On Sunday, 10 June 2018 14:09:24 MSK Stefan Agner wrote: > On 09.06.2018 14:21, Dmitry Osipenko wrote: > > On Saturday, 9 June 2018 00:51:01 MSK Stefan Agner wrote: > >> On 01.06.2018 11:20, Dmitry Osipenko wrote: > >> > On 01.06.2018 01:16, Stefan Agner wrote: > >> >> Add support for the NAND flash controller found on NVIDIA > >> >> Tegra 2 SoCs. This implementation does not make use of the > >> >> command queue feature. Regular operations/data transfers are > >> >> done in PIO mode. Page read/writes with hardware ECC make > >> >> use of the DMA for data transfer. > >> >> > >> >> Signed-off-by: Lucas Stach <dev@xxxxxxxxxx> > >> >> Signed-off-by: Stefan Agner <stefan@xxxxxxxx> > >> >> --- > >> >> > >> >> MAINTAINERS | 7 + > >> >> drivers/mtd/nand/raw/Kconfig | 6 + > >> >> drivers/mtd/nand/raw/Makefile | 1 + > >> >> drivers/mtd/nand/raw/tegra_nand.c | 1143 > >> >> +++++++++++++++++++++++++++++ > >> >> 4 files changed, 1157 insertions(+) > >> >> create mode 100644 drivers/mtd/nand/raw/tegra_nand.c > >> >> > >> >> diff --git a/MAINTAINERS b/MAINTAINERS > >> >> index 58b9861ccf99..c2e5571c85d4 100644 > >> >> --- a/MAINTAINERS > >> >> +++ b/MAINTAINERS > >> >> @@ -13844,6 +13844,13 @@ M: Laxman Dewangan <ldewangan@xxxxxxxxxx> > >> >> > >> >> S: Supported > >> >> F: drivers/input/keyboard/tegra-kbc.c > >> >> > >> >> +TEGRA NAND DRIVER > >> >> +M: Stefan Agner <stefan@xxxxxxxx> > >> >> +M: Lucas Stach <dev@xxxxxxxxxx> > >> >> +S: Maintained > >> >> +F: Documentation/devicetree/bindings/mtd/nvidia-tegra20-nand.txt > >> >> +F: drivers/mtd/nand/raw/tegra_nand.c > >> >> + > >> >> > >> >> TEGRA PWM DRIVER > >> >> M: Thierry Reding <thierry.reding@xxxxxxxxx> > >> >> S: Supported > >> >> > >> >> diff --git a/drivers/mtd/nand/raw/Kconfig > >> >> b/drivers/mtd/nand/raw/Kconfig > >> >> index 19a2b283fbbe..e9093f52371e 100644 > >> >> --- a/drivers/mtd/nand/raw/Kconfig > >> >> +++ b/drivers/mtd/nand/raw/Kconfig > >> >> @@ -534,4 +534,10 @@ config MTD_NAND_MTK > >> >> > >> >> Enables support for NAND controller on MTK SoCs. > >> >> This controller is found on mt27xx, mt81xx, mt65xx SoCs. > >> >> > >> >> +config MTD_NAND_TEGRA > >> >> + tristate "Support for NAND controller on NVIDIA Tegra" > >> >> + depends on ARCH_TEGRA || COMPILE_TEST > >> >> + help > >> >> + Enables support for NAND flash controller on NVIDIA Tegra SoC. > >> >> + > >> >> > >> >> endif # MTD_NAND > >> >> > >> >> diff --git a/drivers/mtd/nand/raw/Makefile > >> >> b/drivers/mtd/nand/raw/Makefile > >> >> index 165b7ef9e9a1..d5a5f9832b88 100644 > >> >> --- a/drivers/mtd/nand/raw/Makefile > >> >> +++ b/drivers/mtd/nand/raw/Makefile > >> >> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += > >> >> hisi504_nand.o > >> >> > >> >> obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ > >> >> obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o > >> >> obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o > >> >> > >> >> +obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o > >> >> > >> >> nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o > >> >> nand-objs += nand_amd.o > >> >> > >> >> diff --git a/drivers/mtd/nand/raw/tegra_nand.c > >> >> b/drivers/mtd/nand/raw/tegra_nand.c new file mode 100644 > >> >> index 000000000000..e9664f2938a3 > >> >> --- /dev/null > >> >> +++ b/drivers/mtd/nand/raw/tegra_nand.c > >> >> @@ -0,0 +1,1143 @@ > >> >> +// SPDX-License-Identifier: GPL-2.0 > >> >> +/* > >> >> + * Copyright (C) 2018 Stefan Agner <stefan@xxxxxxxx> > >> >> + * Copyright (C) 2014-2015 Lucas Stach <dev@xxxxxxxxxx> > >> >> + * Copyright (C) 2012 Avionic Design GmbH > >> >> + */ > >> >> + > >> >> +#include <linux/clk.h> > >> >> +#include <linux/completion.h> > >> >> +#include <linux/delay.h> > >> >> +#include <linux/dma-mapping.h> > >> >> +#include <linux/err.h> > >> >> +#include <linux/gpio/consumer.h> > >> >> +#include <linux/interrupt.h> > >> >> +#include <linux/io.h> > >> >> +#include <linux/module.h> > >> >> +#include <linux/mtd/partitions.h> > >> >> +#include <linux/mtd/rawnand.h> > >> >> +#include <linux/of.h> > >> >> +#include <linux/platform_device.h> > >> >> +#include <linux/reset.h> > >> >> + > >> >> +#define CMD 0x00 > >> >> +#define CMD_GO BIT(31) > >> >> +#define CMD_CLE BIT(30) > >> >> +#define CMD_ALE BIT(29) > >> >> +#define CMD_PIO BIT(28) > >> >> +#define CMD_TX BIT(27) > >> >> +#define CMD_RX BIT(26) > >> >> +#define CMD_SEC_CMD BIT(25) > >> >> +#define CMD_AFT_DAT BIT(24) > >> >> +#define CMD_TRANS_SIZE(x) (((x - 1) & 0xf) << 20) > >> >> +#define CMD_A_VALID BIT(19) > >> >> +#define CMD_B_VALID BIT(18) > >> >> +#define CMD_RD_STATUS_CHK BIT(17) > >> >> +#define CMD_RBSY_CHK BIT(16) > >> >> +#define CMD_CE(x) BIT((8 + ((x) & 0x7))) > >> >> +#define CMD_CLE_SIZE(x) (((x - 1) & 0x3) << 4) > >> >> +#define CMD_ALE_SIZE(x) (((x - 1) & 0xf) << 0) > >> >> + > >> >> +#define STATUS 0x04 > >> >> + > >> >> +#define ISR 0x08 > >> >> +#define ISR_CORRFAIL_ERR BIT(24) > >> >> +#define ISR_UND BIT(7) > >> >> +#define ISR_OVR BIT(6) > >> >> +#define ISR_CMD_DONE BIT(5) > >> >> +#define ISR_ECC_ERR BIT(4) > >> >> + > >> >> +#define IER 0x0c > >> >> +#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) > >> >> +#define IER_UND BIT(7) > >> >> +#define IER_OVR BIT(6) > >> >> +#define IER_CMD_DONE BIT(5) > >> >> +#define IER_ECC_ERR BIT(4) > >> >> +#define IER_GIE BIT(0) > >> >> + > >> >> +#define CFG 0x10 > >> >> +#define CFG_HW_ECC BIT(31) > >> >> +#define CFG_ECC_SEL BIT(30) > >> >> +#define CFG_ERR_COR BIT(29) > >> >> +#define CFG_PIPE_EN BIT(28) > >> >> +#define CFG_TVAL_4 (0 << 24) > >> >> +#define CFG_TVAL_6 (1 << 24) > >> >> +#define CFG_TVAL_8 (2 << 24) > >> >> +#define CFG_SKIP_SPARE BIT(23) > >> >> +#define CFG_BUS_WIDTH_16 BIT(21) > >> >> +#define CFG_COM_BSY BIT(20) > >> >> +#define CFG_PS_256 (0 << 16) > >> >> +#define CFG_PS_512 (1 << 16) > >> >> +#define CFG_PS_1024 (2 << 16) > >> >> +#define CFG_PS_2048 (3 << 16) > >> >> +#define CFG_PS_4096 (4 << 16) > >> >> +#define CFG_SKIP_SPARE_SIZE_4 (0 << 14) > >> >> +#define CFG_SKIP_SPARE_SIZE_8 (1 << 14) > >> >> +#define CFG_SKIP_SPARE_SIZE_12 (2 << 14) > >> >> +#define CFG_SKIP_SPARE_SIZE_16 (3 << 14) > >> >> +#define CFG_TAG_BYTE_SIZE(x) ((x) & 0xff) > >> >> + > >> >> +#define TIMING_1 0x14 > >> >> +#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) > >> >> +#define TIMING_TWB(x) (((x) & 0xf) << 24) > >> >> +#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) > >> >> +#define TIMING_TWHR(x) (((x) & 0xf) << 16) > >> >> +#define TIMING_TCS(x) (((x) & 0x3) << 14) > >> >> +#define TIMING_TWH(x) (((x) & 0x3) << 12) > >> >> +#define TIMING_TWP(x) (((x) & 0xf) << 8) > >> >> +#define TIMING_TRH(x) (((x) & 0x3) << 4) > >> >> +#define TIMING_TRP(x) (((x) & 0xf) << 0) > >> >> + > >> >> +#define RESP 0x18 > >> >> + > >> >> +#define TIMING_2 0x1c > >> >> +#define TIMING_TADL(x) ((x) & 0xf) > >> >> + > >> >> +#define CMD_1 0x20 > >> >> +#define CMD_2 0x24 > >> >> +#define ADDR_1 0x28 > >> >> +#define ADDR_2 0x2c > >> >> + > >> >> +#define DMA_CTRL 0x30 > >> >> +#define DMA_CTRL_GO BIT(31) > >> >> +#define DMA_CTRL_IN (0 << 30) > >> >> +#define DMA_CTRL_OUT BIT(30) > >> >> +#define DMA_CTRL_PERF_EN BIT(29) > >> >> +#define DMA_CTRL_IE_DONE BIT(28) > >> >> +#define DMA_CTRL_REUSE BIT(27) > >> >> +#define DMA_CTRL_BURST_1 (2 << 24) > >> >> +#define DMA_CTRL_BURST_4 (3 << 24) > >> >> +#define DMA_CTRL_BURST_8 (4 << 24) > >> >> +#define DMA_CTRL_BURST_16 (5 << 24) > >> >> +#define DMA_CTRL_IS_DONE BIT(20) > >> >> +#define DMA_CTRL_EN_A BIT(2) > >> >> +#define DMA_CTRL_EN_B BIT(1) > >> >> + > >> >> +#define DMA_CFG_A 0x34 > >> >> +#define DMA_CFG_B 0x38 > >> >> + > >> >> +#define FIFO_CTRL 0x3c > >> >> +#define FIFO_CTRL_CLR_ALL BIT(3) > >> >> + > >> >> +#define DATA_PTR 0x40 > >> >> +#define TAG_PTR 0x44 > >> >> +#define ECC_PTR 0x48 > >> >> + > >> >> +#define DEC_STATUS 0x4c > >> >> +#define DEC_STATUS_A_ECC_FAIL BIT(1) > >> >> +#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 > >> >> +#define DEC_STATUS_ERR_COUNT_SHIFT 16 > >> >> + > >> >> +#define HWSTATUS_CMD 0x50 > >> >> +#define HWSTATUS_MASK 0x54 > >> >> +#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) > >> >> +#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) > >> >> +#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) > >> >> +#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) > >> >> + > >> >> +#define BCH_CONFIG 0xcc > >> >> +#define BCH_ENABLE BIT(0) > >> >> +#define BCH_TVAL_4 (0 << 4) > >> >> +#define BCH_TVAL_8 (1 << 4) > >> >> +#define BCH_TVAL_14 (2 << 4) > >> >> +#define BCH_TVAL_16 (3 << 4) > >> >> + > >> >> +#define DEC_STAT_RESULT 0xd0 > >> >> +#define DEC_STAT_BUF 0xd4 > >> >> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 > >> >> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 > >> >> +#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 > >> >> +#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 > >> >> +#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 > >> >> +#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 > >> >> + > >> >> +#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off)) > >> >> + > >> >> +#define SKIP_SPARE_BYTES 4 > >> >> +#define BITS_PER_STEP_RS 18 > >> >> +#define BITS_PER_STEP_BCH 13 > >> >> + > >> >> +struct tegra_nand_controller { > >> >> + struct nand_hw_control controller; > >> >> + void __iomem *regs; > >> >> + struct clk *clk; > >> >> + struct device *dev; > >> >> + struct completion command_complete; > >> >> + struct completion dma_complete; > >> >> + bool last_read_error; > >> >> + int cur_chip; > >> >> + struct nand_chip *chip; > >> >> +}; > >> >> + > >> >> +struct tegra_nand_chip { > >> >> + struct nand_chip chip; > >> >> + struct gpio_desc *wp_gpio; > >> >> + struct mtd_oob_region tag; > >> >> +}; > >> >> + > >> >> +static inline struct tegra_nand_controller *to_tegra_ctrl( > >> >> + struct nand_hw_control *hw_ctrl) > >> >> +{ > >> >> + return container_of(hw_ctrl, struct tegra_nand_controller, > > > > controller); > > > >> >> +} > >> >> + > >> >> +static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip > >> >> *chip) +{ > >> >> + return container_of(chip, struct tegra_nand_chip, chip); > >> >> +} > >> >> + > >> >> +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int > >> >> section, > >> >> + struct mtd_oob_region *oobregion) > >> >> +{ > >> >> + struct nand_chip *chip = mtd_to_nand(mtd); > >> >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * > >> >> chip->ecc.strength, > >> >> + BITS_PER_BYTE); > >> >> + > >> >> + if (section > 0) > >> >> + return -ERANGE; > >> >> + > >> >> + oobregion->offset = SKIP_SPARE_BYTES; > >> >> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); > >> >> + > >> >> + return 0; > >> >> +} > >> >> + > >> >> +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int > >> >> section, > >> >> + struct mtd_oob_region *oobregion) > >> >> +{ > >> >> + struct nand_chip *chip = mtd_to_nand(mtd); > >> >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * > >> >> chip->ecc.strength, > >> >> + BITS_PER_BYTE); > >> >> + > >> >> + if (section > 0) > >> >> + return -ERANGE; > >> >> + > >> >> + oobregion->offset = SKIP_SPARE_BYTES + > >> >> + round_up(bytes_per_step * chip->ecc.steps, 4); > >> >> + oobregion->length = mtd->oobsize - oobregion->offset; > >> >> + > >> >> + return 0; > >> >> +} > >> >> + > >> >> +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { > >> >> + .ecc = tegra_nand_ooblayout_rs_ecc, > >> >> + .free = tegra_nand_ooblayout_rs_free, > >> >> +}; > >> >> + > >> >> +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int > >> >> section, > >> >> + struct mtd_oob_region *oobregion) > >> >> +{ > >> >> + struct nand_chip *chip = mtd_to_nand(mtd); > >> >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * > >> >> chip->ecc.strength, > >> >> + BITS_PER_BYTE); > >> >> + > >> >> + if (section > 0) > >> >> + return -ERANGE; > >> >> + > >> >> + oobregion->offset = SKIP_SPARE_BYTES; > >> >> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); > >> >> + > >> >> + return 0; > >> >> +} > >> >> + > >> >> +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int > >> >> section, + struct mtd_oob_region *oobregion) > >> >> +{ > >> >> + struct nand_chip *chip = mtd_to_nand(mtd); > >> >> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * > >> >> chip->ecc.strength, > >> >> + BITS_PER_BYTE); > >> >> + > >> >> + if (section > 0) > >> >> + return -ERANGE; > >> >> + > >> >> + oobregion->offset = SKIP_SPARE_BYTES + > >> >> + round_up(bytes_per_step * chip->ecc.steps, 4); > >> >> + oobregion->length = mtd->oobsize - oobregion->offset; > >> >> + > >> >> + return 0; > >> >> +} > >> >> + > >> >> +/* > >> >> + * Layout with tag bytes is > >> >> + * > >> >> + * > >> >> ---------------------------------------------------------------------- > >> >> -- > >> >> -- + * | main area | skip bytes | tag bytes | > >> >> parity | .. | + * > >> >> ---------------------------------------------------------------------- > >> >> -- > >> >> -- + * > >> >> + * If not tag bytes are written, parity moves right after skip bytes! > >> >> + */ > >> >> +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { > >> >> + .ecc = tegra_nand_ooblayout_bch_ecc, > >> >> + .free = tegra_nand_ooblayout_bch_free, > >> >> +}; > >> >> + > >> >> +static irqreturn_t tegra_nand_irq(int irq, void *data) > >> >> +{ > >> >> + struct tegra_nand_controller *ctrl = data; > >> >> + u32 isr, dma; > >> >> + > >> >> + isr = readl_relaxed(ctrl->regs + ISR); > >> >> + dma = readl_relaxed(ctrl->regs + DMA_CTRL); > >> >> + dev_dbg(ctrl->dev, "isr %08x\n", isr); > >> >> + > >> >> + if (!isr && !(dma & DMA_CTRL_IS_DONE)) > >> >> + return IRQ_NONE; > >> >> + > >> >> + /* > >> >> + * The bit name is somewhat missleading: This is also set when > >> >> + * HW ECC was successful. The data sheet states: > >> >> + * Correctable OR Un-correctable errors occurred in the DMA > > > > transfer... > > > >> >> + */ > >> >> + if (isr & ISR_CORRFAIL_ERR) > >> >> + ctrl->last_read_error = true; > >> >> + > >> >> + if (isr & ISR_CMD_DONE) > >> >> + complete(&ctrl->command_complete); > >> >> + > >> >> + if (isr & ISR_UND) > >> >> + dev_err(ctrl->dev, "FIFO underrun\n"); > >> >> + > >> >> + if (isr & ISR_OVR) > >> >> + dev_err(ctrl->dev, "FIFO overrun\n"); > >> >> + > >> >> + /* handle DMA interrupts */ > >> >> + if (dma & DMA_CTRL_IS_DONE) { > >> >> + writel_relaxed(dma, ctrl->regs + DMA_CTRL); > >> >> + complete(&ctrl->dma_complete); > >> >> + } > >> >> + > >> >> + /* clear interrupts */ > >> >> + writel_relaxed(isr, ctrl->regs + ISR); > >> >> + > >> >> + return IRQ_HANDLED; > >> >> +} > >> >> + > >> >> +static const char * const tegra_nand_reg_names[] = { > >> >> + "COMMAND", > >> >> + "STATUS", > >> >> + "ISR", > >> >> + "IER", > >> >> + "CONFIG", > >> >> + "TIMING", > >> >> + NULL, > >> >> + "TIMING2", > >> >> + "CMD_REG1", > >> >> + "CMD_REG2", > >> >> + "ADDR_REG1", > >> >> + "ADDR_REG2", > >> >> + "DMA_MST_CTRL", > >> >> + "DMA_CFG_A", > >> >> + "DMA_CFG_B", > >> >> + "FIFO_CTRL", > >> >> +}; > >> >> + > >> >> +static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) > >> >> +{ > >> >> + u32 reg; > >> >> + int i; > >> >> + > >> >> + dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); > >> >> + for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { > >> >> + const char *reg_name = tegra_nand_reg_names[i]; > >> >> + > >> >> + if (!reg_name) > >> >> + continue; > >> >> + > >> >> + reg = readl_relaxed(ctrl->regs + (i * 4)); > >> >> + dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); > >> >> + } > >> >> +} > >> >> + > >> >> +static int tegra_nand_cmd(struct nand_chip *chip, > >> >> + const struct nand_subop *subop) > >> >> +{ > >> >> + const struct nand_op_instr *instr; > >> >> + const struct nand_op_instr *instr_data_in = NULL; > >> >> + struct tegra_nand_controller *ctrl = > >> >> to_tegra_ctrl(chip->controller); > >> >> + unsigned int op_id, size = 0, offset = 0; > >> >> + bool first_cmd = true; > >> >> + u32 reg, cmd = 0; > >> >> + int ret; > >> >> + > >> >> + for (op_id = 0; op_id < subop->ninstrs; op_id++) { > >> >> + unsigned int naddrs, i; > >> >> + const u8 *addrs; > >> >> + u32 addr1 = 0, addr2 = 0; > >> >> + > >> >> + instr = &subop->instrs[op_id]; > >> >> + > >> >> + switch (instr->type) { > >> >> + case NAND_OP_CMD_INSTR: > >> >> + if (first_cmd) { > >> >> + cmd |= CMD_CLE; > >> >> + writel_relaxed(instr->ctx.cmd.opcode, > >> >> + ctrl->regs + CMD_1); > >> >> + } else { > >> >> + cmd |= CMD_SEC_CMD; > >> >> + writel_relaxed(instr->ctx.cmd.opcode, > >> >> + ctrl->regs + CMD_2); > >> >> + } > >> >> + first_cmd = false; > >> >> + break; > >> >> + case NAND_OP_ADDR_INSTR: > >> >> + offset = nand_subop_get_addr_start_off(subop, op_id); > >> >> + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); > >> >> + addrs = &instr->ctx.addr.addrs[offset]; > >> >> + > >> >> + cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs); > >> >> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) > >> >> + addr1 |= *addrs++ << (BITS_PER_BYTE * i); > >> >> + naddrs -= i; > >> >> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) > >> >> + addr2 |= *addrs++ << (BITS_PER_BYTE * i); > >> >> + writel_relaxed(addr1, ctrl->regs + ADDR_1); > >> >> + writel_relaxed(addr2, ctrl->regs + ADDR_2); > >> >> + break; > >> >> + > >> >> + case NAND_OP_DATA_IN_INSTR: > >> >> + size = nand_subop_get_data_len(subop, op_id); > >> >> + offset = nand_subop_get_data_start_off(subop, op_id); > >> >> + > >> >> + cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_RX | > >> >> + CMD_A_VALID; > >> >> + > >> >> + instr_data_in = instr; > >> >> + break; > >> >> + > >> >> + case NAND_OP_DATA_OUT_INSTR: > >> >> + size = nand_subop_get_data_len(subop, op_id); > >> >> + offset = nand_subop_get_data_start_off(subop, op_id); > >> >> + > >> >> + cmd |= CMD_TRANS_SIZE(size) | CMD_PIO | CMD_TX | > >> >> + CMD_A_VALID; > >> >> + > >> >> + memcpy(®, instr->ctx.data.buf.out + offset, size); > >> >> + writel_relaxed(reg, ctrl->regs + RESP); > >> >> + > >> >> + break; > >> >> + case NAND_OP_WAITRDY_INSTR: > >> >> + cmd |= CMD_RBSY_CHK; > >> >> + break; > >> >> + > >> >> + } > >> >> + } > >> >> + > >> >> + cmd |= CMD_GO | CMD_CE(ctrl->cur_chip); > >> >> + writel_relaxed(cmd, ctrl->regs + CMD); > >> >> + ret = wait_for_completion_timeout(&ctrl->command_complete, > >> >> + msecs_to_jiffies(500)); > >> >> + if (!ret) { > >> >> + dev_err(ctrl->dev, "CMD timeout\n"); > >> >> + tegra_nand_dump_reg(ctrl); > >> >> + return -ETIMEDOUT; > >> >> + } > >> > > >> > - wait_for_completion_timeout() could fail > >> > >> Not according to: > >> https://elixir.bootlin.com/linux/latest/source/kernel/sched/completion.c# > >> L14 0 https://www.kernel.org/doc/Documentation/scheduler/completion.txt > >> > >> Afaik, only the _interruptible variant can fail. > > > > Okay. > > > >> Btw, maybe we should use the _io variant? > > > > Looks like the _io variant is something specific to block/FS subsys and > > shouldn't be used by the drivers. > > > >> > - HW shall be reset > >> > - completion shall be re-inited because IRQ could fire just after the > >> > completion timeout > >> > > >> > I'd write it something like this: > >> > > >> > #define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) > >> > > >> > #define HWSTATUS_MASK (HWSTATUS_RDSTATUS_MASK(1) | \ > >> > > >> > HWSTATUS_RDSTATUS_VALUE(0) | \ > >> > HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ > >> > HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) > >> > > >> > #define HW_TIMEOUT 500 > >> > > >> > void tegra_nand_controller_reset(struct tegra_nand_controller *ctrl) > >> > { > >> > > >> > int err; > >> > > >> > disable_irq(ctrl->irq); > >> > > >> > err = reset_control_reset(ctrl->rst); > >> > if (err) { > >> > > >> > dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); > >> > msleep(HW_TIMEOUT); > >> > > >> > } > >> > > >> > writel_relaxed(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD); > >> > writel_relaxed(HWSTATUS_MASK, ctrl->regs + HWSTATUS_MASK); > >> > writel_relaxed(INT_MASK, ctrl->regs + ISR); > >> > >> If we do a controller reset, there is much more state than that which > >> needs to be restored. A lot of it is not readily available currently > >> (timing, ECC settings...) > >> > >> That seems a lot of work for a code path I do not intend to ever use :-) > > > > Are you sure that resetting HW resets the timing and other registers > > configuration? Reset implementation is HW-specific, like for example in a > > case of a video decoder the registers state is re-intialized on HW reset, > > but registers configuration is untouched in a case of resetting GPU. I'd > > suggest to check whether NAND controller resetting affects the HW > > configuration. > It seems all registers are set back to their documented reset value: > > [boot loader/ROM initialized values] > [ 1.270253] tegra-nand 70008000.nand: Tegra NAND controller register > dump > [ 1.277051] tegra-nand 70008000.nand: COMMAND: 0x66880104 > [ 1.282457] tegra-nand 70008000.nand: STATUS: 0x00000101 > [ 1.287763] tegra-nand 70008000.nand: ISR: 0x01000120 > [ 1.292818] tegra-nand 70008000.nand: IER: 0x00000000 > [ 1.297863] tegra-nand 70008000.nand: CONFIG: 0x00840000 > [ 1.303181] tegra-nand 70008000.nand: TIMING: 0x05040000 > [ 1.308486] tegra-nand 70008000.nand: TIMING2: 0x00000003 > [ 1.313897] tegra-nand 70008000.nand: CMD_REG1: 0x00000000 > [ 1.319377] tegra-nand 70008000.nand: CMD_REG2: 0x00000030 > [ 1.324868] tegra-nand 70008000.nand: ADDR_REG1: 0x03000000 > [ 1.330435] tegra-nand 70008000.nand: ADDR_REG2: 0x00000000 > [ 1.336011] tegra-nand 70008000.nand: DMA_MST_CTRL: 0x04100004 > [ 1.341838] tegra-nand 70008000.nand: DMA_CFG_A: 0x00000fff > [ 1.347415] tegra-nand 70008000.nand: DMA_CFG_B: 0x0000001b > [ 1.352991] tegra-nand 70008000.nand: FIFO_CTRL: 0x0000aa00 > [reset] > [ 1.358559] tegra-nand 70008000.nand: Tegra NAND controller register > dump > [ 1.365352] tegra-nand 70008000.nand: COMMAND: 0x00800004 > [ 1.370744] tegra-nand 70008000.nand: STATUS: 0x00000101 > [ 1.376060] tegra-nand 70008000.nand: ISR: 0x00000100 > [ 1.381105] tegra-nand 70008000.nand: IER: 0x00000000 > [ 1.386161] tegra-nand 70008000.nand: CONFIG: 0x10030000 > [ 1.391466] tegra-nand 70008000.nand: TIMING: 0x00000000 > [ 1.396782] tegra-nand 70008000.nand: TIMING2: 0x00000000 > [ 1.402174] tegra-nand 70008000.nand: CMD_REG1: 0x00000000 > [ 1.407664] tegra-nand 70008000.nand: CMD_REG2: 0x00000000 > [ 1.413156] tegra-nand 70008000.nand: ADDR_REG1: 0x00000000 > [ 1.418722] tegra-nand 70008000.nand: ADDR_REG2: 0x00000000 > [ 1.424297] tegra-nand 70008000.nand: DMA_MST_CTRL: 0x24000000 > [ 1.430123] tegra-nand 70008000.nand: DMA_CFG_A: 0x00000000 > [ 1.435698] tegra-nand 70008000.nand: DMA_CFG_B: 0x00000000 > [ 1.441264] tegra-nand 70008000.nand: FIFO_CTRL: 0x0000aa00 Alright, then indeed it's not really worth to bother with HW resetting here. Probably only a kernel module reload or a reboot will help if HW is hung. Maybe NAND controller / chip recovering is something that NAND core should be handling in a such case by providing a nand_controller_reset() hook? -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html