From: Dietmar Eggemann <dietmar.eggemann@xxxxxxx> A CPUfreq driver, like the scpi driver used on Juno boards, which provide the Energy Model with power cost information via the PM_OPP of_dev_pm_opp_get_cpu_power() function, do need the dynamic-power-coefficient (C) in the device tree. Method used to obtain the C value: C is computed by measuring energy (E) consumption of a frequency domain (FD) over a 10s runtime (t) sysbench workload running at each Operating Performance Point (OPP) affine to 1 or 2 CPUs of that FD while the other CPUs of the system are hotplugged out. By definition all CPUs of a FD have the the same micro-architecture. An OPP is characterized by a certain frequency (f) and voltage (V) value. The corresponding power values (P) are calculated by dividing the delta of the E values between the runs with 2 and 1 CPUs by t. With n data tuples (P, f, V), n equal to number of OPPs for this frequency domain, we can solve C by: P = Pstat + Pdyn P = Pstat + CV²f Cx = (Px - P1)/(Vx²fx - V1²f1) with x = {2, ..., n} The C value is the arithmetic mean out of {C2, ..., Cn}. Since DVFS is broken on Juno r1, no dynamic-power-coefficient information has been added to its dts file. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@xxxxxxx> Signed-off-by: Quentin Perret <quentin.perret@xxxxxxx> --- arch/arm64/boot/dts/arm/juno-r2.dts | 6 ++++++ arch/arm64/boot/dts/arm/juno.dts | 6 ++++++ 2 files changed, 12 insertions(+) diff --git a/arch/arm64/boot/dts/arm/juno-r2.dts b/arch/arm64/boot/dts/arm/juno-r2.dts index ab77adb4f3c2..66f0ec79c864 100644 --- a/arch/arm64/boot/dts/arm/juno-r2.dts +++ b/arch/arm64/boot/dts/arm/juno-r2.dts @@ -99,6 +99,7 @@ clocks = <&scpi_dvfs 0>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <1024>; + dynamic-power-coefficient = <450>; }; A72_1: cpu@1 { @@ -116,6 +117,7 @@ clocks = <&scpi_dvfs 0>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <1024>; + dynamic-power-coefficient = <450>; }; A53_0: cpu@100 { @@ -133,6 +135,7 @@ clocks = <&scpi_dvfs 1>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <485>; + dynamic-power-coefficient = <140>; }; A53_1: cpu@101 { @@ -150,6 +153,7 @@ clocks = <&scpi_dvfs 1>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <485>; + dynamic-power-coefficient = <140>; }; A53_2: cpu@102 { @@ -167,6 +171,7 @@ clocks = <&scpi_dvfs 1>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <485>; + dynamic-power-coefficient = <140>; }; A53_3: cpu@103 { @@ -184,6 +189,7 @@ clocks = <&scpi_dvfs 1>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <485>; + dynamic-power-coefficient = <140>; }; A72_L2: l2-cache0 { diff --git a/arch/arm64/boot/dts/arm/juno.dts b/arch/arm64/boot/dts/arm/juno.dts index 08d4ba1716c3..9890afdda77b 100644 --- a/arch/arm64/boot/dts/arm/juno.dts +++ b/arch/arm64/boot/dts/arm/juno.dts @@ -98,6 +98,7 @@ clocks = <&scpi_dvfs 0>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <1024>; + dynamic-power-coefficient = <530>; }; A57_1: cpu@1 { @@ -115,6 +116,7 @@ clocks = <&scpi_dvfs 0>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <1024>; + dynamic-power-coefficient = <530>; }; A53_0: cpu@100 { @@ -132,6 +134,7 @@ clocks = <&scpi_dvfs 1>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <578>; + dynamic-power-coefficient = <140>; }; A53_1: cpu@101 { @@ -149,6 +152,7 @@ clocks = <&scpi_dvfs 1>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <578>; + dynamic-power-coefficient = <140>; }; A53_2: cpu@102 { @@ -166,6 +170,7 @@ clocks = <&scpi_dvfs 1>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <578>; + dynamic-power-coefficient = <140>; }; A53_3: cpu@103 { @@ -183,6 +188,7 @@ clocks = <&scpi_dvfs 1>; cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; capacity-dmips-mhz = <578>; + dynamic-power-coefficient = <140>; }; A57_L2: l2-cache0 { -- 2.20.1