On Tue, Mar 19, 2019 at 3:16 AM Uwe Kleine-König <u.kleine-koenig@xxxxxxxxxxxxxx> wrote: > > Hello, > > [I put Thierry into To: because some remaining questions depend on his > views] > > On Mon, Mar 18, 2019 at 05:17:14PM +0530, Yash Shah wrote: > > Adds a PWM driver for PWM chip present in SiFive's HiFive Unleashed SoC. > > > > Signed-off-by: Wesley W. Terpstra <wesley@xxxxxxxxxx> > > [Atish: Various fixes and code cleanup] > > Signed-off-by: Atish Patra <atish.patra@xxxxxxx> > > Signed-off-by: Yash Shah <yash.shah@xxxxxxxxxx> > > --- > > drivers/pwm/Kconfig | 11 ++ > > drivers/pwm/Makefile | 1 + > > drivers/pwm/pwm-sifive.c | 334 +++++++++++++++++++++++++++++++++++++++++++++++ > > 3 files changed, 346 insertions(+) > > create mode 100644 drivers/pwm/pwm-sifive.c > > > > diff --git a/drivers/pwm/Kconfig b/drivers/pwm/Kconfig > > index a8f47df..4a61d1a 100644 > > --- a/drivers/pwm/Kconfig > > +++ b/drivers/pwm/Kconfig > > @@ -380,6 +380,17 @@ config PWM_SAMSUNG > > To compile this driver as a module, choose M here: the module > > will be called pwm-samsung. > > > > +config PWM_SIFIVE > > + tristate "SiFive PWM support" > > + depends on OF > > + depends on COMMON_CLK > > + depends on RISCV || COMPILE_TEST > > + help > > + Generic PWM framework driver for SiFive SoCs. > > + > > + To compile this driver as a module, choose M here: the module > > + will be called pwm-sifive. > > + > > config PWM_SPEAR > > tristate "STMicroelectronics SPEAr PWM support" > > depends on PLAT_SPEAR > > diff --git a/drivers/pwm/Makefile b/drivers/pwm/Makefile > > index 9c676a0..30089ca 100644 > > --- a/drivers/pwm/Makefile > > +++ b/drivers/pwm/Makefile > > @@ -37,6 +37,7 @@ obj-$(CONFIG_PWM_RCAR) += pwm-rcar.o > > obj-$(CONFIG_PWM_RENESAS_TPU) += pwm-renesas-tpu.o > > obj-$(CONFIG_PWM_ROCKCHIP) += pwm-rockchip.o > > obj-$(CONFIG_PWM_SAMSUNG) += pwm-samsung.o > > +obj-$(CONFIG_PWM_SIFIVE) += pwm-sifive.o > > obj-$(CONFIG_PWM_SPEAR) += pwm-spear.o > > obj-$(CONFIG_PWM_STI) += pwm-sti.o > > obj-$(CONFIG_PWM_STM32) += pwm-stm32.o > > diff --git a/drivers/pwm/pwm-sifive.c b/drivers/pwm/pwm-sifive.c > > new file mode 100644 > > index 0000000..4b4d48e > > --- /dev/null > > +++ b/drivers/pwm/pwm-sifive.c > > @@ -0,0 +1,334 @@ > > +// SPDX-License-Identifier: GPL-2.0 > > +/* > > + * Copyright (C) 2017-2018 SiFive > > + * For SiFive's PWM IP block documentation please refer Chapter 14 of > > + * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf > > + * > > + * Limitations: > > + * - When changing both duty cycle and period, we cannot prevent in > > + * software that the output might produce a period with mixed > > + * settings (new period length and old duty cycle). > > + * - The hardware cannot generate a 100% duty cycle. > > + * - The hardware generates only inverted output. > > + */ > > +#include <linux/clk.h> > > +#include <linux/io.h> > > +#include <linux/module.h> > > +#include <linux/platform_device.h> > > +#include <linux/pwm.h> > > +#include <linux/slab.h> > > +#include <linux/bitfield.h> > > + > > +/* Register offsets */ > > +#define PWM_SIFIVE_PWMCFG 0x0 > > +#define PWM_SIFIVE_PWMCOUNT 0x8 > > +#define PWM_SIFIVE_PWMS 0x10 > > +#define PWM_SIFIVE_PWMCMP0 0x20 > > + > > +/* PWMCFG fields */ > > +#define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0) > > +#define PWM_SIFIVE_PWMCFG_STICKY BIT(8) > > +#define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9) > > +#define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10) > > +#define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12) > > +#define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13) > > +#define PWM_SIFIVE_PWMCFG_CENTER BIT(16) > > +#define PWM_SIFIVE_PWMCFG_GANG BIT(24) > > +#define PWM_SIFIVE_PWMCFG_IP BIT(28) > > + > > +/* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */ > > +#define PWM_SIFIVE_SIZE_PWMCMP 4 > > +#define PWM_SIFIVE_CMPWIDTH 16 > > +#define PWM_SIFIVE_DEFAULT_PERIOD 10000000 > > + > > +struct pwm_sifive_ddata { > > + struct pwm_chip chip; > > + struct mutex lock; /* lock to protect user_count */ > > + struct notifier_block notifier; > > + struct clk *clk; > > + void __iomem *regs; > > + unsigned int real_period; > > + unsigned int approx_period; > > + int user_count; > > +}; > > + > > +static inline > > +struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c) > > +{ > > + return container_of(c, struct pwm_sifive_ddata, chip); > > +} > > + > > +static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *dev) > > +{ > > + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip); > > + > > + mutex_lock(&pwm->lock); > > + pwm->user_count++; > > + mutex_unlock(&pwm->lock); > > + > > + return 0; > > +} > > + > > +static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *dev) > > +{ > > + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip); > > + > > + mutex_lock(&pwm->lock); > > + pwm->user_count--; > > + mutex_unlock(&pwm->lock); > > +} > > + > > +static void pwm_sifive_update_clock(struct pwm_sifive_ddata *pwm, > > + unsigned long rate) > > +{ > > + u32 val; > > + unsigned long long num; > > + /* > > + * The PWM unit is used with pwmzerocmp=0, so the only way to modify the > > + * period length is using pwmscale which provides the number of bits the > > + * counter is shifted before being feed to the comparators. A period > > + * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks. > > + * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period > > + */ > > + unsigned long scale_pow = > > + div64_ul(pwm->approx_period * (u64)rate, NSEC_PER_SEC); > > + int scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf); > > The situation here is as follows: The actual period length calculates > as: > > period_length = (0x10000 << scale) / rate > > Consider a clk rate of 600 MHz, then the driver maps "requested period" > to "actual period" as follows: > > if requested_period <= 218453 ns: > // scale = 0 > actual_period = 109226 ns > else if requested_period <= 436906 ns: > // scale = 1 > actual_period = 218452 ns > else if requested_period <= 873812 ns: > // scale = 2 > actual_period = 436904 ns > ... > else if requested_period <= 3579139413 ns: > // scale = 14 > actual_period = 1789569707 ns > else: > //scale = 15 > actual_period = 3579139413 ns > > There is an obvious rounding issue: If 218452 ns are requested, we > should end in the scale = 1 case for sure. (Similar issues exist for the > other cases.) > > And then there are cases that are not that clear: What if 218000 ns are > requested? Where should the line be drawn? Thierry? > > And what about long periods? The longest actually supported period > length is around 3.5 seconds. What if a consumer requests 18 seconds? > Where should the line be drawn when the driver is supposed to return > -EINVAL (or -ERANGE)? Thierry? > > > + val = PWM_SIFIVE_PWMCFG_EN_ALWAYS | > > + FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale); > > + writel(val, pwm->regs + PWM_SIFIVE_PWMCFG); > > Starting with this write the new period length might be active with the > previous duty cycle. Is this worth a comment? I think the window where > this can actually happen should be made as small as possible, so it > would be great to first calculate both register values and then write > them in two consecutive writels. The comment for this scenario has already been mentioned under the limitation on top of this driver. Anyway, I will try to implement your suggestion of consecutive writes > > > + /* As scale <= 15 the shift operation cannot overflow. */ > > + num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale); > > + pwm->real_period = div64_ul(num, rate); > > What about rounding here? I'd say use "round closest" instead of "round > down". > > > + dev_dbg(pwm->chip.dev, "New real_period = %u ns\n", pwm->real_period); > > +} > > + > > +static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *dev, > > + struct pwm_state *state) > > +{ > > + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip); > > + u32 duty, val; > > + > > + duty = readl(pwm->regs + PWM_SIFIVE_PWMCMP0 + > > + dev->hwpwm * PWM_SIFIVE_SIZE_PWMCMP); > > + > > + state->enabled = duty > 0; > > + > > + val = readl(pwm->regs + PWM_SIFIVE_PWMCFG); > > + if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS)) > > + state->enabled = false; > > + > > + state->period = pwm->real_period; > > + state->duty_cycle = > > + (u64)duty * pwm->real_period >> PWM_SIFIVE_CMPWIDTH; > > + state->polarity = PWM_POLARITY_INVERSED; > > If the PWM was configured for { .period = 1000000, .duty_cycle = > 1000000, .enabled = false, ... }, .get_state still returns .duty_cycle = > 0. Is this acceptable? > > > +} > > + > > +static int pwm_sifive_enable(struct pwm_chip *chip, bool enable) > > +{ > > + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip); > > + int ret; > > + > > + if (enable) { > > + ret = clk_enable(pwm->clk); > > + if (ret) { > > + dev_err(pwm->chip.dev, "Enable clk failed:%d\n", ret); > > Space after : please. Also applies to the other error strings. Sure > > > + return ret; > > + } > > + } > > + > > + if (!enable) > > + clk_disable(pwm->clk); > > + > > + return 0; > > +} > > + > > +static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *dev, > > + struct pwm_state *state) > > +{ > > + struct pwm_sifive_ddata *pwm = pwm_sifive_chip_to_ddata(chip); > > I think it would be more common to call the struct pwm_device pointer > "pwm" and the struct pwm_sifive_ddata pointer "ddata". > "dev" is usually a pointer to a struct device. The other functions need > the same adaption of course. Ok. Will change that > > > + unsigned int duty_cycle; > > + u32 frac; > > + struct pwm_state cur_state; > > + bool enabled; > > + int ret = 0; > > + unsigned long long num; > > + > > + if (state->polarity != PWM_POLARITY_INVERSED) > > + return -EINVAL; > > + > > + ret = clk_enable(pwm->clk); > > + if (ret) { > > + dev_err(pwm->chip.dev, "Enable clk failed:%d\n", ret); > > + return ret; > > + } > > + > > + mutex_lock(&pwm->lock); > > + cur_state = dev->state; > > + enabled = cur_state.enabled; > > + > > + if (state->period != pwm->approx_period) { > > + if (pwm->user_count != 1) { > > + ret = -EBUSY; > > + goto exit; > > + } > > + pwm->approx_period = state->period; > > + pwm_sifive_update_clock(pwm, clk_get_rate(pwm->clk)); > > + } > > + > > + duty_cycle = state->duty_cycle; > > + if (!state->enabled) > > + duty_cycle = 0; > > + > > + num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH); > > + frac = DIV_ROUND_CLOSEST_ULL(num, state->period); > > + /* The hardware cannot generate a 100% duty cycle */ > > + frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1); > > + > > + writel(frac, pwm->regs + PWM_SIFIVE_PWMCMP0 + > > + dev->hwpwm * PWM_SIFIVE_SIZE_PWMCMP); > > Here is another rounding question. Given that the period length can only > be modified by factors of two there are cases where the real period is > off by a factor of at least 1.4 which has an effect on the duty cycle. > Consider again an input clk rate of 600 MHz, and: > > .duty_cycle = 109226 [ns] > .period = 152916 [ns] > > We either have to go for real period = 109226 ns (as is currently > implemented) or with 218452 ns. Which one should be chosen I already > asked above. Here the question is (probably depending on the former > question) how should the actual duty_cycle be calculated? > > > + if (state->enabled != enabled) { > > + ret = pwm_sifive_enable(chip, state->enabled); > > + if (ret) > > + goto exit; > > This goto is a noop and so can be dropped. Sure > > > + } > > + > > +exit: > > + clk_disable(pwm->clk); > > + mutex_unlock(&pwm->lock); > > + return ret; > > +} > > + > > +static const struct pwm_ops pwm_sifive_ops = { > > + .request = pwm_sifive_request, > > + .free = pwm_sifive_free, > > + .get_state = pwm_sifive_get_state, > > + .apply = pwm_sifive_apply, > > + .owner = THIS_MODULE, > > +}; > > + > > +static int pwm_sifive_clock_notifier(struct notifier_block *nb, > > + unsigned long event, void *data) > > +{ > > + struct clk_notifier_data *ndata = data; > > + struct pwm_sifive_ddata *pwm = > > + container_of(nb, struct pwm_sifive_ddata, notifier); > > + > > + if (event == POST_RATE_CHANGE) > > + pwm_sifive_update_clock(pwm, ndata->new_rate); > > + > > + return NOTIFY_OK; > > +} > > + > > +static int pwm_sifive_probe(struct platform_device *pdev) > > +{ > > + struct device *dev = &pdev->dev; > > + struct pwm_sifive_ddata *pwm; > > + struct pwm_chip *chip; > > + struct resource *res; > > + int ret; > > + > > + pwm = devm_kzalloc(dev, sizeof(*pwm), GFP_KERNEL); > > + if (!pwm) > > + return -ENOMEM; > > + > > + mutex_init(&pwm->lock); > > + chip = &pwm->chip; > > + chip->dev = dev; > > + chip->ops = &pwm_sifive_ops; > > + chip->of_pwm_n_cells = 3; > > + chip->base = -1; > > + chip->npwm = 4; > > + > > + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); > > + pwm->regs = devm_ioremap_resource(dev, res); > > + if (IS_ERR(pwm->regs)) { > > + dev_err(dev, "Unable to map IO resources\n"); > > + return PTR_ERR(pwm->regs); > > + } > > + > > + pwm->clk = devm_clk_get(dev, NULL); > > + if (IS_ERR(pwm->clk)) { > > + if (PTR_ERR(pwm->clk) != -EPROBE_DEFER) > > + dev_err(dev, "Unable to find controller clock\n"); > > + return PTR_ERR(pwm->clk); > > + } > > + > > + ret = clk_prepare_enable(pwm->clk); > > + if (ret) { > > + dev_err(dev, "failed to enable clock for pwm: %d\n", ret); > > + return ret; > > + } > > + > > + /* Watch for changes to underlying clock frequency */ > > + pwm->notifier.notifier_call = pwm_sifive_clock_notifier; > > + ret = clk_notifier_register(pwm->clk, &pwm->notifier); > > Is it a problem when the notifier is called before pwmchip_add was > called? Out of interest: Is a real problem addressed here? I.e.: Does > the input clock actually change in practise? Also note that > pwm_sifive_clock_notifier only adapts the period but not the duty cycle > (any more). > > Given that a clk rate change affects the output, I wonder if the change > should be declined if the pwm is running. > > > + if (ret) { > > + dev_err(dev, "failed to register clock notifier: %d\n", ret); > > + goto disable_clk; > > + } > > + > > + /* Initialize PWM */ > > + pwm->approx_period = PWM_SIFIVE_DEFAULT_PERIOD; > > + pwm_sifive_update_clock(pwm, clk_get_rate(pwm->clk)); > > If the bootloader setup a display with a backlight driven by a PWM it > would be ideal to not modify the already running hardware here. Ok, will drop this initialization. > > > + ret = pwmchip_add(chip); > > + if (ret < 0) { > > + dev_err(dev, "cannot register PWM: %d\n", ret); > > + goto unregister_clk; > > + } > > + > > + platform_set_drvdata(pdev, pwm); > > + dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm); > > + > > + return 0; > > + > > +unregister_clk: > > + clk_notifier_unregister(pwm->clk, &pwm->notifier); > > +disable_clk: > > + clk_disable_unprepare(pwm->clk); > > + > > + return ret; > > +} > > + > > +static int pwm_sifive_remove(struct platform_device *dev) > > +{ > > + struct pwm_sifive_ddata *pwm = platform_get_drvdata(dev); > > + int ret, ch; > > + bool is_enabled = false; > > + > > + ret = pwmchip_remove(&pwm->chip); > > + clk_notifier_unregister(pwm->clk, &pwm->notifier); > > + > > + for (ch = 0; ch < pwm->chip.npwm; ch++) { > > + if (pwm_is_enabled(&pwm->chip.pwms[ch])) { > > Here is another consumer API function call. Will avoid using it. > > > + is_enabled = true; > > + break; > > + } > > + } > > + if (is_enabled) > > + clk_disable(pwm->clk); > > + clk_unprepare(pwm->clk); > > I think you're leaking a clk_enable here. The probe function does one > unconditionally that is never undone. Will use clk_disable_unprepare instead of clk_unprepare > > > + return ret; > > +} > > + > > +static const struct of_device_id pwm_sifive_of_match[] = { > > + { .compatible = "sifive,pwm0" }, > > + {}, > > +}; > > +MODULE_DEVICE_TABLE(of, pwm_sifive_of_match); > > + > > +static struct platform_driver pwm_sifive_driver = { > > + .probe = pwm_sifive_probe, > > + .remove = pwm_sifive_remove, > > + .driver = { > > + .name = "pwm-sifive", > > + .of_match_table = pwm_sifive_of_match, > > + }, > > +}; > > +module_platform_driver(pwm_sifive_driver); > > + > > +MODULE_DESCRIPTION("SiFive PWM driver"); > > +MODULE_LICENSE("GPL v2"); > > Best regards > Uwe > > -- > Pengutronix e.K. | Uwe Kleine-König | > Industrial Linux Solutions | http://www.pengutronix.de/ |