Re: [PATCH v6 1/7] Documentation: DT: arm: add support for sockets defining package boundaries

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 5/29/19 5:13 PM, Atish Patra wrote:
From: Sudeep Holla <sudeep.holla@xxxxxxx>

The current ARM DT topology description provides the operating system
with a topological view of the system that is based on leaf nodes
representing either cores or threads (in an SMT system) and a
hierarchical set of cluster nodes that creates a hierarchical topology
view of how those cores and threads are grouped.

However this hierarchical representation of clusters does not allow to
describe what topology level actually represents the physical package or
the socket boundary, which is a key piece of information to be used by
an operating system to optimize resource allocation and scheduling.


Are physical package descriptions really needed? What does "socket" imply that a higher layer "cluster" node grouping does not? It doesn't imply a different NUMA distance and the definition of "socket" is already not well defined, is a dual chiplet processor not just a fancy dual "socket" or are dual "sockets" on a server board "slotket" card, will we need new names for those too..

Andrew

Lets add a new "socket" node type in the cpu-map node to describe the
same.

Signed-off-by: Sudeep Holla <sudeep.holla@xxxxxxx>
Reviewed-by: Rob Herring <robh@xxxxxxxxxx>
---
  .../devicetree/bindings/arm/topology.txt      | 52 ++++++++++++++-----
  1 file changed, 39 insertions(+), 13 deletions(-)

diff --git a/Documentation/devicetree/bindings/arm/topology.txt b/Documentation/devicetree/bindings/arm/topology.txt
index b0d80c0fb265..3b8febb46dad 100644
--- a/Documentation/devicetree/bindings/arm/topology.txt
+++ b/Documentation/devicetree/bindings/arm/topology.txt
@@ -9,6 +9,7 @@ ARM topology binding description
  In an ARM system, the hierarchy of CPUs is defined through three entities that
  are used to describe the layout of physical CPUs in the system:
+- socket
  - cluster
  - core
  - thread
@@ -63,21 +64,23 @@ nodes are listed.
The cpu-map node's child nodes can be: - - one or more cluster nodes
+	- one or more cluster nodes or
+	- one or more socket nodes in a multi-socket system
Any other configuration is considered invalid. -The cpu-map node can only contain three types of child nodes:
+The cpu-map node can only contain 4 types of child nodes:
+- socket node
  - cluster node
  - core node
  - thread node
whose bindings are described in paragraph 3. -The nodes describing the CPU topology (cluster/core/thread) can only
-be defined within the cpu-map node and every core/thread in the system
-must be defined within the topology.  Any other configuration is
+The nodes describing the CPU topology (socket/cluster/core/thread) can
+only be defined within the cpu-map node and every core/thread in the
+system must be defined within the topology.  Any other configuration is
  invalid and therefore must be ignored.
===========================================
@@ -85,26 +88,44 @@ invalid and therefore must be ignored.
  ===========================================
cpu-map child nodes must follow a naming convention where the node name
-must be "clusterN", "coreN", "threadN" depending on the node type (ie
-cluster/core/thread) (where N = {0, 1, ...} is the node number; nodes which
-are siblings within a single common parent node must be given a unique and
+must be "socketN", "clusterN", "coreN", "threadN" depending on the node type
+(ie socket/cluster/core/thread) (where N = {0, 1, ...} is the node number; nodes
+which are siblings within a single common parent node must be given a unique and
  sequential N value, starting from 0).
  cpu-map child nodes which do not share a common parent node can have the same
  name (ie same number N as other cpu-map child nodes at different device tree
  levels) since name uniqueness will be guaranteed by the device tree hierarchy.
===========================================
-3 - cluster/core/thread node bindings
+3 - socket/cluster/core/thread node bindings
  ===========================================
-Bindings for cluster/cpu/thread nodes are defined as follows:
+Bindings for socket/cluster/cpu/thread nodes are defined as follows:
+
+- socket node
+
+	 Description: must be declared within a cpu-map node, one node
+		      per physical socket in the system. A system can
+		      contain single or multiple physical socket.
+		      The association of sockets and NUMA nodes is beyond
+		      the scope of this bindings, please refer [2] for
+		      NUMA bindings.
+
+	This node is optional for a single socket system.
+
+	The socket node name must be "socketN" as described in 2.1 above.
+	A socket node can not be a leaf node.
+
+	A socket node's child nodes must be one or more cluster nodes.
+
+	Any other configuration is considered invalid.
- cluster node Description: must be declared within a cpu-map node, one node
  		      per cluster. A system can contain several layers of
-		      clustering and cluster nodes can be contained in parent
-		      cluster nodes.
+		      clustering within a single physical socket and cluster
+		      nodes can be contained in parent cluster nodes.
The cluster node name must be "clusterN" as described in 2.1 above.
  	A cluster node can not be a leaf node.
@@ -164,13 +185,15 @@ Bindings for cluster/cpu/thread nodes are defined as follows:
  4 - Example dts
  ===========================================
-Example 1 (ARM 64-bit, 16-cpu system, two clusters of clusters):
+Example 1 (ARM 64-bit, 16-cpu system, two clusters of clusters in a single
+physical socket):
cpus {
  	#size-cells = <0>;
  	#address-cells = <2>;
cpu-map {
+		socket0 {
  			cluster0 {
  				cluster0 {
  					core0 {
@@ -253,6 +276,7 @@ cpus {
  				};
  			};
  		};
+	};
CPU0: cpu@0 {
  		device_type = "cpu";
@@ -473,3 +497,5 @@ cpus {
  ===============================================================================
  [1] ARM Linux kernel documentation
      Documentation/devicetree/bindings/arm/cpus.yaml
+[2] Devicetree NUMA binding description
+    Documentation/devicetree/bindings/numa.txt




[Index of Archives]     [Device Tree Compilter]     [Device Tree Spec]     [Linux Driver Backports]     [Video for Linux]     [Linux USB Devel]     [Linux PCI Devel]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [XFree86]     [Yosemite Backpacking]


  Powered by Linux