On Wed, 5 Jun 2019 at 18:54, Lukasz Luba <l.luba@xxxxxxxxxxxxxxxxxxx> wrote: > > This patch adds driver for Exynos5422 Dynamic Memory Controller. > The driver provides support for dynamic frequency and voltage scaling for > DMC and DRAM. It supports changing timings of DRAM running with different > frequency. There is also an algorithm to calculate timigns based on > memory description provided in DT. > The patch also contains needed MAINTAINERS file update. > > Signed-off-by: Lukasz Luba <l.luba@xxxxxxxxxxxxxxxxxxx> > --- > MAINTAINERS | 8 + > drivers/memory/samsung/Kconfig | 17 + > drivers/memory/samsung/Makefile | 1 + > drivers/memory/samsung/exynos5422-dmc.c | 1265 +++++++++++++++++++++++ > 4 files changed, 1291 insertions(+) > create mode 100644 drivers/memory/samsung/exynos5422-dmc.c > > diff --git a/MAINTAINERS b/MAINTAINERS > index a6954776a37e..d57cf4be1e51 100644 > --- a/MAINTAINERS > +++ b/MAINTAINERS > @@ -3470,6 +3470,14 @@ S: Maintained > F: drivers/devfreq/exynos-bus.c > F: Documentation/devicetree/bindings/devfreq/exynos-bus.txt > > +DMC FREQUENCY DRIVER FOR SAMSUNG EXYNOS5422 > +M: Lukasz Luba <l.luba@xxxxxxxxxxxxxxxxxxx> > +L: linux-pm@xxxxxxxxxxxxxxx > +L: linux-samsung-soc@xxxxxxxxxxxxxxx > +S: Maintained > +F: drivers/memory/samsung/exynos5422-dmc.c > +F: Documentation/devicetree/bindings/memory-controllers/exynos5422-dmc.txt > + > BUSLOGIC SCSI DRIVER > M: Khalid Aziz <khalid@xxxxxxxxxxxxxx> > L: linux-scsi@xxxxxxxxxxxxxxx > diff --git a/drivers/memory/samsung/Kconfig b/drivers/memory/samsung/Kconfig > index 79ce7ea58903..c93baa029654 100644 > --- a/drivers/memory/samsung/Kconfig > +++ b/drivers/memory/samsung/Kconfig > @@ -5,6 +5,23 @@ config SAMSUNG_MC > Support for the Memory Controller (MC) devices found on > Samsung Exynos SoCs. > > +config ARM_EXYNOS5422_DMC > + tristate "ARM EXYNOS5422 Dynamic Memory Controller driver" > + depends on ARCH_EXYNOS > + select DDR > + select PM_DEVFREQ > + select DEVFREQ_GOV_SIMPLE_ONDEMAND > + select DEVFREQ_GOV_USERSPACE > + select PM_DEVFREQ_EVENT > + select PM_OPP > + help > + This adds driver for Exynos5422 DMC (Dynamic Memory Controller). > + The driver provides support for Dynamic Voltage and Frequency Scaling in > + DMC and DRAM. It also supports changing timings of DRAM running with > + different frequency. The timings are calculated based on DT memory > + information. > + > + > if SAMSUNG_MC > > config EXYNOS_SROM > diff --git a/drivers/memory/samsung/Makefile b/drivers/memory/samsung/Makefile > index 00587be66211..4f6e4383bab7 100644 > --- a/drivers/memory/samsung/Makefile > +++ b/drivers/memory/samsung/Makefile > @@ -1,2 +1,3 @@ > # SPDX-License-Identifier: GPL-2.0 > +obj-$(CONFIG_ARM_EXYNOS5422_DMC) += exynos5422-dmc.o > obj-$(CONFIG_EXYNOS_SROM) += exynos-srom.o > diff --git a/drivers/memory/samsung/exynos5422-dmc.c b/drivers/memory/samsung/exynos5422-dmc.c > new file mode 100644 > index 000000000000..6fca9e4c45ff > --- /dev/null > +++ b/drivers/memory/samsung/exynos5422-dmc.c > @@ -0,0 +1,1265 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (c) 2019 Samsung Electronics Co., Ltd. > + * Author: Lukasz Luba <l.luba@xxxxxxxxxxxxxxxxxxx> > + */ > + > +#include <linux/clk.h> > +#include <linux/delay.h> > +#include <linux/devfreq.h> > +#include <linux/devfreq-event.h> > +#include <linux/device.h> > +#include <linux/io.h> > +#include <linux/mfd/syscon.h> > +#include <linux/module.h> > +#include <linux/of_device.h> > +#include <linux/pm_opp.h> > +#include <linux/platform_device.h> > +#include <linux/regmap.h> > +#include <linux/regulator/consumer.h> > +#include <linux/slab.h> > +#include <memory/jedec_ddr.h> > +#include "../of_memory.h" > + > +#define EXYNOS5_DREXI_TIMINGAREF (0x0030) > +#define EXYNOS5_DREXI_TIMINGROW0 (0x0034) > +#define EXYNOS5_DREXI_TIMINGDATA0 (0x0038) > +#define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C) > +#define EXYNOS5_DREXI_TIMINGROW1 (0x00E4) > +#define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8) > +#define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC) > +#define CDREX_PAUSE (0x2091c) > +#define CDREX_LPDDR3PHY_CON3 (0x20a20) > +#define EXYNOS5_TIMING_SET_SWI (1UL << 28) You have mixed indentation here (spaces instead of tabs). > +#define USE_MX_MSPLL_TIMINGS (1) > +#define USE_BPLL_TIMINGS (0) > +#define EXYNOS5_AREF_NORMAL (0x2e) > + > +/** > + * struct dmc_opp_table - Operating level desciption > + * > + * Covers frequency and voltage settings of the DMC operating mode. > + */ > +struct dmc_opp_table { > + u32 freq_hz; > + u32 volt_uv; > +}; > + > +/** > + * struct exynos5_dmc - main structure describing DMC device > + * > + * The main structure for the Dynamic Memory Controller which covers clocks, > + * memory regions, HW information, parameters and current operating mode. > + */ > +struct exynos5_dmc { > + struct device *dev; > + struct devfreq *df; > + struct devfreq_simple_ondemand_data gov_data; > + void __iomem *base_drexi0; > + void __iomem *base_drexi1; > + struct regmap *clk_regmap; > + struct mutex lock; > + unsigned long curr_rate; > + unsigned long curr_volt; > + unsigned long bypass_rate; > + struct dmc_opp_table *opp; > + struct dmc_opp_table opp_bypass; > + int opp_count; > + u32 timings_arr_size; > + u32 *timing_row; > + u32 *timing_data; > + u32 *timing_power; > + const struct lpddr3_timings *timings; > + const struct lpddr3_min_tck *min_tck; > + u32 bypass_timing_row; > + u32 bypass_timing_data; > + u32 bypass_timing_power; > + struct regulator *vdd_mif; > + struct clk *fout_spll; > + struct clk *fout_bpll; > + struct clk *mout_spll; > + struct clk *mout_bpll; > + struct clk *mout_mclk_cdrex; > + struct clk *dout_clk2x_phy0; > + struct clk *mout_mx_mspll_ccore; > + struct clk *mx_mspll_ccore_phy; > + struct clk *mout_mx_mspll_ccore_phy; > + struct devfreq_event_dev **counter; > + int num_counters; > +}; > + > +#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \ > + { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end } > + > +#define TIMING_VAL(timing_array, id, t_val) \ > +({ \ > + u32 __val; \ > + __val = t_val << timing_array[id].bit_beg; \ > + __val; \ > +}) > + > +#define TIMING_VAL2REG(timing, t_val) \ > +({ \ > + u32 __val; \ > + __val = t_val << timing->bit_beg; \ > + __val; \ > +}) > + > +#define TIMING_REG2VAL(reg, timing) \ > +({ \ > + u32 __val; \ > + reg <<= (31 - timing->bit_end); \ > + reg >>= (31 - timing->bit_end); \ > + __val = reg >> timing->bit_beg; \ > + __val; \ > +}) > + > +struct timing_reg { > + char *name; > + int bit_beg; > + int bit_end; > + unsigned int val; > +}; > + > +static const struct timing_reg timing_row[] = { > + TIMING_FIELD("tRFC", 24, 31), > + TIMING_FIELD("tRRD", 20, 23), > + TIMING_FIELD("tRP", 16, 19), > + TIMING_FIELD("tRCD", 12, 15), > + TIMING_FIELD("tRC", 6, 11), > + TIMING_FIELD("tRAS", 0, 5), > +}; > + > +static const struct timing_reg timing_data[] = { > + TIMING_FIELD("tWTR", 28, 31), > + TIMING_FIELD("tWR", 24, 27), > + TIMING_FIELD("tRTP", 20, 23), > + TIMING_FIELD("tW2W-C2C", 14, 14), > + TIMING_FIELD("tR2R-C2C", 12, 12), > + TIMING_FIELD("WL", 8, 11), > + TIMING_FIELD("tDQSCK", 4, 7), > + TIMING_FIELD("RL", 0, 3), > +}; > + > +static const struct timing_reg timing_power[] = { > + TIMING_FIELD("tFAW", 26, 31), > + TIMING_FIELD("tXSR", 16, 25), > + TIMING_FIELD("tXP", 8, 15), > + TIMING_FIELD("tCKE", 4, 7), > + TIMING_FIELD("tMRD", 0, 3), > +}; > + > +#define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \ > + ARRAY_SIZE(timing_power)) > + > +static int exynos5_counters_set_event(struct exynos5_dmc *dmc) > +{ > + int i, ret; > + > + for (i = 0; i < dmc->num_counters; i++) { > + if (!dmc->counter[i]) > + continue; > + ret = devfreq_event_set_event(dmc->counter[i]); > + if (ret < 0) > + return ret; > + } > + return 0; > +} > + > +static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc) > +{ > + int i, ret; > + > + for (i = 0; i < dmc->num_counters; i++) { > + if (!dmc->counter[i]) > + continue; > + ret = devfreq_event_enable_edev(dmc->counter[i]); > + if (ret < 0) > + return ret; > + } > + return 0; > +} > + > +static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc) > +{ > + int i, ret; > + > + for (i = 0; i < dmc->num_counters; i++) { > + if (!dmc->counter[i]) > + continue; > + ret = devfreq_event_disable_edev(dmc->counter[i]); > + if (ret < 0) > + return ret; > + } > + return 0; > +} > + > +/** > + * find_target_freq_id() - Finds requested frequency in local DMC configuration > + * @dmc: device for which the information is checked > + * @target_rate: requested frequency in KHz > + * > + * Seeks in the local DMC driver structure for the requested frequency value > + * and returns index or error value. > + */ > +static int find_target_freq_idx(struct exynos5_dmc *dmc, > + unsigned long target_rate) > +{ > + int i; > + > + for (i = dmc->opp_count - 1; i >= 0; i--) > + if (dmc->opp[i].freq_hz <= target_rate) > + return i; > + > + return -EINVAL; > +} > + > +/** > + * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings > + * @dmc: device for which the new settings is going to be applied > + * @set: boolean variable passing set value > + * > + * Changes the register set, which holds timing parameters. > + * There is two register sets: 0 and 1. The register set 0 > + * is used in normal operation when the clock is provided from main PLL. > + * The bank register set 1 is used when the main PLL frequency is going to be > + * changed and the clock is taken from alternative, stable source. > + * This function switches between these banks according to the > + * currently used clock source. > + */ > +static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set) > +{ > + unsigned int reg; > + int ret; > + > + ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, ®); > + > + if (set) > + reg |= EXYNOS5_TIMING_SET_SWI; > + else > + reg &= ~EXYNOS5_TIMING_SET_SWI; > + > + regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg); > +} > + > +/** > + * exynos5_init_freq_table() - Initialized PM OPP framework > + * @dmc: DMC device for which the frequencies are used for OPP init > + * @profile: devfreq device's profile > + * > + * Populate the devfreq device's OPP table based on current frequency, voltage. > + */ > +static int exynos5_init_freq_table(struct exynos5_dmc *dmc, > + struct devfreq_dev_profile *profile) > +{ > + int i, ret; > + int idx; > + unsigned long freq; > + > + ret = dev_pm_opp_of_add_table(dmc->dev); > + if (ret < 0) { > + dev_err(dmc->dev, "Failed to get OPP table\n"); > + return ret; > + } > + > + dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev); > + > + dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count, > + sizeof(struct dmc_opp_table), GFP_KERNEL); > + if (!dmc->opp) > + goto err_opp; > + > + idx = dmc->opp_count - 1; > + for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) { > + struct dev_pm_opp *opp; > + > + opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq); > + if (IS_ERR(opp)) > + goto err_free_tables; > + > + dmc->opp[idx - i].freq_hz = freq; > + dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp); > + > + dev_pm_opp_put(opp); > + } > + > + return 0; > + > +err_free_tables: > + kfree(dmc->opp); > +err_opp: > + dev_pm_opp_of_remove_table(dmc->dev); > + > + return -EINVAL; > +} > + > +/** > + * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings > + * @dmc: device for which the new settings is going to be applied > + * @param: DRAM parameters which passes timing data > + * > + * Low-level function for changing timings for DRAM memory clocking from > + * 'bypass' clock source (fixed frequency @400MHz). > + * It uses timing bank registers set 1. > + */ > +static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc) > +{ > + writel(EXYNOS5_AREF_NORMAL, > + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF); > + > + writel(dmc->bypass_timing_row, > + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1); > + writel(dmc->bypass_timing_row, > + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1); > + writel(dmc->bypass_timing_data, > + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1); > + writel(dmc->bypass_timing_data, > + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1); > + writel(dmc->bypass_timing_power, > + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1); > + writel(dmc->bypass_timing_power, > + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1); > +} > + > +/** > + * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings > + * @dmc: device for which the new settings is going to be applied > + * @target_rate: target frequency of the DMC > + * > + * Low-level function for changing timings for DRAM memory operating from main > + * clock source (BPLL), which can have different frequencies. Thus, each > + * frequency must have corresponding timings register values in order to keep > + * the needed delays. > + * It uses timing bank registers set 0. > + */ > +static int exynos5_dram_change_timings(struct exynos5_dmc *dmc, > + unsigned long target_rate) > +{ > + int idx; > + > + for (idx = dmc->opp_count - 1; idx >= 0; idx--) > + if (dmc->opp[idx].freq_hz <= target_rate) > + break; > + > + if (idx < 0) > + return -EINVAL; > + > + writel(EXYNOS5_AREF_NORMAL, > + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF); > + > + writel(dmc->timing_row[idx], > + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0); > + writel(dmc->timing_row[idx], > + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0); > + writel(dmc->timing_data[idx], > + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0); > + writel(dmc->timing_data[idx], > + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0); > + writel(dmc->timing_power[idx], > + dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0); > + writel(dmc->timing_power[idx], > + dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0); > + > + return 0; > +} > + > +/** > + * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC > + * @dmc: device for which it is going to be set > + * @target_volt: new voltage which is chosen to be final > + * > + * Function tries to align voltage to the safe level for 'normal' mode. > + * It checks the need of higher voltage and changes the value. The target > + * voltage might be lower that currently set and still the system will be > + * stable. > + */ > +static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc, > + unsigned long target_volt) > +{ > + int ret = 0; > + > + if (dmc->curr_volt > target_volt) { A nit: I would prefer to use the same style as in exynos5_dmc_align_bypass_voltage(), so "return 0" after "if", to have consistent pattern easily understand which function bumps and which lowers the voltage. > + ret = regulator_set_voltage(dmc->vdd_mif, target_volt, > + target_volt); > + if (!ret) > + dmc->curr_volt = target_volt; > + } > + > + return ret; > +} > + > +/** > + * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC > + * @dmc: device for which it is going to be set > + * @target_volt: new voltage which is chosen to be final > + * > + * Function tries to align voltage to the safe level for the 'bypass' mode. > + * It checks the need of higher voltage and changes the value. > + * The target voltage must not be less than currently needed, because > + * for current frequency the device might become unstable. > + */ > +static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc, > + unsigned long target_volt) > +{ > + int ret = 0; > + unsigned long bypass_volt = dmc->opp_bypass.volt_uv; > + > + target_volt = max(bypass_volt, target_volt); > + > + if (dmc->curr_volt >= target_volt) > + return 0; > + > + ret = regulator_set_voltage(dmc->vdd_mif, target_volt, > + target_volt); > + if (!ret) > + dmc->curr_volt = target_volt; > + > + return ret; > +} > + > +/** > + * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings > + * @dmc: device for which it is going to be set > + * @target_rate: new frequency which is chosen to be final > + * > + * Function changes the DRAM timings for the temporary 'bypass' mode. > + */ > +static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc, > + unsigned long target_rate) > +{ > + int idx = find_target_freq_idx(dmc, target_rate); > + > + if (idx < 0) > + return -EINVAL; > + > + exynos5_set_bypass_dram_timings(dmc); > + > + return 0; > +} > + > +/** > + * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock > + * @dmc: DMC device for which the switching is going to happen > + * @target_rate: new frequency which is going to be set as a final > + * @target_volt: new voltage which is going to be set as a final > + * > + * Function configures DMC and clocks for operating in temporary 'bypass' mode. > + * This mode is used only temporary but if required, changes voltage and timings > + * for DRAM chips. It switches the main clock to stable clock source for the > + * period of the main PLL reconfiguration. > + */ > +static int exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc, > + unsigned long target_rate, > + unsigned long target_volt) > +{ > + int ret; > + > + /* > + * Having higher voltage for a particular frequency does not harm > + * the chip. Use it for the temporary frequency change when one > + * voltage manipulation might be avoided. > + */ > + ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt); > + if (ret) > + return ret; > + > + /* > + * Longer delays for DRAM does not cause crash, the opposite does. > + */ > + ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate); > + if (ret) > + return ret; > + > + /* > + * Delays are long enough, so use them for the new coming clock. > + */ > + exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS); > + > + return ret; > +} > + > +/** > + * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC > + * using safe procedure > + * @dmc: device for which the frequency is going to be changed > + * @target_rate: requested new frequency > + * @target_volt: requested voltage which corresponds to the new frequency > + * > + * The DMC frequency change procedure requires a few steps. > + * The main requirement is to change the clock source in the clk mux > + * for the time of main clock PLL locking. The assumption is that the > + * alternative clock source set as parent is stable. > + * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass' > + * clock. This requires alignment in DRAM timing parameters for the new > + * T-period. There is two bank sets for keeping DRAM > + * timings: set 0 and set 1. The set 0 is used when main clock source is > + * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between > + * the two bank sets is part of the process. > + * The voltage must also be aligned to the minimum required level. There is > + * this intermediate step with switching to 'bypass' parent clock source. > + * if the old voltage is lower, it requires an increase of the voltage level. > + * The complexity of the voltage manipulation is hidden in low level function. > + * In this function there is last alignment of the voltage level at the end. > + */ > +static int > +exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc, > + unsigned long target_rate, > + unsigned long target_volt) > +{ > + int ret; > + > + ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate, > + target_volt); > + if (ret) > + return ret; > + > + /* > + * Voltage is set at least to a level needed for this frequency, > + * so switching clock source is safe now. > + */ > + clk_prepare_enable(dmc->fout_spll); > + clk_prepare_enable(dmc->mout_spll); > + clk_prepare_enable(dmc->mout_mx_mspll_ccore); > + > + ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore); > + if (ret) What about error path and disabling clocks? > + return ret; > + > + /* > + * We are safe to increase the timings for current bypass frequency. > + * Thanks to this the settings we be ready for the upcoming clock source > + * change. > + */ > + exynos5_dram_change_timings(dmc, target_rate); > + > + clk_set_rate(dmc->fout_bpll, target_rate); > + > + exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS); > + > + ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll); > + if (ret) Ditto. > + return ret; > + > + clk_disable_unprepare(dmc->mout_mx_mspll_ccore); > + clk_disable_unprepare(dmc->mout_spll); > + clk_disable_unprepare(dmc->fout_spll); > + > + /* > + * Make sure if the voltage is not from 'bypass' settings and align to > + * the right level for power efficiency. > + */ > + ret = exynos5_dmc_align_target_voltage(dmc, target_volt); > + > + return ret; > +} > + > +/** > + * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP > + * table. > + * @dmc: device for which the frequency is going to be changed > + * @freq: requested frequency in KHz > + * @target_rate: returned frequency which is the same or lower than > + * requested > + * @target_volt: returned voltage which corresponds to the returned > + * frequency > + * > + * Function gets requested frequency and checks OPP framework for needed > + * frequency and voltage. It populates the values 'target_rate' and > + * 'target_volt' or returns error value when OPP framework fails. > + */ > +static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc, > + unsigned long *freq, > + unsigned long *target_rate, > + unsigned long *target_volt, u32 flags) > +{ > + struct dev_pm_opp *opp; > + > + opp = devfreq_recommended_opp(dmc->dev, freq, flags); > + if (IS_ERR(opp)) > + return PTR_ERR(opp); > + > + *target_rate = dev_pm_opp_get_freq(opp); > + *target_volt = dev_pm_opp_get_voltage(opp); > + dev_pm_opp_put(opp); > + > + return 0; > +} > + > +/** > + * exynos5_dmc_target() - Function responsible for changing frequency of DMC > + * @dev: device for which the frequency is going to be changed > + * @freq: requested frequency in KHz > + * @flags: flags provided for this frequency change request > + * > + * An entry function provided to the devfreq framework which provides frequency > + * change of the DMC. The function gets the possible rate from OPP table based > + * on requested frequency. It calls the next function responsible for the > + * frequency and voltage change. In case of failure, does not set 'curr_rate' > + * and returns error value to the framework. > + */ > +static int exynos5_dmc_target(struct device *dev, unsigned long *freq, > + u32 flags) > +{ > + struct exynos5_dmc *dmc = dev_get_drvdata(dev); > + unsigned long target_rate = 0; > + unsigned long target_volt = 0; > + int ret; > + > + ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt, > + flags); > + > + if (ret) > + return ret; > + > + if (target_rate == dmc->curr_rate) > + return 0; > + > + mutex_lock(&dmc->lock); > + > + ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt); > + > + if (ret) { > + mutex_unlock(&dmc->lock); > + return ret; > + } > + > + dmc->curr_rate = target_rate; > + > + mutex_unlock(&dmc->lock); > + return 0; > +} > + > +/** > + * exynos5_counters_get() - Gets the performance counters values. > + * @dmc: device for which the counters are going to be checked > + * @load_count: variable which is populated with counter value > + * @total_count: variable which is used as 'wall clock' reference > + * > + * Function which provides performance counters values. It sums up counters for > + * two DMC channels. The 'total_count' is used as a reference and max value. > + * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%]. > + */ > +static int exynos5_counters_get(struct exynos5_dmc *dmc, > + unsigned long *load_count, > + unsigned long *total_count) > +{ > + unsigned long total = 0; > + struct devfreq_event_data event; > + int ret, i; > + > + *load_count = 0; > + > + /* Take into account only read+write counters, but stop all */ > + for (i = 0; i < dmc->num_counters; i++) { > + if (!dmc->counter[i]) > + continue; > + > + ret = devfreq_event_get_event(dmc->counter[i], &event); > + if (ret < 0) > + return ret; > + > + *load_count += event.load_count; > + > + if (total < event.total_count) > + total = event.total_count; > + } > + > + *total_count = total; > + > + return 0; > +} > + > +/** > + * exynos5_dmc_get_status() - Read current DMC performance statistics. > + * @dev: device for which the statistics are requested > + * @stat: structure which has statistic fields > + * > + * Function reads the DMC performance counters and calculates 'busy_time' > + * and 'total_time'. To protect from overflow, the values are shifted right > + * by 10. After read out the counters are setup to count again. > + */ > +static int exynos5_dmc_get_status(struct device *dev, > + struct devfreq_dev_status *stat) > +{ > + struct exynos5_dmc *dmc = dev_get_drvdata(dev); > + unsigned long load, total; > + int ret; > + > + ret = exynos5_counters_get(dmc, &load, &total); > + if (ret < 0) > + return -EINVAL; > + > + /* To protect from overflow in calculation ratios, divide by 1024 */ > + stat->busy_time = load >> 10; > + stat->total_time = total >> 10; > + > + ret = exynos5_counters_set_event(dmc); > + if (ret < 0) { > + dev_err(dev, "could not set event counter\n"); > + return ret; > + } > + > + return 0; > +} > + > +/** > + * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency > + * @dev: device for which the framework checks operating frequency > + * @freq: returned frequency value > + * > + * It returns the currently used frequency of the DMC. The real operating > + * frequency might be lower when the clock source value could not be divided > + * to the requested value. > + */ > +static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq) > +{ > + struct exynos5_dmc *dmc = dev_get_drvdata(dev); > + > + mutex_lock(&dmc->lock); > + *freq = dmc->curr_rate; > + mutex_unlock(&dmc->lock); > + > + return 0; > +} > + > +/** > + * exynos5_dmc_df_profile - Devfreq governor's profile structure > + * > + * It provides to the devfreq framework needed functions and polling period. > + */ > +static struct devfreq_dev_profile exynos5_dmc_df_profile = { > + .polling_ms = 500, > + .target = exynos5_dmc_target, > + .get_dev_status = exynos5_dmc_get_status, > + .get_cur_freq = exynos5_dmc_get_cur_freq, > +}; > + > +/** > + * exynos5_dmc_align_initial_frequency() - Align initial frequency value > + * @dmc: device for which the frequency is going to be set > + * @bootloader_init_freq: initial frequency set by the bootloader in KHz > + * > + * The initial bootloader frequency, which is present during boot, might be > + * different that supported frequency values in the driver. It is possible > + * due to different PLL settings or used PLL as a source. > + * This function provides the 'initial_freq' for the devfreq framework > + * statistics engine which supports only registered values. Thus, some alignment > + * must be made. > + */ > +unsigned long > +exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc, > + unsigned long bootloader_init_freq) > +{ > + unsigned long aligned_freq; > + int idx; > + > + idx = find_target_freq_idx(dmc, bootloader_init_freq); > + if (idx >= 0) > + aligned_freq = dmc->opp[idx].freq_hz; > + else > + aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz; > + > + return aligned_freq; > +} > + > +/** > + * create_timings_aligned() - Create register values and align with standard > + * @dmc: device for which the frequency is going to be set > + * @idx: speed bin in the OPP table > + * @clk_period_ps: the period of the clock, known as tCK > + * > + * The function calculates timings and creates a register value ready for > + * a frequency transition. The register contains a few timings. They are > + * shifted by a known offset. The timing value is calculated based on memory > + * specyfication: minimal time required and minimal cycles required. > + */ > +static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row, > + u32 *reg_timing_data, u32 *reg_timing_power, > + u32 clk_period_ps) > +{ > + u32 val; > + const struct timing_reg *reg; > + > + if (clk_period_ps == 0) > + return -EINVAL; > + > + *reg_timing_row = 0; > + *reg_timing_data = 0; > + *reg_timing_power = 0; > + > + val = dmc->timings->tRFC / clk_period_ps; > + val += dmc->timings->tRFC % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tRFC); > + reg = &timing_row[0]; > + *reg_timing_row |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tRRD / clk_period_ps; > + val += dmc->timings->tRRD % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tRRD); > + reg = &timing_row[1]; > + *reg_timing_row |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tRPab / clk_period_ps; > + val += dmc->timings->tRPab % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tRPab); > + reg = &timing_row[2]; > + *reg_timing_row |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tRCD / clk_period_ps; > + val += dmc->timings->tRCD % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tRCD); > + reg = &timing_row[3]; > + *reg_timing_row |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tRC / clk_period_ps; > + val += dmc->timings->tRC % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tRC); > + reg = &timing_row[4]; > + *reg_timing_row |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tRAS / clk_period_ps; > + val += dmc->timings->tRAS % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tRAS); > + reg = &timing_row[5]; > + *reg_timing_row |= TIMING_VAL2REG(reg, val); > + > + /* data related timings */ > + val = dmc->timings->tWTR / clk_period_ps; > + val += dmc->timings->tWTR % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tWTR); > + reg = &timing_data[0]; > + *reg_timing_data |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tWR / clk_period_ps; > + val += dmc->timings->tWR % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tWR); > + reg = &timing_data[1]; > + *reg_timing_data |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tRTP / clk_period_ps; > + val += dmc->timings->tRTP % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tRTP); > + reg = &timing_data[2]; > + *reg_timing_data |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tW2W_C2C / clk_period_ps; > + val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tW2W_C2C); > + reg = &timing_data[3]; > + *reg_timing_data |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tR2R_C2C / clk_period_ps; > + val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tR2R_C2C); > + reg = &timing_data[4]; > + *reg_timing_data |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tWL / clk_period_ps; > + val += dmc->timings->tWL % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tWL); > + reg = &timing_data[5]; > + *reg_timing_data |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tDQSCK / clk_period_ps; > + val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tDQSCK); > + reg = &timing_data[6]; > + *reg_timing_data |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tRL / clk_period_ps; > + val += dmc->timings->tRL % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tRL); > + reg = &timing_data[7]; > + *reg_timing_data |= TIMING_VAL2REG(reg, val); > + > + /* power related timings */ > + val = dmc->timings->tFAW / clk_period_ps; > + val += dmc->timings->tFAW % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tXP); > + reg = &timing_power[0]; > + *reg_timing_power |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tXSR / clk_period_ps; > + val += dmc->timings->tXSR % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tXSR); > + reg = &timing_power[1]; > + *reg_timing_power |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tXP / clk_period_ps; > + val += dmc->timings->tXP % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tXP); > + reg = &timing_power[2]; > + *reg_timing_power |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tCKE / clk_period_ps; > + val += dmc->timings->tCKE % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tCKE); > + reg = &timing_power[3]; > + *reg_timing_power |= TIMING_VAL2REG(reg, val); > + > + val = dmc->timings->tMRD / clk_period_ps; > + val += dmc->timings->tMRD % clk_period_ps ? 1 : 0; > + val = max(val, dmc->min_tck->tMRD); > + reg = &timing_power[4]; > + *reg_timing_power |= TIMING_VAL2REG(reg, val); > + > + return 0; > +} > + > +/** > + * of_get_dram_timings() - helper function for parsing DT settings for DRAM > + * @dmc: device for which the frequency is going to be set > + * > + * The function parses DT entries with DRAM information. > + */ > +static int of_get_dram_timings(struct exynos5_dmc *dmc) > +{ > + int ret = 0; > + int idx; > + struct device_node *np_ddr; > + u32 freq_mhz, clk_period_ps; > + > + np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0); > + if (!np_ddr) { > + dev_warn(dmc->dev, "could not find 'device-handle' in DT\n"); > + return -EINVAL; > + } > + > + dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT, > + sizeof(u32), GFP_KERNEL); > + if (!dmc->timing_row) > + return -ENOMEM; > + > + dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT, > + sizeof(u32), GFP_KERNEL); > + if (!dmc->timing_data) > + return -ENOMEM; > + > + dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT, > + sizeof(u32), GFP_KERNEL); > + if (!dmc->timing_power) > + return -ENOMEM; > + > + dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev, > + DDR_TYPE_LPDDR3, > + &dmc->timings_arr_size); > + if (!dmc->timings) { > + of_node_put(np_ddr); > + dev_warn(dmc->dev, "could not get timings from DT\n"); > + return -EINVAL; > + } > + > + dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev); > + if (!dmc->min_tck) { > + of_node_put(np_ddr); > + dev_warn(dmc->dev, "could not get tck from DT\n"); > + return -EINVAL; > + } > + > + /* Sorted array of OPPs with frequency ascending */ > + for (idx = 0; idx < dmc->opp_count; idx++) { > + freq_mhz = dmc->opp[idx].freq_hz / 1000000; > + clk_period_ps = 1000000 / freq_mhz; > + > + ret = create_timings_aligned(dmc, &dmc->timing_row[idx], > + &dmc->timing_data[idx], > + &dmc->timing_power[idx], > + clk_period_ps); > + } > + > + of_node_put(np_ddr); > + > + /* Take the highest frequency's timings as 'bypass' */ > + dmc->bypass_timing_row = dmc->timing_row[idx - 1]; > + dmc->bypass_timing_data = dmc->timing_data[idx - 1]; > + dmc->bypass_timing_power = dmc->timing_power[idx - 1]; > + > + return ret; > +} > + > +/** > + * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation. > + * @dmc: DMC structure containing needed fields > + * > + * Get the needed clocks defined in DT device, enable and set the right parents. > + * Read current frequency and initialize the initial rate for governor. > + */ > +static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc) > +{ > + int ret; > + unsigned long target_volt = 0; > + unsigned long target_rate = 0; > + > + dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll"); > + if (IS_ERR(dmc->fout_spll)) > + return PTR_ERR(dmc->fout_spll); > + > + dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll"); > + if (IS_ERR(dmc->fout_bpll)) > + return PTR_ERR(dmc->fout_bpll); > + > + dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex"); > + if (IS_ERR(dmc->mout_mclk_cdrex)) > + return PTR_ERR(dmc->mout_mclk_cdrex); You are not enabling this clock. It is divider so it is fine for him but what about its parents? How can you guarantee that parents are enabled? > + > + dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll"); > + if (IS_ERR(dmc->mout_bpll)) > + return PTR_ERR(dmc->mout_bpll); > + > + dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev, > + "mout_mx_mspll_ccore"); > + if (IS_ERR(dmc->mout_mx_mspll_ccore)) > + return PTR_ERR(dmc->mout_mx_mspll_ccore); > + > + dmc->dout_clk2x_phy0 = devm_clk_get(dmc->dev, "dout_clk2x_phy0"); > + if (IS_ERR(dmc->dout_clk2x_phy0)) > + return PTR_ERR(dmc->dout_clk2x_phy0); This looks like not used. > + > + dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2"); > + if (IS_ERR(dmc->mout_spll)) { > + dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll"); > + if (IS_ERR(dmc->mout_spll)) > + return PTR_ERR(dmc->mout_spll); > + } > + > + /* > + * Convert frequency to KHz values and set it for the governor. > + */ > + dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex); > + dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate); > + exynos5_dmc_df_profile.initial_freq = dmc->curr_rate; > + > + ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate, > + &target_volt, 0); > + if (ret) > + return ret; > + > + dmc->curr_volt = target_volt; > + > + clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll); > + > + dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore); > + > + clk_prepare_enable(dmc->fout_bpll); > + clk_prepare_enable(dmc->mout_bpll); > + > + return 0; > +} > + > +/** > + * exynos5_performance_counters_init() - Initializes performance DMC's counters > + * @dmc: DMC for which it does the setup > + * > + * Initialization of performance counters in DMC for estimating usage. > + * The counter's values are used for calculation of a memory bandwidth and based > + * on that the governor changes the frequency. > + * The counters are not used when the governor is GOVERNOR_USERSPACE. > + */ > +static int exynos5_performance_counters_init(struct exynos5_dmc *dmc) > +{ > + int counters_size; > + int ret, i; > + > + dmc->num_counters = devfreq_event_get_edev_count(dmc->dev); > + if (dmc->num_counters < 0) { > + dev_err(dmc->dev, "could not get devfreq-event counters\n"); > + return dmc->num_counters; > + } > + > + counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters; > + dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL); > + if (!dmc->counter) > + return -ENOMEM; > + > + for (i = 0; i < dmc->num_counters; i++) { > + dmc->counter[i] = > + devfreq_event_get_edev_by_phandle(dmc->dev, i); > + if (IS_ERR_OR_NULL(dmc->counter[i])) > + return -EPROBE_DEFER; > + } > + > + ret = exynos5_counters_enable_edev(dmc); > + if (ret < 0) { > + dev_err(dmc->dev, "could not enable event counter\n"); > + return ret; > + } > + > + ret = exynos5_counters_set_event(dmc); > + if (ret < 0) { > + dev_err(dmc->dev, "counld not set event counter\n"); > + return ret; > + } > + > + return 0; > +} > + > +/** > + * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC > + * @dmc: device which is used for changing this feature > + * @set: a boolean state passing enable/disable request > + * > + * There is a need of pausing DREX DMC when divider or MUX in clock tree > + * changes its configuration. In such situation access to the memory is blocked > + * in DMC automatically. This feature is used when clock frequency change > + * request appears and touches clock tree. > + */ > +static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc) > +{ > + unsigned int val; > + int ret; > + > + ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val); > + if (ret) > + return ret; > + > + val |= 1UL; > + regmap_write(dmc->clk_regmap, CDREX_PAUSE, val); > + > + return 0; > +} > + > +/** > + * exynos5_dmc_probe() - Probe function for the DMC driver > + * @pdev: platform device for which the driver is going to be initialized > + * > + * Initialize basic components: clocks, regulators, performance counters, etc. > + * Read out product version and based on the information setup > + * internal structures for the controller (frequency and voltage) and for DRAM > + * memory parameters: timings for each operating frequency. > + * Register new devfreq device for controlling DVFS of the DMC. > + */ > +static int exynos5_dmc_probe(struct platform_device *pdev) > +{ > + int ret = 0; > + struct exynos5_dmc *dmc; A nit: put un-initialized variables close to each other, it brings some order. > + struct device *dev = &pdev->dev; > + struct device_node *np = dev->of_node; > + struct resource *res; > + > + dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL); > + if (!dmc) > + return -ENOMEM; > + > + mutex_init(&dmc->lock); > + > + dmc->dev = dev; > + platform_set_drvdata(pdev, dmc); > + > + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); > + dmc->base_drexi0 = devm_ioremap_resource(dev, res); > + if (IS_ERR(dmc->base_drexi0)) > + return PTR_ERR(dmc->base_drexi0); > + > + res = platform_get_resource(pdev, IORESOURCE_MEM, 1); > + dmc->base_drexi1 = devm_ioremap_resource(dev, res); > + if (IS_ERR(dmc->base_drexi1)) > + return PTR_ERR(dmc->base_drexi1); > + > + dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np, > + "samsung,syscon-clk"); > + if (IS_ERR(dmc->clk_regmap)) > + return PTR_ERR(dmc->clk_regmap); > + > + ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile); > + if (ret) { > + dev_warn(dev, "couldn't initialize frequency settings\n"); > + return ret; > + } > + > + dmc->vdd_mif = devm_regulator_get(dev, "vdd"); > + if (IS_ERR(dmc->vdd_mif)) { > + ret = PTR_ERR(dmc->vdd_mif); > + return ret; > + } > + > + ret = exynos5_dmc_init_clks(dmc); > + if (ret) > + return ret; > + > + ret = of_get_dram_timings(dmc); > + if (ret) { > + dev_warn(dev, "couldn't initialize timings settings\n"); > + return ret; > + } > + > + ret = exynos5_performance_counters_init(dmc); > + if (ret) { > + dev_warn(dev, "couldn't probe performance counters\n"); > + goto remove_clocks; > + } > + > + ret = exynos5_dmc_set_pause_on_switching(dmc); > + if (ret) { > + dev_warn(dev, "couldn't get access to PAUSE register\n"); > + goto remove_clocks; > + } > + > + /* > + * Setup default thresholds for the devfreq governor. > + * The values are chosen based on experiments. > + */ > + dmc->gov_data.upthreshold = 30; > + dmc->gov_data.downdifferential = 5; > + > + dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile, > + DEVFREQ_GOV_USERSPACE, > + &dmc->gov_data); > + > + if (IS_ERR(dmc->df)) { > + ret = PTR_ERR(dmc->df); > + goto err_devfreq_add; > + } > + > + dev_info(dev, "DMC initialized\n"); > + > + return 0; > + > +err_devfreq_add: > + exynos5_counters_disable_edev(dmc); > +remove_clocks: > + clk_disable_unprepare(dmc->mout_spll); > + clk_disable_unprepare(dmc->fout_spll); This looks unbalanced. Where was the enable of fout_spll? This is weird - some clocks are disabled in this error path but not in remove(). Some the opposite - not disabled on error path. Best regards, Krzysztof