(dev, "Steinhart sensors size(%zu) must be 24", > > + new_custom->size); > > + return ERR_PTR(-EINVAL); > > + } > > + /* Check space on the table. */ > > + if (st->custom_table_size + new_custom->size > > > + (LTC2983_CUST_SENS_TBL_END_REG - > > + LTC2983_CUST_SENS_TBL_START_REG) + 1) { > > + dev_err(dev, "No space left(%d) for new custom sensor(%zu)", > > + st->custom_table_size, new_custom->size); > > + return ERR_PTR(-EINVAL); > > + } > > + > > + /* allocate the table */ > > + new_custom->table = devm_kzalloc(dev, new_custom->size, GFP_KERNEL); > > + if (!new_custom->table) > > + return ERR_PTR(-ENOMEM); > > + > > + for (index = 0; index < n_entries; index++) { > > + u64 temp = 0, j; > > + /* > > + * Steinhart sensors are configured with raw values in the > > + * devicetree. For the other sensors we must convert the > > + * value to raw. The odd index's correspond to temperarures > > + * and always have 1/1024 of resolution. Temperatures also > > + * come in kelvin, so signed values is not possible > > + */ > > + if (!is_steinhart) { > > + of_property_read_u64_index(np, propname, index, &temp); > > + > > + if ((index % 2) != 0) > > + temp = __convert_to_raw(temp, 1024); > > + else if (has_signed && (s64)temp < 0) > > + temp = __convert_to_raw_sign(temp, resolution); > > + else > > + temp = __convert_to_raw(temp, resolution); > > + } else { > > + of_property_read_u32_index(np, propname, index, > > + (u32 *)&temp); > > + } > > + > > + for (j = 0; j < n_size; j++) > > + new_custom->table[tbl++] = > > + temp >> (8 * (n_size - j - 1)); > > + } > > + > > + new_custom->is_steinhart = is_steinhart; > > + /* > > + * This is done to first add all the steinhart sensors to the table, > > + * in order to maximize the table usage. If we mix adding steinhart > > + * with the other sensors, we might have to do some roundup to make > > + * sure that sensor_addr - 0x250(start address) is a multiple of 4 > > + * (for steinhart), and a multiple of 6 for all the other sensors. > > + * Since we have const 24 bytes for steinhart sensors and 24 is > > + * also a multiple of 6, we guarantee that the first non-steinhart > > + * sensor will sit in a correct address without the need of filling > > + * addresses. > > + */ > > + if (is_steinhart) { > > + new_custom->offset = st->custom_table_size / > > + LTC2983_CUSTOM_STEINHART_ENTRY_SZ; > > + st->custom_table_size += new_custom->size; > > + } else { > > + /* mark as unset. This is checked later on the assign phase */ > > + new_custom->offset = -1; > > + } > > + > > + return new_custom; > > +} > > + > > +static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st, > > + const u32 result) > > +{ > > + return __ltc2983_fault_handler(st, result, > > + LTC2983_THERMOCOUPLE_HARD_FAULT_MASK, > > + LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK); > > +} > > + > > +static int ltc2983_common_fault_handler(const struct ltc2983_data *st, > > + const u32 result) > > +{ > > + return __ltc2983_fault_handler(st, result, > > + LTC2983_COMMON_HARD_FAULT_MASK, > > + LTC2983_COMMON_SOFT_FAULT_MASK); > > +} > > + > > +static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_thermocouple *thermo = to_thermocouple(sensor); > > + u32 chan_val; > > + > > + chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan); > > + chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config); > > + > > + if (thermo->custom) { > > + int ret; > > + > > + ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom, > > + &chan_val); > > + if (ret) > > + return ret; > > + } > > + return __ltc2983_chan_assign_common(st, sensor, chan_val); > > +} > > + > > +static int ltc2983_rtd_assign_chan(struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_rtd *rtd = to_rtd(sensor); > > + u32 chan_val; > > + > > + chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan); > > + chan_val |= LTC2983_RTD_CFG(rtd->sensor_config); > > + chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current); > > + chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve); > > + > > + if (rtd->custom) { > > + int ret; > > + > > + ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom, > > + &chan_val); > > + if (ret) > > + return ret; > > + } > > + return __ltc2983_chan_assign_common(st, sensor, chan_val); > > +} > > + > > +static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_thermistor *thermistor = to_thermistor(sensor); > > + u32 chan_val; > > + > > + chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan); > > + chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config); > > + chan_val |= > > + LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current); > > + > > + if (thermistor->custom) { > > + int ret; > > + > > + ret = __ltc2983_chan_custom_sensor_assign(st, > > + thermistor->custom, > > + &chan_val); > > + if (ret) > > + return ret; > > + } > > + return __ltc2983_chan_assign_common(st, sensor, chan_val); > > +} > > + > > +static int ltc2983_diode_assign_chan(struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_diode *diode = to_diode(sensor); > > + u32 chan_val; > > + > > + chan_val = LTC2983_DIODE_CFG(diode->sensor_config); > > + chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current); > > + chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value); > > + > > + return __ltc2983_chan_assign_common(st, sensor, chan_val); > > +} > > + > > +static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_rsense *rsense = to_rsense(sensor); > > + u32 chan_val; > > + > > + chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val); > > + > > + return __ltc2983_chan_assign_common(st, sensor, chan_val); > > +} > > + > > +static int ltc2983_adc_assign_chan(struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_adc *adc = to_adc(sensor); > > + u32 chan_val; > > + > > + chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended); > > + > > + return __ltc2983_chan_assign_common(st, sensor, chan_val); > > +} > > + > > +static struct ltc2983_sensor *ltc2983_thermocouple_new( > > + const struct device_node *child, > > + struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_thermocouple *thermo; > > + struct device_node *phandle; > > + u32 oc_current; > > + int ret; > > + > > + thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL); > > + if (!thermo) > > + return ERR_PTR(-ENOMEM); > > + > > + if (of_property_read_bool(child, "adi,single-ended")) > > + thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1); > > + > > + ret = of_property_read_u32(child, "adi,sensor-oc-current-microamp", > > + &oc_current); > > + if (!ret) { > > + switch (oc_current) { > > + case 10: > > + thermo->sensor_config |= > > + LTC2983_THERMOCOUPLE_OC_CURR(0); > > + break; > > + case 100: > > + thermo->sensor_config |= > > + LTC2983_THERMOCOUPLE_OC_CURR(1); > > + break; > > + case 500: > > + thermo->sensor_config |= > > + LTC2983_THERMOCOUPLE_OC_CURR(2); > > + break; > > + case 1000: > > + thermo->sensor_config |= > > + LTC2983_THERMOCOUPLE_OC_CURR(3); > > + break; > > + default: > > + dev_err(&st->spi->dev, > > + "Invalid open circuit current:%u", oc_current); > > + return ERR_PTR(-EINVAL); > > + } > > + > > + thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1); > > + } > > + /* validate channel index */ > > + if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) && > > + sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { > > + dev_err(&st->spi->dev, > > + "Invalid chann:%d for differential thermocouple", > > + sensor->chan); > > + return ERR_PTR(-EINVAL); > > + } > > + > > + phandle = of_parse_phandle(child, "adi,cold-junction-handle", 0); > > + if (phandle) { > > + int ret; > > + > > + ret = of_property_read_u32(phandle, "reg", > > + &thermo->cold_junction_chan); > > + if (ret) { > > + /* > > + * This would be catched later but we can just return > > + * the error right away. > > + */ > > + dev_err(&st->spi->dev, "Property reg must be given\n"); > > + of_node_put(phandle); > > + return ERR_PTR(-EINVAL); > > + } > > + } > > + > > + /* check custom sensor */ > > + if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) { > > + const char *propname = "adi,custom-thermocouple"; > > + > > + thermo->custom = __ltc2983_custom_sensor_new(st, child, > > + propname, false, > > + 16384, true); > > + if (IS_ERR(thermo->custom)) { > > + of_node_put(phandle); > > + return ERR_CAST(thermo->custom); > > + } > > + } > > + > > + /* set common parameters */ > > + thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler; > > + thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan; > > + > > + of_node_put(phandle); > > + return &thermo->sensor; > > +} > > + > > +static struct ltc2983_sensor *ltc2983_rtd_new(const struct device_node *child, > > + struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_rtd *rtd; > > + int ret = 0; > > + struct device *dev = &st->spi->dev; > > + struct device_node *phandle; > > + u32 excitation_current = 0, n_wires = 0; > > + > > + rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL); > > + if (!rtd) > > + return ERR_PTR(-ENOMEM); > > + > > + phandle = of_parse_phandle(child, "adi,rsense-handle", 0); > > + if (!phandle) { > > + dev_err(dev, "Property adi,rsense-handle missing or invalid"); > > + return ERR_PTR(-EINVAL); > > + } > > + > > + ret = of_property_read_u32(phandle, "reg", &rtd->r_sense_chan); > > + if (ret) { > > + dev_err(dev, "Property reg must be given\n"); > > + goto fail; > > + } > > + > > + ret = of_property_read_u32(child, "adi,number-of-wires", &n_wires); > > + if (!ret) { > > + switch (n_wires) { > > + case 2: > > + rtd->sensor_config = LTC2983_RTD_N_WIRES(0); > > + break; > > + case 3: > > + rtd->sensor_config = LTC2983_RTD_N_WIRES(1); > > + break; > > + case 4: > > + rtd->sensor_config = LTC2983_RTD_N_WIRES(2); > > + break; > > + case 5: > > + /* 4 wires, Kelvin Rsense */ > > + rtd->sensor_config = LTC2983_RTD_N_WIRES(3); > > + break; > > + default: > > + dev_err(dev, "Invalid number of wires:%u\n", n_wires); > > + ret = -EINVAL; > > + goto fail; > > + } > > + } > > + > > + if (of_property_read_bool(child, "adi,rsense-share")) { > > + /* Current rotation is only available with rsense sharing */ > > + if (of_property_read_bool(child, "adi,current-rotate")) { > > + if (n_wires == 2 || n_wires == 3) { > > + dev_err(dev, > > + "Rotation not allowed for 2/3 Wire RTDs"); > > + ret = -EINVAL; > > + goto fail; > > + } > > + rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1); > > + } else { > > + rtd->sensor_config |= LTC2983_RTD_R_SHARE(1); > > + } > > + } > > + /* > > + * rtd channel indexes are a bit more complicated to validate. > > + * For 4wire RTD with rotation, the channel selection cannot be > > + * >=19 since the chann + 1 is used in this configuration. > > + * For 4wire RTDs with kelvin rsense, the rsense channel cannot be > > + * <=1 since chanel - 1 and channel - 2 are used. > > + */ > > + if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) { > > + /* 4-wire */ > > + u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN, > > + max = LTC2983_MAX_CHANNELS_NR; > > + > > + if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK) > > + max = LTC2983_MAX_CHANNELS_NR - 1; > > + > > + if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK) > > + == LTC2983_RTD_KELVIN_R_SENSE_MASK) && > > + (rtd->r_sense_chan <= min)) { > > + /* kelvin rsense*/ > > + dev_err(dev, > > + "Invalid rsense chann:%d to use in kelvin rsense", > > + rtd->r_sense_chan); > > + > > + ret = -EINVAL; > > + goto fail; > > + } > > + > > + if (sensor->chan < min || sensor->chan > max) { > > + dev_err(dev, "Invalid chann:%d for the rtd config", > > + sensor->chan); > > + > > + ret = -EINVAL; > > + goto fail; > > + } > > + } else { > > + /* same as differential case */ > > + if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { > > + dev_err(&st->spi->dev, > > + "Invalid chann:%d for RTD", sensor->chan); > > + > > + ret = -EINVAL; > > + goto fail; > > + } > > + } > > + > > + /* check custom sensor */ > > + if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) { > > + rtd->custom = __ltc2983_custom_sensor_new(st, child, > > + "adi,custom-rtd", > > + false, 2048, false); > > + if (IS_ERR(rtd->custom)) { > > + of_node_put(phandle); > > + return ERR_CAST(rtd->custom); > > + } > > + } > > + > > + /* set common parameters */ > > + rtd->sensor.fault_handler = ltc2983_common_fault_handler; > > + rtd->sensor.assign_chan = ltc2983_rtd_assign_chan; > > + > > + ret = of_property_read_u32(child, "adi,excitation-current-microamp", > > + &excitation_current); > > + if (ret) { > > + /* default to 5uA */ > > + rtd->excitation_current = 1; > > + } else { > > + switch (excitation_current) { > > + case 5: > > + rtd->excitation_current = 0x01; > > + break; > > + case 10: > > + rtd->excitation_current = 0x02; > > + break; > > + case 25: > > + rtd->excitation_current = 0x03; > > + break; > > + case 50: > > + rtd->excitation_current = 0x04; > > + break; > > + case 100: > > + rtd->excitation_current = 0x05; > > + break; > > + case 250: > > + rtd->excitation_current = 0x06; > > + break; > > + case 500: > > + rtd->excitation_current = 0x07; > > + break; > > + case 1000: > > + rtd->excitation_current = 0x08; > > + break; > > + default: > > + dev_err(&st->spi->dev, > > + "Invalid value for excitation current(%u)", > > + excitation_current); > > + ret = -EINVAL; > > + goto fail; > > + } > > + } > > + > > + of_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve); > > + > > + of_node_put(phandle); > > + return &rtd->sensor; > > +fail: > > + of_node_put(phandle); > > + return ERR_PTR(ret); > > +} > > + > > +static struct ltc2983_sensor *ltc2983_thermistor_new( > > + const struct device_node *child, > > + struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_thermistor *thermistor; > > + struct device *dev = &st->spi->dev; > > + struct device_node *phandle; > > + u32 excitation_current = 0; > > + int ret = 0; > > + > > + thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL); > > + if (!thermistor) > > + return ERR_PTR(-ENOMEM); > > + > > + phandle = of_parse_phandle(child, "adi,rsense-handle", 0); > > + if (!phandle) { > > + dev_err(dev, "Property adi,rsense-handle missing or invalid"); > > + return ERR_PTR(-EINVAL); > > + } > > + > > + ret = of_property_read_u32(phandle, "reg", &thermistor->r_sense_chan); > > + if (ret) { > > + dev_err(dev, "rsense channel must be configured...\n"); > > + goto fail; > > + } > > + > > + if (of_property_read_bool(child, "adi,single-ended")) { > > + thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1); > > + } else if (of_property_read_bool(child, "adi,rsense-share")) { > > + /* rotation is only possible if sharing rsense */ > > + if (of_property_read_bool(child, "adi,current-rotate")) > > + thermistor->sensor_config = > > + LTC2983_THERMISTOR_C_ROTATE(1); > > + else > > + thermistor->sensor_config = > > + LTC2983_THERMISTOR_R_SHARE(1); > > + } > > + /* validate channel index */ > > + if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) && > > + sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { > > + dev_err(&st->spi->dev, > > + "Invalid chann:%d for differential thermistor", > > + sensor->chan); > > + ret = -EINVAL; > > + goto fail; > > + } > > + > > + /* check custom sensor */ > > + if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) { > > + bool steinhart = false; > > + const char *propname; > > + > > + if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) { > > + steinhart = true; > > + propname = "adi,custom-steinhart"; > > + } else { > > + propname = "adi,custom-thermistor"; > > + } > > + > > + thermistor->custom = __ltc2983_custom_sensor_new(st, child, > > + propname, > > + steinhart, > > + 64, false); > > + if (IS_ERR(thermistor->custom)) { > > + of_node_put(phandle); > > + return ERR_CAST(thermistor->custom); > > + } > > + } > > + /* set common parameters */ > > + thermistor->sensor.fault_handler = ltc2983_common_fault_handler; > > + thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan; > > + > > + ret = of_property_read_u32(child, "adi,excitation-current-nanoamp", > > + &excitation_current); > > + if (ret) { > > + /* Auto range is not allowed for custom sensors */ > > + if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) > > + /* default to 1uA */ > > + thermistor->excitation_current = 0x03; > > + else > > + /* default to auto-range */ > > + thermistor->excitation_current = 0x0c; > > + } else { > > + switch (excitation_current) { > > + case 0: > > + /* auto range */ > > + if (sensor->type >= > > + LTC2983_SENSOR_THERMISTOR_STEINHART) { > > + dev_err(&st->spi->dev, > > + "Auto Range not allowed for custom sensors\n"); > > + ret = -EINVAL; > > + goto fail; > > + } > > + thermistor->excitation_current = 0x0c; > > + break; > > + case 250: > > + thermistor->excitation_current = 0x01; > > + break; > > + case 500: > > + thermistor->excitation_current = 0x02; > > + break; > > + case 1000: > > + thermistor->excitation_current = 0x03; > > + break; > > + case 5000: > > + thermistor->excitation_current = 0x04; > > + break; > > + case 10000: > > + thermistor->excitation_current = 0x05; > > + break; > > + case 25000: > > + thermistor->excitation_current = 0x06; > > + break; > > + case 50000: > > + thermistor->excitation_current = 0x07; > > + break; > > + case 100000: > > + thermistor->excitation_current = 0x08; > > + break; > > + case 250000: > > + thermistor->excitation_current = 0x09; > > + break; > > + case 500000: > > + thermistor->excitation_current = 0x0a; > > + break; > > + case 1000000: > > + thermistor->excitation_current = 0x0b; > > + break; > > + default: > > + dev_err(&st->spi->dev, > > + "Invalid value for excitation current(%u)", > > + excitation_current); > > + ret = -EINVAL; > > + goto fail; > > + } > > + } > > + > > + of_node_put(phandle); > > + return &thermistor->sensor; > > +fail: > > + of_node_put(phandle); > > + return ERR_PTR(ret); > > +} > > + > > +static struct ltc2983_sensor *ltc2983_diode_new( > > + const struct device_node *child, > > + const struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_diode *diode; > > + u32 temp = 0, excitation_current = 0; > > + int ret; > > + > > + diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL); > > + if (!diode) > > + return ERR_PTR(-ENOMEM); > > + > > + if (of_property_read_bool(child, "adi,single-ended")) > > + diode->sensor_config = LTC2983_DIODE_SGL(1); > > + > > + if (of_property_read_bool(child, "adi,three-conversion-cycles")) > > + diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1); > > + > > + if (of_property_read_bool(child, "adi,average-on")) > > + diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1); > > + > > + /* validate channel index */ > > + if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) && > > + sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { > > + dev_err(&st->spi->dev, > > + "Invalid chann:%d for differential thermistor", > > + sensor->chan); > > + return ERR_PTR(-EINVAL); > > + } > > + /* set common parameters */ > > + diode->sensor.fault_handler = ltc2983_common_fault_handler; > > + diode->sensor.assign_chan = ltc2983_diode_assign_chan; > > + > > + ret = of_property_read_u32(child, "adi,excitation-current-microamp", > > + &excitation_current); > > + if (!ret) { > > + switch (excitation_current) { > > + case 10: > > + diode->excitation_current = 0x00; > > + break; > > + case 20: > > + diode->excitation_current = 0x01; > > + break; > > + case 40: > > + diode->excitation_current = 0x02; > > + break; > > + case 80: > > + diode->excitation_current = 0x03; > > + break; > > + default: > > + dev_err(&st->spi->dev, > > + "Invalid value for excitation current(%u)", > > + excitation_current); > > + return ERR_PTR(-EINVAL); > > + } > > + } > > + > > + of_property_read_u32(child, "adi,ideal-factor-value", &temp); > > + > > + /* 2^20 resolution */ > > + diode->ideal_factor_value = __convert_to_raw(temp, 1048576); > > + > > + return &diode->sensor; > > +} > > + > > +static struct ltc2983_sensor *ltc2983_r_sense_new(struct device_node *child, > > + struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_rsense *rsense; > > + int ret; > > + u32 temp; > > + > > + rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL); > > + if (!rsense) > > + return ERR_PTR(-ENOMEM); > > + > > + /* validate channel index */ > > + if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { > > + dev_err(&st->spi->dev, "Invalid chann:%d for r_sense", > > + sensor->chan); > > + return ERR_PTR(-EINVAL); > > + } > > + > > + ret = of_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp); > > + if (ret) { > > + dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n"); > > + return ERR_PTR(-EINVAL); > > + } > > + /* > > + * Times 1000 because we have milli-ohms and __convert_to_raw > > + * expects scales of 1000000 which are used for all other > > + * properties. > > + * 2^10 resolution > > + */ > > + rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024); > > + > > + /* set common parameters */ > > + rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan; > > + > > + return &rsense->sensor; > > +} > > + > > +static struct ltc2983_sensor *ltc2983_adc_new(struct device_node *child, > > + struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor) > > +{ > > + struct ltc2983_adc *adc; > > + > > + adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL); > > + if (!adc) > > + return ERR_PTR(-ENOMEM); > > + > > + if (of_property_read_bool(child, "adi,single-ended")) > > + adc->single_ended = true; > > + > > + if (!adc->single_ended && > > + sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { > > + dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n", > > + sensor->chan); > > That parameter should be aligned with the open bracket. > > > + return ERR_PTR(-EINVAL); > > + } > > + /* set common parameters */ > > + adc->sensor.assign_chan = ltc2983_adc_assign_chan; > > + adc->sensor.fault_handler = ltc2983_common_fault_handler; > > + > > + return &adc->sensor; > > +} > > + > > +static int ltc2983_chan_read(struct ltc2983_data *st, > > + const struct ltc2983_sensor *sensor, int *val) > > +{ > > + u32 start_conversion = 0; > > + int ret; > > + unsigned long time; > > + > > + start_conversion = LTC2983_STATUS_START(true); > > + start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan); > > + dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n", > > + sensor->chan, start_conversion); > > + /* start conversion */ > > + ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion); > > + if (ret) > > + return ret; > > + > > + reinit_completion(&st->completion); > > + /* > > + * wait for conversion to complete. > > + * 300 ms should be more than enough to complete the conversion. > > + * Depending on the sensor configuration, there are 2/3 conversions > > + * cycles of 82ms. > > + */ > > + time = wait_for_completion_timeout(&st->completion, > > + msecs_to_jiffies(300)); > > + if (!time) { > > + dev_warn(&st->spi->dev, "Conversion timed out\n"); > > + return -ETIMEDOUT; > > + } > > + > > + /* read the converted data */ > > + ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan), > > + &st->temp, sizeof(st->temp)); > > + if (ret) > > + return ret; > > + > > + *val = __be32_to_cpu(st->temp); > > + > > + if (!(LTC2983_RES_VALID_MASK & *val)) { > > + dev_err(&st->spi->dev, "Invalid conversion detected\n"); > > + return -EIO; > > + } > > + > > + ret = sensor->fault_handler(st, *val); > > + if (ret) > > + return ret; > > + > > + *val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT); > > + return 0; > > +} > > + > > +static int ltc2983_read_raw(struct iio_dev *indio_dev, > > + struct iio_chan_spec const *chan, > > + int *val, int *val2, long mask) > > +{ > > + struct ltc2983_data *st = iio_priv(indio_dev); > > + int ret; > > + > > + /* sanity check */ > > + if (chan->address >= st->num_channels) { > > + dev_err(&st->spi->dev, "Invalid chan address:%ld", > > + chan->address); > > Odd indent. > > > + return -EINVAL; > > + } > > + > > + switch (mask) { > > + case IIO_CHAN_INFO_RAW: > > + mutex_lock(&st->lock); > > + ret = ltc2983_chan_read(st, st->sensors[chan->address], val); > > + mutex_unlock(&st->lock); > > + return ret ?: IIO_VAL_INT; > Would have preferred separate error handling. > if (ret) > return ret; > > return IIO_VAL_INT; > > > + case IIO_CHAN_INFO_SCALE: > > + switch (chan->type) { > > + case IIO_TEMP: > > + /* value in milli degrees */ > > + *val = 1000; > > + /* 2^10 */ > > + *val2 = 1024; > > + return IIO_VAL_FRACTIONAL; > > + case IIO_VOLTAGE: > > + /* value in millivolt */ > > + *val = 1000; > > + /* 2^21 */ > > + *val2 = 2097152; > > + return IIO_VAL_FRACTIONAL; > > + default: > > + return -EINVAL; > > + } > > + } > > + > > + return -EINVAL; > > +} > > + > > +static int ltc2983_reg_access(struct iio_dev *indio_dev, > > + unsigned int reg, > > + unsigned int writeval, > > + unsigned int *readval) > > +{ > > + struct ltc2983_data *st = iio_priv(indio_dev); > > + > > + if (readval) > > + return regmap_read(st->regmap, reg, readval); > > + else > > + return regmap_write(st->regmap, reg, writeval); > > +} > > + > > +static irqreturn_t ltc2983_irq_handler(int irq, void *data) > > +{ > > + struct ltc2983_data *st = data; > > + > > + complete(&st->completion); > > + return IRQ_HANDLED; > > +} > > + > > +#define LTC2983_CHAN(__type, index, __address) ({ \ > > + struct iio_chan_spec __chan = { \ > > + .type = __type, \ > > + .indexed = 1, \ > > + .channel = index, \ > > + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ > > + .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ > > + .address = __address, \ > > + }; \ > > + __chan; \ > > +}) > > + > > +static int ltc2983_parse_dt(struct ltc2983_data *st) > > +{ > > + struct device_node *child; > > + struct device *dev = &st->spi->dev; > > + int ret = 0, chan = 0, channel_avail_mask = 0; > > + > > + of_property_read_u32(dev->of_node, "adi,mux-delay-config-us", > > + &st->mux_delay_config); > > + > > + of_property_read_u32(dev->of_node, "adi,filter-notch-freq", > > + &st->filter_notch_freq); > > + > > + st->num_channels = of_get_available_child_count(dev->of_node); > > + st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors), > > + GFP_KERNEL); > > + if (!st->sensors) > > + return -ENOMEM; > > + > > + st->iio_channels = st->num_channels; > > + for_each_available_child_of_node(dev->of_node, child) { > > + struct ltc2983_sensor sensor; > > + > > + ret = of_property_read_u32(child, "reg", &sensor.chan); > > + if (ret) { > > + dev_err(dev, "reg property must given for child nodes\n"); > > + return ret; > > + } > > + > > + /* check if we have a valid channel */ > > + if (sensor.chan < LTC2983_MIN_CHANNELS_NR || > > + sensor.chan > LTC2983_MAX_CHANNELS_NR) { > > + dev_err(dev, > > + "chan:%d must be from 1 to 20\n", sensor.chan); > > + return -EINVAL; > > + } else if (channel_avail_mask & BIT(sensor.chan)) { > > + dev_err(dev, "chan:%d already in use\n", sensor.chan); > > + return -EINVAL; > > + } > > + > > + ret = of_property_read_u32(child, "adi,sensor-type", > > + &sensor.type); > > + if (ret) { > > + dev_err(dev, > > + "adi,sensor-type property must given for child nodes\n"); > > + return ret; > > + } > > + > > + dev_dbg(dev, "Create new sensor, type %u, chann %u", > > + sensor.type, > > + sensor.chan); > > + > > + if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE && > > + sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) { > > + st->sensors[chan] = ltc2983_thermocouple_new(child, st, > > + &sensor); > > + } else if (sensor.type >= LTC2983_SENSOR_RTD && > > + sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) { > > + st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor); > > + } else if (sensor.type >= LTC2983_SENSOR_THERMISTOR && > > + sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) { > > + st->sensors[chan] = ltc2983_thermistor_new(child, st, > > + &sensor); > > + } else if (sensor.type == LTC2983_SENSOR_DIODE) { > > + st->sensors[chan] = ltc2983_diode_new(child, st, > > + &sensor); > > + } else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) { > > + st->sensors[chan] = ltc2983_r_sense_new(child, st, > > + &sensor); > > + /* don't add rsense to iio */ > > + st->iio_channels--; > > + } else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) { > > + st->sensors[chan] = ltc2983_adc_new(child, st, &sensor); > > + } else { > > + dev_err(dev, "Unknown sensor type %d\n", sensor.type); > > + return -EINVAL; > > + } > > + > > + if (IS_ERR(st->sensors[chan])) { > > + dev_err(dev, "Failed to create sensor %ld", > > + PTR_ERR(st->sensors[chan])); > > + return PTR_ERR(st->sensors[chan]); > > + } > > + /* set generic sensor parameters */ > > + st->sensors[chan]->chan = sensor.chan; > > + st->sensors[chan]->type = sensor.type; > > + > > + channel_avail_mask |= BIT(sensor.chan); > > + chan++; > > + } > > + > > + return 0; > > +} > > + > > +static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio) > > +{ > > + u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0; > > + int ret; > > + unsigned long time; > > + > > + /* make sure the device is up */ > > + time = wait_for_completion_timeout(&st->completion, > > + msecs_to_jiffies(250)); > > + > > + if (!time) { > > + dev_err(&st->spi->dev, "Device startup timed out\n"); > > + return -ETIMEDOUT; > > + } > > + > > + st->iio_chan = devm_kzalloc(&st->spi->dev, > > + st->iio_channels * sizeof(*st->iio_chan), > > + GFP_KERNEL); > > + > > Bit a stylistic inconsistency here on whether you have a blank line > before error checks or not. I might tweak that when applying depending > on how fussy I feel. > > > + if (!st->iio_chan) > > + return -ENOMEM; > > + > > + ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG, > > + LTC2983_NOTCH_FREQ_MASK, > > + LTC2983_NOTCH_FREQ(st->filter_notch_freq)); > > + if (ret) > > + return ret; > > + > > + ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG, > > + st->mux_delay_config); > > + if (ret) > > + return ret; > > + > > + for (chan = 0; chan < st->num_channels; chan++) { > > + u32 chan_type = 0, *iio_chan; > > + > > + ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]); > > + if (ret) > > + return ret; > > + /* > > + * The assign_iio flag is necessary for when the device is > > + * coming out of sleep. In that case, we just need to > > + * re-configure the device channels. > > + * We also don't assign iio channels for rsense. > > + */ > > + if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR || > > + !assign_iio) > > + continue; > > + > > + /* assign iio channel */ > > + if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) { > > + chan_type = IIO_TEMP; > > + iio_chan = &iio_chan_t; > > + } else { > > + chan_type = IIO_VOLTAGE; > > + iio_chan = &iio_chan_v; > > + } > > + > > + /* > > + * add chan as the iio .address so that, we can directly > > + * reference the sensor given the iio_chan_spec > > + */ > > + st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++, > > + chan); > > + } > > + > > + return 0; > > +} > > + > > +static const struct regmap_range ltc2983_reg_ranges[] = { > > + regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG), > > + regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG), > > + regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG), > > + regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG, > > + LTC2983_MULT_CHANNEL_END_REG), > > + regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG), > > + regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG, > > + LTC2983_CHAN_ASSIGN_END_REG), > > + regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG, > > + LTC2983_CUST_SENS_TBL_END_REG), > > +}; > > + > > +static const struct regmap_access_table ltc2983_reg_table = { > > + .yes_ranges = ltc2983_reg_ranges, > > + .n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges), > > +}; > > + > > +/* > > + * The reg_bits are actually 12 but the device needs the first *complete* > > + * byte for the command (R/W). > > + */ > > +static const struct regmap_config ltc2983_regmap_config = { > > + .reg_bits = 24, > > + .val_bits = 8, > > + .wr_table = <c2983_reg_table, > > + .rd_table = <c2983_reg_table, > > + .read_flag_mask = GENMASK(1, 0), > > + .write_flag_mask = BIT(1), > > +}; > > + > > +static const struct iio_info ltc2983_iio_info = { > > + .read_raw = ltc2983_read_raw, > > + .debugfs_reg_access = ltc2983_reg_access, > > +}; > > + > > +static int ltc2983_probe(struct spi_device *spi) > > +{ > > + struct ltc2983_data *st; > > + struct iio_dev *indio_dev; > > + const char *name = spi_get_device_id(spi)->name; > > + int ret; > > + > > + indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); > > + if (!indio_dev) > > + return -ENOMEM; > > + > > + st = iio_priv(indio_dev); > > + > > + st->regmap = devm_regmap_init_spi(spi, <c2983_regmap_config); > > + if (IS_ERR(st->regmap)) { > > + dev_err(&spi->dev, "Failed to initialize regmap\n"); > > + return PTR_ERR(st->regmap); > > + } > > + > > + mutex_init(&st->lock); > > + init_completion(&st->completion); > > + st->spi = spi; > > + spi_set_drvdata(spi, st); > > + > > + ret = ltc2983_parse_dt(st); > > + if (ret) > > + return ret; > > + /* > > + * let's request the irq now so it is used to sync the device > > + * startup in ltc2983_setup() > > + */ > > + ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler, > > + IRQF_TRIGGER_RISING, name, st); > > + if (ret) { > > + dev_err(&spi->dev, "failed to request an irq, %d", ret); > > + return ret; > > + } > > + > > + ret = ltc2983_setup(st, true); > > + if (ret) > > + return ret; > > + > > + indio_dev->dev.parent = &spi->dev; > > + indio_dev->name = name; > > + indio_dev->num_channels = st->iio_channels; > > + indio_dev->channels = st->iio_chan; > > + indio_dev->modes = INDIO_DIRECT_MODE; > > + indio_dev->info = <c2983_iio_info; > > + > > + return devm_iio_device_register(&spi->dev, indio_dev); > > +} > > + > > +static int __maybe_unused ltc2983_resume(struct device *dev) > > +{ > > + struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev)); > > + int dummy; > > + > > + /* dummy read to bring the device out of sleep */ > > + regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy); > > + /* we need to re-assign the channels */ > > + return ltc2983_setup(st, false); > > +} > > + > > +static int __maybe_unused ltc2983_suspend(struct device *dev) > > +{ > > + struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev)); > > + > > + return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP); > > +} > > + > > +static SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend, ltc2983_resume); > > + > > +static const struct spi_device_id ltc2983_id_table[] = { > > + { "ltc2983" }, > > + {}, > > +}; > > +MODULE_DEVICE_TABLE(spi, ltc2983_id_table); > > + > > +static const struct of_device_id ltc2983_of_match[] = { > > + { .compatible = "adi,ltc2983" }, > > + {}, > > +}; > > +MODULE_DEVICE_TABLE(of, ltc2983_id_table); Wrong table... > > + > > +static struct spi_driver ltc2983_driver = { > > + .driver = { > > + .name = "ltc2983", > > + .of_match_table = ltc2983_of_match, > > + .pm = <c2983_pm_ops, > > + }, > > + .probe = ltc2983_probe, > > + .id_table = ltc2983_id_table, > > +}; > > + > > +module_spi_driver(ltc2983_driver); > > + > > +MODULE_AUTHOR("Nuno Sa <nuno.sa@xxxxxxxxxx>"); > > +MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors"); > > +MODULE_LICENSE("GPL"); >