Quoting Mike Looijmans (2019-04-24 02:00:38) > Adds a driver for the Si5341 and Si5340 chips. The driver does not fully > support all features of these chips, but allows the chip to be used > without any support from the "clockbuilder pro" software. > > If the chip is preprogrammed, that is, you bought one with some defaults > burned in, or you programmed the NVM in some way, the driver will just > take over the current settings and only change them on demand. Otherwise > the input must a fixed XTAL in its most basic configuration (no must be > predividers, no feedback, etc.). > > The driver supports dynamic changes of multisynth, output dividers and > enabling or powering down outputs and multisynths. > > Signed-off-by: Mike Looijmans <mike.looijmans@xxxxxxxx> > --- > diff --git a/drivers/clk/clk-si5341.c b/drivers/clk/clk-si5341.c > new file mode 100644 > index 000000000000..0d636658853b > --- /dev/null > +++ b/drivers/clk/clk-si5341.c > @@ -0,0 +1,1452 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Driver for Silicon Labs Si5341/Si5340 Clock generator > + * Copyright (C) 2019 Topic Embedded Products > + * Author: Mike Looijmans <mike.looijmans@xxxxxxxx> > + */ > + > +#include <linux/clk.h> > +#include <linux/clk-provider.h> > +#include <linux/delay.h> > +#include <linux/gcd.h> > +#include <linux/math64.h> > +#include <linux/i2c.h> > +#include <linux/module.h> > +#include <linux/regmap.h> > +#include <linux/slab.h> > + > +#define SI5341_MAX_NUM_OUTPUTS 10 > +#define SI5340_MAX_NUM_OUTPUTS 4 > + > +#define SI5341_NUM_SYNTH 5 > +#define SI5340_NUM_SYNTH 4 > + > +/* Range of the synthesizer fractional divider */ > +#define SI5341_SYNTH_N_MIN 10 > +#define SI5341_SYNTH_N_MAX 4095 > + > +/* The chip can get its input clock from 3 input pins or an XTAL */ > + > +/* There is one PLL running at 13500–14256 MHz */ > +#define SI5341_PLL_VCO_MIN 13500000000ull > +#define SI5341_PLL_VCO_MAX 14256000000ull > + > +/* The 5 frequency synthesizers obtain their input from the PLL */ > +struct clk_si5341_synth { > + struct clk_hw hw; > + struct clk_si5341 *data; > + u8 index; > +}; > +#define to_clk_si5341_synth(_hw) \ > + container_of(_hw, struct clk_si5341_synth, hw) > + > +/* The output stages can be connected to any synth (full mux) */ > +struct clk_si5341_output { > + struct clk_hw hw; > + struct clk_si5341 *data; > + u8 index; > +}; > +#define to_clk_si5341_output(_hw) \ > + container_of(_hw, struct clk_si5341_output, hw) > + > +struct clk_si5341 { > + struct clk_hw hw; > + struct regmap *regmap; > + struct i2c_client *i2c_client; > + struct clk_si5341_synth synth[SI5341_NUM_SYNTH]; > + struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS]; > + struct clk *pxtal; > + const char *pxtal_name; > + const u16 *reg_output_offset; > + const u16 *reg_rdiv_offset; > + u64 freq_vco; /* 13500–14256 MHz */ > + u8 num_outputs; > + u8 num_synth; > +}; > +#define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw) > + > +struct clk_si5341_output_config { > + u8 source_index; > + u8 out_format_drv_bits; > + u8 out_cm_ampl_bits; > + bool synth_master; > + bool always_on; > + u32 synth_frequency; > + u32 clock_frequency; > +}; > + > +#define SI5341_PAGE 0x0001 > +#define SI5341_PN_BASE 0x0002 > +#define SI5341_DEVICE_REV 0x0005 > +#define SI5341_STATUS 0x000C > +#define SI5341_SOFT_RST 0x001C > + > +/* Input dividers (48-bit) */ > +#define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10)) > +#define SI5341_IN_PSET(x) (0x020E + ((x) * 10)) > + > +/* PLL configuration */ > +#define SI5341_PLL_M_NUM 0x0235 > +#define SI5341_PLL_M_DEN 0x023B > + > +/* Output configuration */ > +#define SI5341_OUT_CONFIG(output) \ > + ((output)->data->reg_output_offset[(output)->index]) > +#define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1) > +#define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2) > +#define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3) > +#define SI5341_OUT_R_REG(output) \ > + ((output)->data->reg_rdiv_offset[(output)->index]) > + > +/* Synthesize N divider */ > +#define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11)) > +#define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11)) > +#define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11)) > + > +/* Synthesizer output enable, phase bypass, power mode */ > +#define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03 > +#define SI5341_SYNTH_N_PIBYP 0x0A04 > +#define SI5341_SYNTH_N_PDNB 0x0A05 > +#define SI5341_SYNTH_N_CLK_DIS 0x0B4A > + > +/* SI5341_OUT_CONFIG bits */ > +#define SI5341_OUT_CFG_PDN BIT(0) > +#define SI5341_OUT_CFG_OE BIT(1) > +#define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2) > + > +/* Static configuration (to be moved to firmware) */ > +struct si5341_reg_default { > + u16 address; > + u8 value; > +}; > + > +/* Output configuration registers 0..9 are not quite logically organized */ SUPER SIGH!!!!!! > +static const u16 si5341_reg_output_offset[] = { > + 0x0108, > + 0x010D, > + 0x0112, > + 0x0117, > + 0x011C, > + 0x0121, > + 0x0126, > + 0x012B, > + 0x0130, > + 0x013A, > +}; > +static const u16 si5340_reg_output_offset[] = { > + 0x0112, > + 0x0117, > + 0x0126, > + 0x012B, > +}; > + > +/* The location of the R divider registers */ > +static const u16 si5341_reg_rdiv_offset[] = { > + 0x024A, > + 0x024D, > + 0x0250, > + 0x0253, > + 0x0256, > + 0x0259, > + 0x025C, > + 0x025F, > + 0x0262, > + 0x0268, > +}; Put a newline here please. > +static const u16 si5340_reg_rdiv_offset[] = { > + 0x0250, > + 0x0253, > + 0x025C, > + 0x025F, > +}; > + > +/* > + * Programming sequence from ClockBuilder, settings to initialize the system > + * using only the XTAL input, without pre-divider. > + * This also contains settings that aren't mentioned anywhere in the datasheet. That's awful! What a non-surprise! > + * The "known" settings like synth and output configuration are done later. > + */ > +static const struct si5341_reg_default si5341_reg_defaults[] = { > + { 0x0017, 0x3A }, /* INT mask (disable interrupts) */ > + { 0x0018, 0xFF }, /* INT mask */ > + { 0x0021, 0x0F }, /* Select XTAL as input */ > + { 0x0022, 0x00 }, /* Not in datasheet */ > + { 0x002B, 0x02 }, /* SPI config */ > + { 0x002C, 0x20 }, /* LOS enable for XTAL */ > + { 0x002D, 0x00 }, /* LOS timing */ > + { 0x002E, 0x00 }, > + { 0x002F, 0x00 }, > + { 0x0030, 0x00 }, > + { 0x0031, 0x00 }, > + { 0x0032, 0x00 }, > + { 0x0033, 0x00 }, > + { 0x0034, 0x00 }, > + { 0x0035, 0x00 }, > + { 0x0036, 0x00 }, > + { 0x0037, 0x00 }, > + { 0x0038, 0x00 }, /* LOS setting (thresholds) */ > + { 0x0039, 0x00 }, > + { 0x003A, 0x00 }, > + { 0x003B, 0x00 }, > + { 0x003C, 0x00 }, > + { 0x003D, 0x00 }, /* LOS setting (thresholds) end */ > + { 0x0041, 0x00 }, /* LOS0_DIV_SEL */ > + { 0x0042, 0x00 }, /* LOS1_DIV_SEL */ > + { 0x0043, 0x00 }, /* LOS2_DIV_SEL */ > + { 0x0044, 0x00 }, /* LOS3_DIV_SEL */ > + { 0x009E, 0x00 }, /* Not in datasheet */ > + { 0x0102, 0x01 }, /* Enable outputs */ > + { 0x013F, 0x00 }, /* Not in datasheet */ > + { 0x0140, 0x00 }, /* Not in datasheet */ > + { 0x0141, 0x40 }, /* OUT LOS */ > + { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/ > + { 0x0203, 0x00 }, > + { 0x0204, 0x00 }, > + { 0x0205, 0x00 }, > + { 0x0206, 0x00 }, /* PXAXB (2^x) */ > + { 0x0208, 0x00 }, /* Px divider setting (usually 0) */ > + { 0x0209, 0x00 }, > + { 0x020A, 0x00 }, > + { 0x020B, 0x00 }, > + { 0x020C, 0x00 }, > + { 0x020D, 0x00 }, > + { 0x020E, 0x00 }, > + { 0x020F, 0x00 }, > + { 0x0210, 0x00 }, > + { 0x0211, 0x00 }, > + { 0x0212, 0x00 }, > + { 0x0213, 0x00 }, > + { 0x0214, 0x00 }, > + { 0x0215, 0x00 }, > + { 0x0216, 0x00 }, > + { 0x0217, 0x00 }, > + { 0x0218, 0x00 }, > + { 0x0219, 0x00 }, > + { 0x021A, 0x00 }, > + { 0x021B, 0x00 }, > + { 0x021C, 0x00 }, > + { 0x021D, 0x00 }, > + { 0x021E, 0x00 }, > + { 0x021F, 0x00 }, > + { 0x0220, 0x00 }, > + { 0x0221, 0x00 }, > + { 0x0222, 0x00 }, > + { 0x0223, 0x00 }, > + { 0x0224, 0x00 }, > + { 0x0225, 0x00 }, > + { 0x0226, 0x00 }, > + { 0x0227, 0x00 }, > + { 0x0228, 0x00 }, > + { 0x0229, 0x00 }, > + { 0x022A, 0x00 }, > + { 0x022B, 0x00 }, > + { 0x022C, 0x00 }, > + { 0x022D, 0x00 }, > + { 0x022E, 0x00 }, > + { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */ > + { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */ > + { 0x026C, 0x00 }, > + { 0x026D, 0x00 }, > + { 0x026E, 0x00 }, > + { 0x026F, 0x00 }, > + { 0x0270, 0x00 }, > + { 0x0271, 0x00 }, > + { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */ > + { 0x0339, 0x1F }, /* N_FSTEP_MSK */ > + { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */ > + { 0x033C, 0x00 }, > + { 0x033D, 0x00 }, > + { 0x033E, 0x00 }, > + { 0x033F, 0x00 }, > + { 0x0340, 0x00 }, > + { 0x0341, 0x00 }, > + { 0x0342, 0x00 }, > + { 0x0343, 0x00 }, > + { 0x0344, 0x00 }, > + { 0x0345, 0x00 }, > + { 0x0346, 0x00 }, > + { 0x0347, 0x00 }, > + { 0x0348, 0x00 }, > + { 0x0349, 0x00 }, > + { 0x034A, 0x00 }, > + { 0x034B, 0x00 }, > + { 0x034C, 0x00 }, > + { 0x034D, 0x00 }, > + { 0x034E, 0x00 }, > + { 0x034F, 0x00 }, > + { 0x0350, 0x00 }, > + { 0x0351, 0x00 }, > + { 0x0352, 0x00 }, > + { 0x0353, 0x00 }, > + { 0x0354, 0x00 }, > + { 0x0355, 0x00 }, > + { 0x0356, 0x00 }, > + { 0x0357, 0x00 }, > + { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */ > + { 0x0359, 0x00 }, /* Nx_DELAY */ > + { 0x035A, 0x00 }, > + { 0x035B, 0x00 }, > + { 0x035C, 0x00 }, > + { 0x035D, 0x00 }, > + { 0x035E, 0x00 }, > + { 0x035F, 0x00 }, > + { 0x0360, 0x00 }, > + { 0x0361, 0x00 }, > + { 0x0362, 0x00 }, /* Nx_DELAY end */ > + { 0x0802, 0x00 }, /* Not in datasheet */ > + { 0x0803, 0x00 }, /* Not in datasheet */ > + { 0x0804, 0x00 }, /* Not in datasheet */ > + { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */ > + { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */ > + { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */ > + { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */ > + { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */ > + { 0x0A02, 0x00 }, /* Not in datasheet */ > + { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */ > +}; > + > +/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */ > +static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg, > + u64 *val1, u32 *val2) > +{ > + int err; > + u8 r[10]; > + > + err = regmap_bulk_read(regmap, reg, r, 10); > + if (err < 0) > + return err; > + > + *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) | > + (u32)(r[3] << 24 | r[2] << 16 | r[1] << 8 | r[0]); > + *val2 = r[9] << 24 | r[8] << 16 | r[7] << 8 | r[6]; Is this almost get_unaligned_le64()? Maybe with some masking thrown in to ignore bytes at r6 and r7. And then a get_unaligned_le32() after that starting at r6. > + > + return 0; > +} > + > +static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg, > + u64 n_num, u32 n_den) > +{ > + u8 r[10]; > + > + /* Shift left as far as possible without overflowing */ > + while (!(n_num & BIT(43)) && !(n_den & BIT(31))) { > + n_num <<= 1; > + n_den <<= 1; > + } > + > + /* 44 bits (6 bytes) numerator */ > + r[0] = n_num & 0xff; > + r[1] = (n_num >> 8) & 0xff; > + r[2] = (n_num >> 16) & 0xff; > + r[3] = (n_num >> 24) & 0xff; > + r[4] = (n_num >> 32) & 0xff; > + r[5] = (n_num >> 40) & 0x0f; > + /* 32 bits denominator */ > + r[6] = n_den & 0xff; > + r[7] = (n_den >> 8) & 0xff; > + r[8] = (n_den >> 16) & 0xff; > + r[9] = (n_den >> 24) & 0xff; Maybe some put_unaligned_le64() and put_unaligned_le32()? > + > + /* Program the fraction */ > + return regmap_bulk_write(regmap, reg, r, sizeof(r)); > +} > + > +/* VCO, we assume it runs at a constant frequency */ > +static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw, > + unsigned long parent_rate) > +{ > + struct clk_si5341 *data = to_clk_si5341(hw); > + int err; > + u64 res; > + u64 m_num; > + u32 m_den; > + unsigned int shift; > + > + /* Assume that PDIV is not being used, just read the PLL setting */ > + err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM, > + &m_num, &m_den); > + if (err < 0) > + return 0; > + > + if (!m_num || !m_den) > + return 0; > + > + /* > + * Though m_num is 64-bit, only the upper bits are actually used. While > + * calculating m_num and m_den, they are shifted as far as possible to > + * the left. To avoid 96-bit division here, we just shift them back so > + * we can do with just 64 bits. > + */ > + shift = 0; > + res = m_num; > + while (res & 0xffff00000000) { > + ++shift; > + res >>= 1; > + } > + res *= parent_rate; > + do_div(res, (m_den >> shift)); > + > + dev_dbg(&data->i2c_client->dev, > + "%s(p=%lu) m=0x%llx/0x%x shift=%u res=%llu\n", > + __func__, parent_rate, m_num, m_den, shift, res); > + > + /* We cannot return the actual frequency in 32 bit, store it locally */ > + data->freq_vco = res; > + > + /* Report kHz since the value is out of range */ > + do_div(res, 1000); > + > + return (unsigned long)res; Uh oh. Do you need really high frequencies that don't fit in 32-bits? > +} > + > +static const struct clk_ops si5341_clk_ops = { > + .recalc_rate = si5341_clk_recalc_rate, > +}; > + > +/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */ > + > +/* The synthesizer is on if all power and enable bits are set */ > +static int si5341_synth_clk_is_on(struct clk_hw *hw) > +{ > + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); > + int err; > + u32 val; > + u8 index = synth->index; > + > + err = regmap_read(synth->data->regmap, > + SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val); > + if (err < 0) > + return err; Should return 0 for off I suppose. Our "fail to read on/off" logic isn't really there. > + > + dev_dbg(&synth->data->i2c_client->dev, "%s(%u): %#x\n", > + __func__, index, val); > + > + if (!(val & BIT(index))) > + return false; > + > + err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val); > + if (err < 0) > + return err; Sam comment. > + > + if (!(val & BIT(index))) > + return false; false is not int, but ok. > + > + /* This bit must be 0 for the synthesizer to receive clock input */ > + err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val); > + if (err < 0) > + return err; > + > + return !(val & BIT(index)); > +} > + > +static void si5341_synth_clk_unprepare(struct clk_hw *hw) > +{ > + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); > + u8 index = synth->index; > + u8 mask = BIT(index); I hope that index isn't large causing overflow here. > + > + dev_dbg(&synth->data->i2c_client->dev, "%s(%u)\n", __func__, index); > + > + /* Disable output */ > + regmap_update_bits(synth->data->regmap, > + SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0); > + /* Power down */ > + regmap_update_bits(synth->data->regmap, > + SI5341_SYNTH_N_PDNB, mask, 0); > + /* Disable clock input to synth (set to 1 to disable) */ > + regmap_update_bits(synth->data->regmap, > + SI5341_SYNTH_N_CLK_DIS, mask, mask); > +} > + > +static int si5341_synth_clk_prepare(struct clk_hw *hw) > +{ > + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); > + int err; > + u8 index = synth->index; > + u8 mask = BIT(index); > + > + dev_dbg(&synth->data->i2c_client->dev, "%s(%u)\n", __func__, index); > + > + /* Power up */ > + err = regmap_update_bits(synth->data->regmap, > + SI5341_SYNTH_N_PDNB, mask, mask); > + if (err < 0) > + return err; > + > + /* Enable clock input to synth (set bit to 0 to enable) */ > + err = regmap_update_bits(synth->data->regmap, > + SI5341_SYNTH_N_CLK_DIS, mask, 0); > + if (err < 0) > + return err; > + > + /* Enable output */ > + return regmap_update_bits(synth->data->regmap, > + SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask); > +} > + > +/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */ > +static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw, > + unsigned long parent_rate) > +{ > + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); > + u64 f; > + u64 n_num; > + u32 n_den; > + int err; > + > + err = si5341_decode_44_32(synth->data->regmap, > + SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den); > + if (err < 0) > + return err; > + > + /* > + * n_num and n_den are shifted left as much as possible, so to prevent > + * overflow in 64-bit math, we shift n_den 4 bits to the right > + */ > + f = synth->data->freq_vco; > + f *= (n_den >> 4); Do we need these parenthesis? Maybe n_den >>= 4 should preceded this line. > + > + /* Now we need to to 64-bit division: f/n_num */ > + /* And compensate for the 4 bits we dropped */ > + f = div64_u64(f, (n_num >> 4)); > + > + dev_dbg(&synth->data->i2c_client->dev, > + "%s(%u) p=%lu n=0x%llx d=0x%x f=%llu\n", > + __func__, synth->index, parent_rate, n_num, n_den, f); > + > + return (unsigned long)f; Drop useless cast please. > +} > + > +static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long *parent_rate) > +{ > + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); > + u64 f; > + > + dev_dbg(&synth->data->i2c_client->dev, "%s(%u) r=%lu p=%lu\n", > + __func__, synth->index, rate, *parent_rate); > + > + /* The synthesizer accuracy is such that anything in range will work */ > + f = synth->data->freq_vco; > + do_div(f, SI5341_SYNTH_N_MAX); > + if (rate < (unsigned long)f) Why are we casting f to unsigned long? > + return (long)f; Drop cast? > + > + f = synth->data->freq_vco; > + do_div(f, SI5341_SYNTH_N_MIN); > + if (rate > (unsigned long)f) > + return (long)f; Drop cast? Or make rate = f? > + > + return (long)rate; Drop cast? > +} > + > +static int si5341_synth_program(struct clk_si5341_synth *synth, > + u64 n_num, u32 n_den, bool is_integer) > +{ > + int err; > + u8 index = synth->index; > + > + err = si5341_encode_44_32(synth->data->regmap, > + SI5341_SYNTH_N_NUM(index), n_num, n_den); > + > + /* Set the bit that indicates if the fraction is integer */ Useless comment. > + err = regmap_update_bits(synth->data->regmap, > + SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0); > + if (err < 0) > + return err; > + > + /* Write to the update bit to make the change take effect */ Useless comment? > + return regmap_write(synth->data->regmap, > + SI5341_SYNTH_N_UPD(index), 0x01); > +} > + > + > +static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long parent_rate) > +{ > + struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); > + u64 n_num; > + u32 n_den; > + u32 r; > + u32 g; > + bool is_integer; > + > + dev_dbg(&synth->data->i2c_client->dev, "%s(%u) r=%lu p=%lu\n", > + __func__, synth->index, rate, parent_rate); > + > + /* obvious solution */ What? > + n_num = synth->data->freq_vco; > + n_den = rate; > + > + /* see if there's an integer solution */ > + r = do_div(n_num, rate); > + is_integer = (r == 0); > + if (is_integer) { > + /* Integer divider equal to n_num */ > + n_den = 1; > + } else { > + /* Calculate a fractional solution */ > + g = gcd(r, rate); > + n_den = rate / g; > + n_num *= n_den; > + n_num += r / g; > + } > + > + dev_dbg(&synth->data->i2c_client->dev, > + "%s(%u): n=0x%llx d=0x%x %s\n", __func__, > + synth->index, n_num, n_den, > + is_integer ? "int" : "frac"); > + > + return si5341_synth_program(synth, n_num, n_den, is_integer); > +} > + > +static const struct clk_ops si5341_synth_clk_ops = { > + .is_prepared = si5341_synth_clk_is_on, > + .prepare = si5341_synth_clk_prepare, > + .unprepare = si5341_synth_clk_unprepare, > + .recalc_rate = si5341_synth_clk_recalc_rate, > + .round_rate = si5341_synth_clk_round_rate, > + .set_rate = si5341_synth_clk_set_rate, > +}; > + > +static int si5341_output_clk_is_on(struct clk_hw *hw) > +{ > + struct clk_si5341_output *output = to_clk_si5341_output(hw); > + int err; > + u32 val; > + > + err = regmap_read(output->data->regmap, > + SI5341_OUT_CONFIG(output), &val); > + if (err < 0) > + return err; > + > + dev_dbg(&output->data->i2c_client->dev, "%s(%u): %#x\n", > + __func__, output->index, val); > + > + /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */ > + return (val & 0x03) == SI5341_OUT_CFG_OE; > +} > + > +static void si5341_output_clk_unprepare(struct clk_hw *hw) > +{ > + struct clk_si5341_output *output = to_clk_si5341_output(hw); > + > + dev_dbg(&output->data->i2c_client->dev, "%s(%u)\n", > + __func__, output->index); > + > + /* Disable and then power down the output */ > + regmap_update_bits(output->data->regmap, > + SI5341_OUT_CONFIG(output), > + SI5341_OUT_CFG_OE, 0); > + regmap_update_bits(output->data->regmap, > + SI5341_OUT_CONFIG(output), > + SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN); > +} > + > +static int si5341_output_clk_prepare(struct clk_hw *hw) > +{ > + struct clk_si5341_output *output = to_clk_si5341_output(hw); > + int err; > + > + dev_dbg(&output->data->i2c_client->dev, "%s(%u)\n", > + __func__, output->index); Can you just use the tracepoints in clk framework? These prints are really cluttering the code up making it hard to see what's going on. > + > + /* Power up first, then enable the output */ This comment could come above the function instead of inline. > + err = regmap_update_bits(output->data->regmap, > + SI5341_OUT_CONFIG(output), > + SI5341_OUT_CFG_PDN, 0); > + if (err < 0) > + return err; > + > + return regmap_update_bits(output->data->regmap, > + SI5341_OUT_CONFIG(output), > + SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE); > +} > + > +static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw, > + unsigned long parent_rate) > +{ > + struct clk_si5341_output *output = to_clk_si5341_output(hw); > + int err; > + u32 val; > + u32 r_divider; > + u8 r[3]; > + > + err = regmap_read(output->data->regmap, > + SI5341_OUT_CONFIG(output), &val); > + if (err < 0) > + return err; > + > + /* If bit(2) is set, the divider is forcibly set to "2" */ That's obvious from the code. > + if (val & SI5341_OUT_CFG_RDIV_FORCE2) { > + r_divider = 2; > + } else { > + err = regmap_bulk_read(output->data->regmap, > + SI5341_OUT_R_REG(output), r, 3); > + if (err < 0) > + return err; > + > + /* Calculate value as 24-bit integer, (Rx_REG+1)x2 */ > + r_divider = ((r[2] << 16 | r[1] << 8 | r[0]) + 1) << 1; > + } > + > + dev_dbg(&output->data->i2c_client->dev, > + "%s(%u): p=%lu rd=%u %lu\n", > + __func__, output->index, parent_rate, > + r_divider, parent_rate / r_divider); > + > + return parent_rate / r_divider; > +} > + > +static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long *parent_rate) > +{ > + struct clk_si5341_output *output = to_clk_si5341_output(hw); > + unsigned long r; > + > + dev_dbg(&output->data->i2c_client->dev, "%s(%u): %lu\n", > + __func__, output->index, rate); > + > + r = *parent_rate >> 1; > + > + /* If rate is an even divisor, no changes to parent required */ > + if (r && !(r % rate)) > + return (long)rate; > + > + if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) { > + if (rate > 200000000) > + /* minimum r-divider is 2 */ > + r = 2; > + else > + /* Take a parent frequency near 400 MHz */ > + r = (400000000u / rate) & ~1; Style: Please enclose in braces if there's more than one line, regardless of comment being one of those lines or not. > + *parent_rate = r * rate; > + } else { > + /* We cannot change our parent's rate, report what we can do */ > + r /= rate; > + rate = *parent_rate / (r << 1); > + } > + > + return (long)rate; Please drop useless cast. > +} > + > +static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate, > + unsigned long parent_rate) > +{ > + struct clk_si5341_output *output = to_clk_si5341_output(hw); > + /* Frequency divider is (r_div + 1) * 2 */ > + u32 r_div = (parent_rate / rate) >> 1; > + int err; > + u8 r[3]; > + > + if (r_div <= 1) > + r_div = 0; > + else if (r_div >= BIT(24)) > + r_div = BIT(24) - 1; > + else > + --r_div; > + > + /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */ > + err = regmap_update_bits(output->data->regmap, > + SI5341_OUT_CONFIG(output), > + SI5341_OUT_CFG_RDIV_FORCE2, > + (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0); > + if (err < 0) > + return err; > + > + /* Just always write the R_REG */ > + r[0] = r_div & 0xff; > + r[1] = (r_div >> 8) & 0xff; > + r[2] = (r_div >> 16) & 0xff; > + err = regmap_bulk_write(output->data->regmap, > + SI5341_OUT_R_REG(output), r, 3); > + > + dev_dbg(&output->data->i2c_client->dev, "%s(%u): r=%lu p=%lu rd=%u\n", > + __func__, output->index, rate, parent_rate, r_div); > + > + return 0; > +} > + > +static int si5341_output_reparent(struct clk_si5341_output *output, u8 index) > +{ > + return regmap_update_bits(output->data->regmap, > + SI5341_OUT_MUX_SEL(output), 0x07, index); > +} > + > +static int si5341_output_set_parent(struct clk_hw *hw, u8 index) > +{ > + struct clk_si5341_output *output = to_clk_si5341_output(hw); > + > + dev_dbg(&output->data->i2c_client->dev, "%s(%u): N%u\n", > + __func__, output->index, index); > + > + if (index >= output->data->num_synth) > + return -EINVAL; > + > + return si5341_output_reparent(output, index); > +} > + > +static u8 si5341_output_get_parent(struct clk_hw *hw) > +{ > + struct clk_si5341_output *output = to_clk_si5341_output(hw); > + int err; > + u32 val; > + > + err = regmap_read(output->data->regmap, > + SI5341_OUT_MUX_SEL(output), &val); > + > + dev_dbg(&output->data->i2c_client->dev, "%s(%u): N%u\n", > + __func__, output->index, val & 0x7); > + > + return val & 0x7; > +} > + > +static const struct clk_ops si5341_output_clk_ops = { > + .is_prepared = si5341_output_clk_is_on, > + .prepare = si5341_output_clk_prepare, > + .unprepare = si5341_output_clk_unprepare, > + .recalc_rate = si5341_output_clk_recalc_rate, > + .round_rate = si5341_output_clk_round_rate, > + .set_rate = si5341_output_clk_set_rate, > + .set_parent = si5341_output_set_parent, > + .get_parent = si5341_output_get_parent, > +}; > + > +/* Called by probe, before output is actually registered */ > +static int si5341_output_set_parent_and_freq( > + struct clk_si5341_output *output, u8 index, u32 parent_rate) > +{ > + int err; > + > + if (index < output->data->num_synth) { > + err = si5341_output_reparent(output, index); Maybe this can be done via assigned-clock-parents? > + if (err < 0) > + return err; > + } > + > + if (parent_rate) { > + index = si5341_output_get_parent(&output->hw); > + err = clk_set_rate(output->data->synth[index].hw.clk, And assigned-clock-rates. > + parent_rate); > + } > + > + return err; > +} > + > +/* > + * The chip can be bought in a pre-programmed version, or one can program the > + * NVM in the chip to boot up in a preset mode. This routine tries to determine > + * if that's the case, or if we need to reset and program everything from > + * scratch. Returns negative error, or true/false. > + */ > +static int si5341_is_programmed_already(struct clk_si5341 *data) > +{ > + int err; > + u32 v; > + u8 r[4]; > + u8 i; > + > + err = regmap_read(data->regmap, 0x00E2, &v); > + if (err < 0) > + return err; > + > + /* Read the PLL divider value, it must have a non-zero value */ > + err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN, r, 4); > + if (err < 0) > + return err; > + > + dev_dbg(&data->i2c_client->dev, "%s: %#x md=%#x\n", > + __func__, v, > + r[3] << 24 | r[2] << 16 | r[1] << 8 | r[0]); There isn't a macro for this byte to word? get_unaligned_le32()? > + > + for (i = 0; i < 4; ++i) > + if (r[i]) > + return true; This for loop could just be 'convert r into u32; print it; test it for 0'. > + > + return false; > +} > + > +static struct clk_hw *of_clk_si5341_get( > + struct of_phandle_args *clkspec, void *_data) Please fix this style: static struct clk_hw * of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data) > +{ > + struct clk_si5341 *data = _data; > + unsigned int idx = clkspec->args[0]; > + > + if (idx >= data->num_outputs) { > + dev_err(&data->i2c_client->dev, "invalid index %u\n", idx); > + return ERR_PTR(-EINVAL); > + } > + > + return &data->clk[idx].hw; > +} > + > +static int si5341_probe_chip_id(struct clk_si5341 *data) > +{ > + int err; > + u8 reg[4]; > + > + err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg, 4); ARRAY_SIZE(reg) instead of 4? > + if (err < 0) { > + dev_err(&data->i2c_client->dev, "Failed to read chip ID\n"); > + return err; > + } > + > + dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n", > + (reg[1] << 8) | reg[0], reg[2], reg[3]); > + > + /* The 5341 has 10 outputs, the 5340 has only 4 */ Alright! Thanks for the info! > + switch (reg[0]) { > + case 0x40: > + data->num_outputs = SI5340_MAX_NUM_OUTPUTS; > + data->num_synth = SI5340_NUM_SYNTH; > + data->reg_output_offset = si5340_reg_output_offset; > + data->reg_rdiv_offset = si5340_reg_rdiv_offset; > + break; > + case 0x41: > + data->num_outputs = SI5341_MAX_NUM_OUTPUTS; > + data->num_synth = SI5341_NUM_SYNTH; > + data->reg_output_offset = si5341_reg_output_offset; > + data->reg_rdiv_offset = si5341_reg_rdiv_offset; > + break; > + default: > + dev_err(&data->i2c_client->dev, "Model '%x' not supported\n", > + (reg[1] << 8) | reg[0]); > + return -EINVAL; > + } > + > + return 0; > +} > + > +/* Read active settings into the regmap cache for later reference */ > +static int si5341_read_settings(struct clk_si5341 *data) > +{ > + int err; > + u8 i; > + u8 r[10]; > + > + err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10); > + if (err < 0) > + return err; > + > + err = regmap_bulk_read(data->regmap, > + SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3); > + if (err < 0) > + return err; > + > + err = regmap_bulk_read(data->regmap, > + SI5341_SYNTH_N_CLK_DIS, r, 1); > + if (err < 0) > + return err; > + > + for (i = 0; i < data->num_synth; ++i) { > + err = regmap_bulk_read(data->regmap, > + SI5341_SYNTH_N_NUM(i), r, 10); > + if (err < 0) > + return err; > + } > + > + for (i = 0; i < data->num_outputs; ++i) { > + err = regmap_bulk_read(data->regmap, > + data->reg_output_offset[i], r, 4); > + if (err < 0) > + return err; > + > + err = regmap_bulk_read(data->regmap, > + data->reg_rdiv_offset[i], r, 3); > + if (err < 0) > + return err; > + } > + > + return 0; > +} > + > +static int si5341_write_multiple(struct clk_si5341 *data, > + const struct si5341_reg_default *values, unsigned int num_values) > +{ > + unsigned int i; > + int res; > + > + for (i = 0; i < num_values; ++i) { > + res = regmap_write(data->regmap, > + values[i].address, values[i].value); > + if (res < 0) { > + dev_err(&data->i2c_client->dev, > + "Failed to write %#x:%#x\n", > + values[i].address, values[i].value); > + return res; > + } > + } > + > + return 0; > +} > + > +const struct si5341_reg_default si5341_preamble[] = { > + {0x0B25, 0x00}, Please put space around { and } { 0x0b25, 0x00 }, > + {0x0502, 0x01}, > + {0x0505, 0x03}, > + {0x0957, 0x1F}, > + {0x0B4E, 0x1A}, > +}; > + > +static int si5341_send_preamble(struct clk_si5341 *data) > +{ > + int res; > + u32 revision; > + > + /* For revision 2 and up, the values are slightly different */ > + res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); > + if (res < 0) > + return res; > + > + /* Write "preamble" as specified by datasheet */ > + res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0); > + if (res < 0) > + return res; > + res = si5341_write_multiple(data, > + si5341_preamble, ARRAY_SIZE(si5341_preamble)); > + if (res < 0) > + return res; > + > + /* Wait for 300 ms */ Yeah that's obvious. Does the datasheet say to do that? That would be more useful to indicate here instead of repeating what the code does. > + msleep(300); > + > + return 0; > +} > + > +/* Perform a soft reset and write post-amble */ > +static int si5341_finalize_defaults(struct clk_si5341 *data) > +{ > + int res; > + u32 revision; > + > + res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); > + if (res < 0) > + return res; > + > + dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision); > + > + /* Perform a soft reset */ Obvious. > + res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01); > + if (res < 0) > + return res; > + > + /* Write post-amble */ > + res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3); Why no define for SI5341_POST_AMBLE? > + if (res < 0) > + return res; > + res = regmap_write(data->regmap, 0x0B25, 0x02); And what register is this? > + if (res < 0) > + return res; > + > + return 0; > +} > + > + > +static const struct regmap_range si5341_regmap_volatile_range[] = { > + regmap_reg_range(0x000C, 0x0012), /* Status */ > + regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */ > + regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */ > + /* Update bits for synth config */ > + regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)), > + regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)), > + regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)), > + regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)), > + regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)), > +}; > + > +const struct regmap_access_table si5341_regmap_volatile = { > + .yes_ranges = si5341_regmap_volatile_range, > + .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range), > +}; > + > +/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */ > +static const struct regmap_range_cfg si5341_regmap_ranges[] = { > + { > + .range_min = 0, > + .range_max = 12 * 256, > + .selector_reg = SI5341_PAGE, > + .selector_mask = 0xff, > + .selector_shift = 0, > + .window_start = 0, > + .window_len = 256, > + }, > +}; > + > +static const struct regmap_config si5341_regmap_config = { > + .reg_bits = 8, > + .val_bits = 8, > + .cache_type = REGCACHE_RBTREE, > + .max_register = 0, > + .ranges = si5341_regmap_ranges, > + .num_ranges = ARRAY_SIZE(si5341_regmap_ranges), > + .max_register = 12 * 256, Maybe 12 * 256 should be a define. > + .volatile_table = &si5341_regmap_volatile, > +}; > + > +static int si5341_dt_parse_dt(struct i2c_client *client, > + struct clk_si5341_output_config *config) > +{ > + struct device_node *child; > + struct device_node *np = client->dev.of_node; > + u32 num; > + u32 val; > + > + memset(config, 0, sizeof(struct clk_si5341_output_config) * > + SI5341_MAX_NUM_OUTPUTS); > + /* Set defaults to no forced source, not a master */ > + for (num = 0; num < SI5341_MAX_NUM_OUTPUTS; ++num) > + config[num].source_index = 0xff; > + > + for_each_child_of_node(np, child) { > + if (of_property_read_u32(child, "reg", &num)) { > + dev_err(&client->dev, "missing reg property of %s\n", > + child->name); > + goto put_child; > + } > + > + if (num >= SI5341_MAX_NUM_OUTPUTS) { > + dev_err(&client->dev, "invalid clkout %d\n", num); > + goto put_child; > + } > + > + if (!of_property_read_u32(child, "silabs,format", &val)) { > + /* Set cm and ampl conservatively to 3v3 settings */ > + switch (val) { > + case 1: /* normal differential */ > + config[num].out_cm_ampl_bits = 0x33; > + break; > + case 2: /* low-power differential */ > + config[num].out_cm_ampl_bits = 0x13; > + break; > + case 4: /* LVCMOS */ > + config[num].out_cm_ampl_bits = 0x33; > + /* Set SI recommended impedance for LVCMOS */ > + config[num].out_format_drv_bits |= 0xc0; > + break; > + default: > + dev_err(&client->dev, > + "invalid silabs,format %u for %u\n", > + val, num); > + goto put_child; > + } > + config[num].out_format_drv_bits &= ~0x07; > + config[num].out_format_drv_bits |= val & 0x07; > + /* Always enable the SYNC feature */ > + config[num].out_format_drv_bits |= 0x08; > + } > + > + if (!of_property_read_u32(child, "silabs,common-mode", &val)) { > + if (val > 0xf) { > + dev_err(&client->dev, > + "invalid silabs,common-mode %u\n", > + val); > + goto put_child; > + } > + config[num].out_cm_ampl_bits &= 0xf0; > + config[num].out_cm_ampl_bits |= val & 0x0f; > + } > + > + if (!of_property_read_u32(child, "silabs,amplitude", &val)) { > + if (val > 0xf) { > + dev_err(&client->dev, > + "invalid silabs,amplitude %u\n", > + val); > + goto put_child; > + } > + config[num].out_cm_ampl_bits &= 0x0f; > + config[num].out_cm_ampl_bits |= (val << 4) & 0xf0; > + } > + > + if (!of_property_read_u32(child, "silabs,synth-source", > + &val)) { > + /* Chip type not known at this point, assume largest */ > + if (val >= SI5341_NUM_SYNTH) { > + dev_err(&client->dev, > + "invalid synth-source %u for %u\n", > + val, num); > + goto put_child; > + } > + > + config[num].source_index = val; > + } > + > + if (!of_property_read_u32(child, "silabs,synth-frequency", > + &val)) { > + if (config[num].source_index >= SI5341_NUM_SYNTH) { > + dev_err(&client->dev, > + "synth-frequency requires synth-source " > + "for %u\n", num); > + goto put_child; > + } > + > + config[num].synth_frequency = val; > + } > + > + if (!of_property_read_u32(child, "clock-frequency", &val)) > + config[num].clock_frequency = val; > + > + if (of_property_read_bool(child, "silabs,disable-high")) > + config[num].out_format_drv_bits |= 0x10; > + > + config[num].synth_master = > + of_property_read_bool(child, "silabs,synth-master"); > + > + config[num].always_on = > + of_property_read_bool(child, "always-on"); > + } > + > + return 0; > + > +put_child: > + of_node_put(child); > + return -EINVAL; > +} > + > +/* > + * If not pre-configured, calculate and set the PLL configuration manually. > + * For low-jitter performance, the PLL should be set such that the synthesizers > + * only need integer division. > + * Without any user guidance, we'll set the PLL to 14GHz, which still allows > + * the chip to generate any frequency on its outputs, but jitter performance > + * may be sub-optimal. > + */ > +static int si5341_initialize_pll(struct clk_si5341 *data) > +{ > + struct device_node *np = data->i2c_client->dev.of_node; > + u32 m_num = 0; > + u32 m_den = 0; > + > + if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) { > + dev_err(&data->i2c_client->dev, > + "PLL configuration requires silabs,pll-m-num\n"); > + } > + if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) { > + dev_err(&data->i2c_client->dev, > + "PLL configuration requires silabs,pll-m-den\n"); > + } > + > + if (!m_num || !m_den) { > + dev_err(&data->i2c_client->dev, > + "PLL configuration invalid, assume 14GHz\n"); > + m_den = clk_get_rate(data->pxtal) / 10; > + m_num = 1400000000; > + } > + > + return si5341_encode_44_32(data->regmap, > + SI5341_PLL_M_NUM, m_num, m_den); > +} > + > +static int si5341_probe(struct i2c_client *client, > + const struct i2c_device_id *id) > +{ > + struct clk_si5341 *data; > + struct clk_init_data init; > + const char *root_clock_name; > + const char *synth_clock_names[SI5341_NUM_SYNTH]; > + int err; > + struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS]; > + u8 i; Why not just an int or unsigned int? Why a u8? > + bool initialization_required; > + > + data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); > + if (!data) > + return -ENOMEM; > + > + data->i2c_client = client; > + > + data->pxtal = devm_clk_get(&client->dev, "xtal"); > + if (IS_ERR(data->pxtal)) { > + if (PTR_ERR(data->pxtal) == -EPROBE_DEFER) > + return -EPROBE_DEFER; > + > + dev_err(&client->dev, "Missing xtal clock input\n"); > + } > + > + err = si5341_dt_parse_dt(client, config); > + if (err) > + return err; > + > + if (of_property_read_string(client->dev.of_node, "clock-output-names", > + &init.name)) > + init.name = client->dev.of_node->name; > + root_clock_name = init.name; > + > + data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config); > + if (IS_ERR(data->regmap)) > + return PTR_ERR(data->regmap); > + > + i2c_set_clientdata(client, data); > + > + err = si5341_probe_chip_id(data); > + if (err < 0) > + return err; > + > + /* "Activate" the xtal (usually a fixed clock) */ > + clk_prepare_enable(data->pxtal); > + > + if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) { > + initialization_required = true; > + } else { > + err = si5341_is_programmed_already(data); > + if (err < 0) > + return err; > + > + initialization_required = !err; > + } > + > + if (initialization_required) { > + /* Populate the regmap cache in preparation for "cache only" */ > + err = si5341_read_settings(data); > + if (err < 0) > + return err; > + > + err = si5341_send_preamble(data); > + if (err < 0) > + return err; > + > + /* > + * We intend to send all 'final' register values in a single > + * transaction. So cache all register writes until we're done > + * configuring. > + */ > + regcache_cache_only(data->regmap, true); > + > + /* Write the configuration pairs from the firmware blob */ > + err = si5341_write_multiple(data, si5341_reg_defaults, > + ARRAY_SIZE(si5341_reg_defaults)); > + if (err < 0) > + return err; > + > + /* PLL configuration is required */ > + err = si5341_initialize_pll(data); > + if (err < 0) > + return err; > + } > + > + /* Register the PLL */ > + data->pxtal_name = __clk_get_name(data->pxtal); > + init.parent_names = &data->pxtal_name; > + init.num_parents = 1; /* For now, only XTAL input supported */ > + init.ops = &si5341_clk_ops; > + init.flags = 0; > + data->hw.init = &init; > + > + err = devm_clk_hw_register(&client->dev, &data->hw); > + if (err) { > + dev_err(&client->dev, "clock registration failed\n"); > + return err; > + } > + > + init.num_parents = 1; > + init.parent_names = &root_clock_name; > + init.ops = &si5341_synth_clk_ops; > + for (i = 0; i < data->num_synth; ++i) { > + synth_clock_names[i] = kasprintf(GFP_KERNEL, "%s.N%u", Use devm_kasprintf() and let error paths cleanup? > + client->dev.of_node->name, i); > + init.name = synth_clock_names[i]; > + data->synth[i].index = i; > + data->synth[i].data = data; > + data->synth[i].hw.init = &init; > + dev_dbg(&client->dev, "Register %s\n", init.name); Is this necessary? Maybe we should add a pr_debug() deep in clk_register() if you really want to know. I don't think I'd be too opposed to that. > + err = devm_clk_hw_register(&client->dev, &data->synth[i].hw); > + if (err) { > + dev_err(&client->dev, > + "synth N%u registration failed\n", i); > + } > + } > + > + init.num_parents = data->num_synth; > + init.parent_names = synth_clock_names; > + init.ops = &si5341_output_clk_ops; > + init.flags = 0; > + for (i = 0; i < data->num_outputs; ++i) { > + init.name = kasprintf(GFP_KERNEL, "%s.%d", > + client->dev.of_node->name, i); > + init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0; Ok, so synth_master means that it can change the rate of the parent? > + data->clk[i].index = i; > + data->clk[i].data = data; > + data->clk[i].hw.init = &init; > + if (config[i].out_format_drv_bits & 0x07) { What is magic 0x07? Please make a define for it. > + dev_dbg(&client->dev, > + "out %u: fmt=%#x cm=%#x\n", i, > + config[i].out_format_drv_bits, > + config[i].out_cm_ampl_bits); Can't we get this with regmap tracepoints? > + regmap_write(data->regmap, > + SI5341_OUT_FORMAT(&data->clk[i]), > + config[i].out_format_drv_bits); > + regmap_write(data->regmap, > + SI5341_OUT_CM(&data->clk[i]), > + config[i].out_cm_ampl_bits); > + } > + si5341_output_set_parent_and_freq(&data->clk[i], > + config[i].source_index, > + config[i].synth_frequency); > + dev_dbg(&client->dev, "Register %s\n", init.name); Ah this again! > + err = devm_clk_hw_register(&client->dev, &data->clk[i].hw); > + kfree(init.name); /* clock framework made a copy of the name */ > + if (err) { > + dev_err(&client->dev, > + "output %u registration failed\n", i); > + goto error; > + } > + if (config[i].clock_frequency) > + clk_set_rate(data->clk[i].hw.clk, > + config[i].clock_frequency); > + if (config[i].always_on) > + clk_prepare(data->clk[i].hw.clk); > + } > + > + err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get, Can you use devm_of_clk_add_hw_provider()? > + data); > + if (err) { > + dev_err(&client->dev, "unable to add clk provider\n"); > + goto error; > + } > + > + if (initialization_required) { > + /* Synchronize */ Useless comment. Please remove. > + regcache_cache_only(data->regmap, false); > + err = regcache_sync(data->regmap); > + if (err < 0) > + goto error; > + > + err = si5341_finalize_defaults(data); > + if (err < 0) > + goto error; > + } > + > +error: > + /* Free the names, clk framework makes copies */ > + for (i = 0; i < data->num_synth; ++i) > + kfree(synth_clock_names[i]); > + > + return err; > +} > +