Note that it's certainly possible to encode U-Boot and kernel with RS[4] and still use RS[8] for the rootfs even if the boot rom doesn't support it. This whole 'use-bootable-ecc-only' business seems a bit overengineered. 2018-05-28 14:43 GMT+02:00 Stefan Agner <stefan@xxxxxxxx>: > On 28.05.2018 13:57, Dmitry Osipenko wrote: >> On 28.05.2018 00:54, Stefan Agner wrote: >>> Add support for the NAND flash controller found on NVIDIA >>> Tegra 2 SoCs. This implementation does not make use of the >>> command queue feature. Regular operations/data transfers are >>> done in PIO mode. Page read/writes with hardware ECC make >>> use of the DMA for data transfer. >>> >>> Signed-off-by: Lucas Stach <dev@xxxxxxxxxx> >>> Signed-off-by: Stefan Agner <stefan@xxxxxxxx> >>> --- >>> MAINTAINERS | 7 + >>> drivers/mtd/nand/raw/Kconfig | 6 + >>> drivers/mtd/nand/raw/Makefile | 1 + >>> drivers/mtd/nand/raw/tegra_nand.c | 999 ++++++++++++++++++++++++++++++ >>> 4 files changed, 1013 insertions(+) >>> create mode 100644 drivers/mtd/nand/raw/tegra_nand.c >>> >>> diff --git a/MAINTAINERS b/MAINTAINERS >>> index 58b9861ccf99..8cbbb7111742 100644 >>> --- a/MAINTAINERS >>> +++ b/MAINTAINERS >>> @@ -13844,6 +13844,13 @@ M: Laxman Dewangan <ldewangan@xxxxxxxxxx> >>> S: Supported >>> F: drivers/input/keyboard/tegra-kbc.c >>> >>> +TEGRA NAND DRIVER >>> +M: Stefan Agner <stefan@xxxxxxxx> >>> +M: Lucas Stach <dev@xxxxxxxxxx> >>> +S: Maintained >>> +F: Documentation/devicetree/bindings/mtd/nvidia,tegra20-nand.txt >>> +F: drivers/mtd/nand/raw/tegra_nand.c >>> + >>> TEGRA PWM DRIVER >>> M: Thierry Reding <thierry.reding@xxxxxxxxx> >>> S: Supported >>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig >>> index 19a2b283fbbe..012c63c6ab47 100644 >>> --- a/drivers/mtd/nand/raw/Kconfig >>> +++ b/drivers/mtd/nand/raw/Kconfig >>> @@ -534,4 +534,10 @@ config MTD_NAND_MTK >>> Enables support for NAND controller on MTK SoCs. >>> This controller is found on mt27xx, mt81xx, mt65xx SoCs. >>> >>> +config MTD_NAND_TEGRA >>> + tristate "Support for NAND on NVIDIA Tegra" >>> + depends on ARCH_TEGRA || COMPILE_TEST >>> + help >>> + Enables support for NAND flash on NVIDIA Tegra SoC based boards. >>> + >>> endif # MTD_NAND >>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile >>> index 165b7ef9e9a1..d5a5f9832b88 100644 >>> --- a/drivers/mtd/nand/raw/Makefile >>> +++ b/drivers/mtd/nand/raw/Makefile >>> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o >>> obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ >>> obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o >>> obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o >>> +obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o >>> >>> nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o >>> nand-objs += nand_amd.o >>> diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c >>> new file mode 100644 >>> index 000000000000..1a0833d97472 >>> --- /dev/null >>> +++ b/drivers/mtd/nand/raw/tegra_nand.c >>> @@ -0,0 +1,999 @@ >>> +// SPDX-License-Identifier: GPL-2.0 >>> +/* >>> + * Copyright (C) 2018 Stefan Agner <stefan@xxxxxxxx> >>> + * Copyright (C) 2014-2015 Lucas Stach <dev@xxxxxxxxxx> >>> + * Copyright (C) 2012 Avionic Design GmbH >>> + */ >>> + >>> +#include <linux/clk.h> >>> +#include <linux/completion.h> >>> +#include <linux/delay.h> >>> +#include <linux/dma-mapping.h> >>> +#include <linux/err.h> >>> +#include <linux/gpio/consumer.h> >>> +#include <linux/interrupt.h> >>> +#include <linux/io.h> >>> +#include <linux/module.h> >>> +#include <linux/mtd/partitions.h> >>> +#include <linux/mtd/rawnand.h> >>> +#include <linux/of.h> >>> +#include <linux/platform_device.h> >>> +#include <linux/reset.h> >>> + >>> +#define CMD 0x00 >>> +#define CMD_GO (1 << 31) >>> +#define CMD_CLE (1 << 30) >>> +#define CMD_ALE (1 << 29) >>> +#define CMD_PIO (1 << 28) >>> +#define CMD_TX (1 << 27) >>> +#define CMD_RX (1 << 26) >>> +#define CMD_SEC_CMD (1 << 25) >>> +#define CMD_AFT_DAT (1 << 24) >>> +#define CMD_TRANS_SIZE(x) (((x - 1) & 0xf) << 20) >>> +#define CMD_A_VALID (1 << 19) >>> +#define CMD_B_VALID (1 << 18) >>> +#define CMD_RD_STATUS_CHK (1 << 17) >>> +#define CMD_RBSY_CHK (1 << 16) >>> +#define CMD_CE(x) (1 << (8 + ((x) & 0x7))) >>> +#define CMD_CLE_SIZE(x) (((x - 1) & 0x3) << 4) >>> +#define CMD_ALE_SIZE(x) (((x - 1) & 0xf) << 0) >>> + >>> +#define STATUS 0x04 >>> + >>> +#define ISR 0x08 >>> +#define ISR_CORRFAIL_ERR (1 << 24) >>> +#define ISR_UND (1 << 7) >>> +#define ISR_OVR (1 << 6) >>> +#define ISR_CMD_DONE (1 << 5) >>> +#define ISR_ECC_ERR (1 << 4) >>> + >>> +#define IER 0x0c >>> +#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) >>> +#define IER_UND (1 << 7) >>> +#define IER_OVR (1 << 6) >>> +#define IER_CMD_DONE (1 << 5) >>> +#define IER_ECC_ERR (1 << 4) >>> +#define IER_GIE (1 << 0) >>> + >>> +#define CFG 0x10 >>> +#define CFG_HW_ECC (1 << 31) >>> +#define CFG_ECC_SEL (1 << 30) >>> +#define CFG_ERR_COR (1 << 29) >>> +#define CFG_PIPE_EN (1 << 28) >>> +#define CFG_TVAL_4 (0 << 24) >>> +#define CFG_TVAL_6 (1 << 24) >>> +#define CFG_TVAL_8 (2 << 24) >>> +#define CFG_SKIP_SPARE (1 << 23) >>> +#define CFG_BUS_WIDTH_8 (0 << 21) >>> +#define CFG_BUS_WIDTH_16 (1 << 21) >>> +#define CFG_COM_BSY (1 << 20) >>> +#define CFG_PS_256 (0 << 16) >>> +#define CFG_PS_512 (1 << 16) >>> +#define CFG_PS_1024 (2 << 16) >>> +#define CFG_PS_2048 (3 << 16) >>> +#define CFG_PS_4096 (4 << 16) >>> +#define CFG_SKIP_SPARE_SIZE_4 (0 << 14) >>> +#define CFG_SKIP_SPARE_SIZE_8 (1 << 14) >>> +#define CFG_SKIP_SPARE_SIZE_12 (2 << 14) >>> +#define CFG_SKIP_SPARE_SIZE_16 (3 << 14) >>> +#define CFG_TAG_BYTE_SIZE(x) ((x) & 0xff) >>> + >>> +#define TIMING_1 0x14 >>> +#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) >>> +#define TIMING_TWB(x) (((x) & 0xf) << 24) >>> +#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) >>> +#define TIMING_TWHR(x) (((x) & 0xf) << 16) >>> +#define TIMING_TCS(x) (((x) & 0x3) << 14) >>> +#define TIMING_TWH(x) (((x) & 0x3) << 12) >>> +#define TIMING_TWP(x) (((x) & 0xf) << 8) >>> +#define TIMING_TRH(x) (((x) & 0xf) << 4) >>> +#define TIMING_TRP(x) (((x) & 0xf) << 0) >>> + >>> +#define RESP 0x18 >>> + >>> +#define TIMING_2 0x1c >>> +#define TIMING_TADL(x) ((x) & 0xf) >>> + >>> +#define CMD_1 0x20 >>> +#define CMD_2 0x24 >>> +#define ADDR_1 0x28 >>> +#define ADDR_2 0x2c >>> + >>> +#define DMA_CTRL 0x30 >>> +#define DMA_CTRL_GO (1 << 31) >>> +#define DMA_CTRL_IN (0 << 30) >>> +#define DMA_CTRL_OUT (1 << 30) >>> +#define DMA_CTRL_PERF_EN (1 << 29) >>> +#define DMA_CTRL_IE_DONE (1 << 28) >>> +#define DMA_CTRL_REUSE (1 << 27) >>> +#define DMA_CTRL_BURST_1 (2 << 24) >>> +#define DMA_CTRL_BURST_4 (3 << 24) >>> +#define DMA_CTRL_BURST_8 (4 << 24) >>> +#define DMA_CTRL_BURST_16 (5 << 24) >>> +#define DMA_CTRL_IS_DONE (1 << 20) >>> +#define DMA_CTRL_EN_A (1 << 2) >>> +#define DMA_CTRL_EN_B (1 << 1) >>> + >>> +#define DMA_CFG_A 0x34 >>> +#define DMA_CFG_B 0x38 >>> + >>> +#define FIFO_CTRL 0x3c >>> +#define FIFO_CTRL_CLR_ALL (1 << 3) >>> + >>> +#define DATA_PTR 0x40 >>> +#define TAG_PTR 0x44 >>> +#define ECC_PTR 0x48 >>> + >>> +#define DEC_STATUS 0x4c >>> +#define DEC_STATUS_A_ECC_FAIL (1 << 1) >>> +#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 >>> +#define DEC_STATUS_ERR_COUNT_SHIFT 16 >>> + >>> +#define HWSTATUS_CMD 0x50 >>> +#define HWSTATUS_MASK 0x54 >>> +#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) >>> +#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) >>> +#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) >>> +#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) >>> + >>> +#define BCH_CONFIG 0xcc >>> +#define BCH_ENABLE (1 << 0) >>> +#define BCH_TVAL_4 (0 << 4) >>> +#define BCH_TVAL_8 (1 << 4) >>> +#define BCH_TVAL_14 (2 << 4) >>> +#define BCH_TVAL_16 (3 << 4) >>> + >>> +#define DEC_STAT_RESULT 0xd0 >>> +#define DEC_STAT_BUF 0xd4 >>> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 >>> +#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 >>> +#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 >>> +#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 >>> +#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 >>> +#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 >>> + >>> +#define SKIP_SPARE_BYTES 4 >>> +#define BITS_PER_STEP_RS 18 >>> +#define BITS_PER_STEP_BCH 13 >>> + >>> +struct tegra_nand_controller { >>> + struct nand_hw_control controller; >>> + void __iomem *regs; >>> + struct clk *clk; >>> + struct device *dev; >>> + struct completion command_complete; >>> + struct completion dma_complete; >>> + bool last_read_error; >>> + int cur_chip; >>> + struct nand_chip *chip; >>> +}; >>> + >>> +struct tegra_nand_chip { >>> + struct nand_chip chip; >>> + struct gpio_desc *wp_gpio; >>> +}; >>> + >>> +static inline struct tegra_nand_controller *to_tegra_ctrl( >>> + struct nand_hw_control *hw_ctrl) >>> +{ >>> + return container_of(hw_ctrl, struct tegra_nand_controller, controller); >>> +} >>> + >>> +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, >>> + struct mtd_oob_region *oobregion) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + int bytes_per_step = (BITS_PER_STEP_RS * chip->ecc.strength) / 8; >>> + >>> + if (section > 0) >>> + return -ERANGE; >>> + >>> + oobregion->offset = SKIP_SPARE_BYTES; >>> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); >>> + >>> + return 0; >>> +} >>> + >>> +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int section, >>> + struct mtd_oob_region *oobregion) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, 8); >>> + >>> + if (section > 0) >>> + return -ERANGE; >>> + >>> + oobregion->offset = SKIP_SPARE_BYTES + >>> + round_up(bytes_per_step * chip->ecc.steps, 4); >>> + oobregion->length = mtd->oobsize - oobregion->offset; >>> + >>> + return 0; >>> +} >>> + >>> +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { >>> + .ecc = tegra_nand_ooblayout_rs_ecc, >>> + .free = tegra_nand_ooblayout_rs_free, >>> +}; >>> + >>> +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, >>> + struct mtd_oob_region *oobregion) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, 8); >>> + >>> + if (section > 0) >>> + return -ERANGE; >>> + >>> + oobregion->offset = SKIP_SPARE_BYTES; >>> + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); >>> + >>> + return 0; >>> +} >>> + >>> +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int section, >>> + struct mtd_oob_region *oobregion) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + int bytes_per_step = (BITS_PER_STEP_BCH * chip->ecc.strength) / 8; >>> + >>> + if (section > 0) >>> + return -ERANGE; >>> + >>> + oobregion->offset = SKIP_SPARE_BYTES + >>> + round_up(bytes_per_step * chip->ecc.steps, 4); >>> + oobregion->length = mtd->oobsize - oobregion->offset; >>> + >>> + return 0; >>> +} >>> + >>> +/* >>> + * Layout with tag bytes is >>> + * >>> + * -------------------------------------------------------------------------- >>> + * | main area | skip bytes | tag bytes | parity | .. | >>> + * -------------------------------------------------------------------------- >>> + * >>> + * If not tag bytes are written, parity moves right after skip bytes! >>> + */ >>> +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { >>> + .ecc = tegra_nand_ooblayout_bch_ecc, >>> + .free = tegra_nand_ooblayout_bch_free, >>> +}; >>> + >>> +static irqreturn_t tegra_nand_irq(int irq, void *data) >>> +{ >>> + struct tegra_nand_controller *ctrl = data; >>> + u32 isr, dma; >>> + >>> + isr = readl_relaxed(ctrl->regs + ISR); >>> + dma = readl_relaxed(ctrl->regs + DMA_CTRL); >>> + dev_dbg(ctrl->dev, "isr %08x\n", isr); >>> + >>> + if (!isr && !(dma & DMA_CTRL_IS_DONE)) >>> + return IRQ_NONE; >>> + >>> + if (isr & ISR_CORRFAIL_ERR) >>> + ctrl->last_read_error = true; >>> + >>> + if (isr & ISR_CMD_DONE) >>> + complete(&ctrl->command_complete); >>> + >>> + if (isr & ISR_UND) >>> + dev_dbg(ctrl->dev, "FIFO underrun\n"); >>> + >>> + if (isr & ISR_OVR) >>> + dev_dbg(ctrl->dev, "FIFO overrun\n"); >>> + >>> + /* handle DMA interrupts */ >>> + if (dma & DMA_CTRL_IS_DONE) { >>> + writel(dma, ctrl->regs + DMA_CTRL); >>> + complete(&ctrl->dma_complete); >>> + } >>> + >>> + /* clear interrupts */ >>> + writel(isr, ctrl->regs + ISR); >>> + >>> + return IRQ_HANDLED; >>> +} >>> + >>> +static int tegra_nand_cmd(struct nand_chip *chip, >>> + const struct nand_subop *subop) >>> +{ >>> + const struct nand_op_instr *instr; >>> + const struct nand_op_instr *instr_data_in = NULL; >>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >>> + unsigned int op_id = -1, trfr_in_sz = 0, trfr_out_sz = 0, offset = 0; >>> + bool first_cmd = true; >>> + u32 cmd = 0; >>> + u32 value; >>> + >>> + for (op_id = 0; op_id < subop->ninstrs; op_id++) { >>> + unsigned int naddrs, i; >>> + const u8 *addrs; >>> + u32 addr1 = 0, addr2 = 0; >>> + >>> + instr = &subop->instrs[op_id]; >>> + >>> + switch (instr->type) { >>> + case NAND_OP_CMD_INSTR: >>> + if (first_cmd) { >>> + cmd |= CMD_CLE; >>> + writel(instr->ctx.cmd.opcode, ctrl->regs + CMD_1); >>> + } else { >>> + cmd |= CMD_SEC_CMD; >>> + writel(instr->ctx.cmd.opcode, ctrl->regs + CMD_2); >>> + } >>> + first_cmd = false; >>> + break; >>> + case NAND_OP_ADDR_INSTR: >>> + offset = nand_subop_get_addr_start_off(subop, op_id); >>> + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); >>> + addrs = &instr->ctx.addr.addrs[offset]; >>> + >>> + cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs); >>> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) >>> + addr1 |= *addrs++ << (8 * i); >>> + naddrs -= i; >>> + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) >>> + addr2 |= *addrs++ << (8 * i); >>> + writel(addr1, ctrl->regs + ADDR_1); >>> + writel(addr2, ctrl->regs + ADDR_2); >>> + break; >>> + >>> + case NAND_OP_DATA_IN_INSTR: >>> + trfr_in_sz = nand_subop_get_data_len(subop, op_id); >>> + offset = nand_subop_get_data_start_off(subop, op_id); >>> + >>> + cmd |= CMD_TRANS_SIZE(trfr_in_sz) | CMD_PIO | CMD_RX | CMD_A_VALID; >>> + >>> + instr_data_in = instr; >>> + break; >>> + >>> + case NAND_OP_DATA_OUT_INSTR: >>> + trfr_out_sz = nand_subop_get_data_len(subop, op_id); >>> + offset = nand_subop_get_data_start_off(subop, op_id); >>> + trfr_out_sz = min_t(size_t, trfr_out_sz, 4); >>> + >>> + cmd |= CMD_TRANS_SIZE(trfr_out_sz) | CMD_PIO | CMD_TX | CMD_A_VALID; >>> + >>> + memcpy(&value, instr->ctx.data.buf.out + offset, trfr_out_sz); >>> + writel(value, ctrl->regs + RESP); >>> + >>> + break; >>> + case NAND_OP_WAITRDY_INSTR: >>> + cmd |= CMD_RBSY_CHK; >>> + break; >>> + >>> + } >>> + } >>> + >>> + >>> + cmd |= CMD_GO | CMD_CE(ctrl->cur_chip); >>> + writel(cmd, ctrl->regs + CMD); >>> + wait_for_completion(&ctrl->command_complete); >> >> Could this and other completions stuck forever? What about >> wait_for_completion_timeout() + HW reset / re-init on timeout? >> > > They actually get stuck forever when I try to use DMA without HW ECC... > I haven't seen it with HW ECC. > > But yes, _timeout variant makes sense here. Not sure if re-init is > necessary since we rewrite all the relevant settings. > > >>> + >>> + if (instr_data_in) { >>> + u32 value; >>> + size_t n = min_t(size_t, trfr_in_sz, 4); >>> + >>> + value = readl(ctrl->regs + RESP); >>> + memcpy(instr_data_in->ctx.data.buf.in + offset, &value, n); >>> + } >>> + >>> + return 0; >>> +} >>> + >>> +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( >>> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), >>> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, >>> + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), >>> + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), >>> + NAND_OP_PARSER_PAT_CMD_ELEM(true), >>> + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), >>> + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), >>> + ); >>> + >>> +static int tegra_nand_exec_op(struct nand_chip *chip, >>> + const struct nand_operation *op, >>> + bool check_only) >>> +{ >>> + return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, >>> + check_only); >>> +} >>> +static void tegra_nand_select_chip(struct mtd_info *mtd, int chip_nr) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >>> + >>> + ctrl->cur_chip = chip_nr; >>> +} >>> + >>> +static u32 tegra_nand_fill_address(struct tegra_nand_controller *ctrl, >>> + struct nand_chip *chip, int page) >>> +{ >>> + /* Lower 16-bits are column, always 0 */ >>> + writel(page << 16, ctrl->regs + ADDR_1); >>> + >>> + if (chip->options & NAND_ROW_ADDR_3) { >>> + writel(page >> 16, ctrl->regs + ADDR_2); >>> + return 5; >>> + } >>> + >>> + return 4; >>> +} >>> + >>> +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, >>> + struct nand_chip *chip, bool enable) >>> +{ >>> + u32 value; >>> + >>> + switch (chip->ecc.algo) { >>> + case NAND_ECC_RS: >>> + value = readl(ctrl->regs + CFG); >>> + if (enable) >>> + value |= CFG_HW_ECC | CFG_ERR_COR; >>> + else >>> + value &= ~(CFG_HW_ECC | CFG_ERR_COR); >>> + writel(value, ctrl->regs + CFG); >>> + break; >>> + case NAND_ECC_BCH: >>> + value = readl(ctrl->regs + BCH_CONFIG); >>> + if (enable) >>> + value |= BCH_ENABLE; >>> + else >>> + value &= ~BCH_ENABLE; >>> + writel(value, ctrl->regs + BCH_CONFIG); >>> + break; >>> + default: >>> + dev_err(ctrl->dev, "Unsupported hardware ECC algorithm\n"); >>> + break; >>> + } >>> +} >>> + >>> +static int tegra_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, >>> + uint8_t *buf, int oob_required, int page) >>> +{ >>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >>> + dma_addr_t dma_addr; >>> + u32 value, addrs; >>> + int ret, dma_len; >>> + >>> + writel(NAND_CMD_READ0, ctrl->regs + CMD_1); >>> + writel(NAND_CMD_READSTART, ctrl->regs + CMD_2); >>> + >>> + addrs = tegra_nand_fill_address(ctrl, chip, page); >>> + >>> + dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0); >>> + dma_addr = dma_map_single(ctrl->dev, buf, dma_len, DMA_FROM_DEVICE); >>> + ret = dma_mapping_error(ctrl->dev, dma_addr); >>> + if (ret) { >>> + dev_err(ctrl->dev, "dma mapping error\n"); >>> + return -EINVAL; >>> + } >>> + >>> + writel(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); >>> + writel(dma_addr, ctrl->regs + DATA_PTR); >>> + >>> + if (oob_required) { >>> + struct mtd_oob_region oobregion; >>> + dma_addr_t dma_addr_oob = dma_addr + mtd->writesize; >>> + >>> + mtd_ooblayout_free(mtd, 0, &oobregion); >>> + >>> + writel(oobregion.length - 1, ctrl->regs + DMA_CFG_B); >>> + writel(dma_addr_oob + oobregion.offset, ctrl->regs + TAG_PTR); >>> + } else { >>> + writel(0, ctrl->regs + DMA_CFG_B); >>> + writel(0, ctrl->regs + TAG_PTR); >>> + } >>> + >>> + value = DMA_CTRL_GO | DMA_CTRL_IN | DMA_CTRL_PERF_EN | >>> + DMA_CTRL_REUSE | DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE | >>> + DMA_CTRL_BURST_16 | DMA_CTRL_EN_A; >>> + if (oob_required) >>> + value |= DMA_CTRL_EN_B; >>> + writel(value, ctrl->regs + DMA_CTRL); >>> + >>> + value = CMD_CLE | CMD_ALE | CMD_ALE_SIZE(addrs) | CMD_SEC_CMD | >>> + CMD_RBSY_CHK | CMD_GO | CMD_RX | CMD_TRANS_SIZE(9) | >>> + CMD_A_VALID | CMD_CE(ctrl->cur_chip); >>> + if (oob_required) >>> + value |= CMD_B_VALID; >>> + writel(value, ctrl->regs + CMD); >>> + >>> + wait_for_completion(&ctrl->command_complete); >>> + wait_for_completion(&ctrl->dma_complete); >>> + >>> + dma_unmap_single(ctrl->dev, dma_addr, dma_len, DMA_FROM_DEVICE); >>> + >>> + return 0; >>> +} >>> + >>> +static int tegra_nand_read_page_hwecc(struct mtd_info *mtd, >>> + struct nand_chip *chip, >>> + uint8_t *buf, int oob_required, int page) >>> +{ >>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >>> + u32 value; >>> + int ret; >>> + >>> + tegra_nand_hw_ecc(ctrl, chip, true); >>> + ret = tegra_nand_read_page(mtd, chip, buf, oob_required, page); >>> + tegra_nand_hw_ecc(ctrl, chip, false); >>> + if (ret) >>> + return ret; >>> + >>> + /* If no correctable or un-correctable errors occured we can return 0 */ >>> + if (!ctrl->last_read_error) >>> + return 0; >>> + >>> + /* >>> + * Correctable or un-correctable errors did occure. NAND dec status >>> + * contains information for all ECC selections >>> + */ >>> + ctrl->last_read_error = false; >>> + value = readl(ctrl->regs + DEC_STAT_BUF); >>> + >>> + if (value & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) { >>> + /* >>> + * The ECC isn't smart enough to figure out if a page is >>> + * completely erased and flags an error in this case. So we >>> + * check the read data here to figure out if it's a legitimate >>> + * error or a false positive. >>> + */ >>> + int i, ret; >>> + int flips_threshold = chip->ecc.strength / 2; >>> + int max_bitflips = 0; >>> + >>> + for (i = 0; i < chip->ecc.steps; i++) { >>> + u8 *data = buf + (chip->ecc.size * i); >>> + >>> + ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, >>> + NULL, 0, >>> + NULL, 0, >>> + flips_threshold); >>> + if (ret < 0) >>> + mtd->ecc_stats.failed++; >>> + else >>> + max_bitflips = max(ret, max_bitflips); >>> + } >>> + >>> + return max_bitflips; >>> + } else { >>> + int max_corr_cnt, corr_sec_flag; >>> + >>> + corr_sec_flag = (value & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> >>> + DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; >>> + max_corr_cnt = (value & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> >>> + DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; >>> + >>> + /* >>> + * The value returned in the register is the maximum of >>> + * bitflips encountered in any of the ECC regions. As there is >>> + * no way to get the number of bitflips in a specific regions >>> + * we are not able to deliver correct stats but instead >>> + * overestimate the number of corrected bitflips by assuming >>> + * that all regions where errors have been corrected >>> + * encountered the maximum number of bitflips. >>> + */ >>> + mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); >>> + >>> + return max_corr_cnt; >>> + } >>> + >>> +} >>> + >>> +static int tegra_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, >>> + const uint8_t *buf, int oob_required, int page) >>> +{ >>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >>> + dma_addr_t dma_addr; >>> + u32 value, addrs; >>> + int ret, dma_len; >>> + >>> + writel(NAND_CMD_SEQIN, ctrl->regs + CMD_1); >>> + writel(NAND_CMD_PAGEPROG, ctrl->regs + CMD_2); >>> + >>> + addrs = tegra_nand_fill_address(ctrl, chip, page); >>> + >>> + dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0); >>> + dma_addr = dma_map_single(ctrl->dev, (void *)buf, dma_len, DMA_TO_DEVICE); >>> + ret = dma_mapping_error(ctrl->dev, dma_addr); >>> + if (ret) { >>> + dev_err(ctrl->dev, "dma mapping error\n"); >>> + return -EINVAL; >>> + } >>> + >>> + writel(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); >>> + writel(dma_addr, ctrl->regs + DATA_PTR); >>> + >>> + if (oob_required) { >>> + struct mtd_oob_region oobregion; >>> + dma_addr_t dma_addr_oob = dma_addr + mtd->writesize; >>> + >>> + mtd_ooblayout_free(mtd, 0, &oobregion); >>> + >>> + writel(oobregion.length - 1, ctrl->regs + DMA_CFG_B); >>> + writel(dma_addr_oob + oobregion.offset, ctrl->regs + TAG_PTR); >>> + } else { >>> + writel(0, ctrl->regs + DMA_CFG_B); >>> + writel(0, ctrl->regs + TAG_PTR); >>> + } >>> + >>> + value = DMA_CTRL_GO | DMA_CTRL_OUT | DMA_CTRL_PERF_EN | >>> + DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE | >>> + DMA_CTRL_BURST_16 | DMA_CTRL_EN_A; >>> + if (oob_required) >>> + value |= DMA_CTRL_EN_B; >>> + writel(value, ctrl->regs + DMA_CTRL); >>> + >>> + value = CMD_CLE | CMD_ALE | CMD_ALE_SIZE(addrs) | CMD_SEC_CMD | >>> + CMD_AFT_DAT | CMD_RBSY_CHK | CMD_GO | CMD_TX | CMD_A_VALID | >>> + CMD_TRANS_SIZE(9) | CMD_CE(ctrl->cur_chip); >>> + if (oob_required) >>> + value |= CMD_B_VALID; >>> + writel(value, ctrl->regs + CMD); >>> + >>> + wait_for_completion(&ctrl->command_complete); >>> + wait_for_completion(&ctrl->dma_complete); >>> + >>> + >>> + dma_unmap_single(ctrl->dev, dma_addr, dma_len, DMA_TO_DEVICE); >>> + >>> + return 0; >>> +} >>> + >>> +static int tegra_nand_write_page_hwecc(struct mtd_info *mtd, >>> + struct nand_chip *chip, >>> + const uint8_t *buf, int oob_required, >>> + int page) >>> +{ >>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >>> + int ret; >>> + >>> + tegra_nand_hw_ecc(ctrl, chip, true); >>> + ret = tegra_nand_write_page(mtd, chip, buf, oob_required, page); >>> + tegra_nand_hw_ecc(ctrl, chip, false); >>> + >>> + return ret; >>> +} >>> + >>> +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, >>> + const struct nand_sdr_timings *timings) >>> +{ >>> + /* >>> + * The period (and all other timings in this function) is in ps, >>> + * so need to take care here to avoid integer overflows. >>> + */ >>> + unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; >>> + unsigned int period = DIV_ROUND_UP(1000000, rate); >>> + u32 val, reg = 0; >>> + >>> + val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, >>> + timings->tRC_min), period); >>> + if (val > 2) >>> + val -= 3; >>> + reg |= TIMING_TCR_TAR_TRR(val); >>> + >>> + val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), >>> + max(timings->tALS_min, timings->tALH_min)), >>> + period); >>> + if (val > 1) >>> + val -= 2; >>> + reg |= TIMING_TCS(val); >>> + >>> + val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, >>> + period); >>> + reg |= TIMING_TRP(val) | TIMING_TRP_RESP(val); >>> + >>> + reg |= TIMING_TWB(DIV_ROUND_UP(timings->tWB_max, period)); >>> + reg |= TIMING_TWHR(DIV_ROUND_UP(timings->tWHR_min, period)); >>> + reg |= TIMING_TWH(DIV_ROUND_UP(timings->tWH_min, period)); >>> + reg |= TIMING_TWP(DIV_ROUND_UP(timings->tWP_min, period)); >>> + reg |= TIMING_TRH(DIV_ROUND_UP(timings->tRHW_min, period)); >>> + >>> + writel(reg, ctrl->regs + TIMING_1); >>> + >>> + val = DIV_ROUND_UP(timings->tADL_min, period); >>> + if (val > 2) >>> + val -= 3; >>> + reg = TIMING_TADL(val); >>> + >>> + writel(reg, ctrl->regs + TIMING_2); >>> +} >>> + >>> +static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline, >>> + const struct nand_data_interface *conf) >>> +{ >>> + struct nand_chip *chip = mtd_to_nand(mtd); >>> + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); >>> + const struct nand_sdr_timings *timings; >>> + >>> + timings = nand_get_sdr_timings(conf); >>> + if (IS_ERR(timings)) >>> + return PTR_ERR(timings); >>> + >>> + if (csline == NAND_DATA_IFACE_CHECK_ONLY) >>> + return 0; >>> + >>> + tegra_nand_setup_timing(ctrl, timings); >>> + >>> + return 0; >>> +} >>> + >>> +static int tegra_nand_chips_init(struct device *dev, >>> + struct tegra_nand_controller *ctrl) >>> +{ >>> + struct device_node *np = dev->of_node; >>> + struct device_node *np_nand; >>> + int nchips = of_get_child_count(np); >>> + struct tegra_nand_chip *nand; >>> + struct mtd_info *mtd; >>> + struct nand_chip *chip; >>> + unsigned long config, bch_config = 0; >>> + int bits_per_step; >>> + int err; >>> + >>> + if (nchips != 1) { >>> + dev_err(dev, "currently only one NAND chip supported\n"); >>> + return -EINVAL; >>> + } >>> + >>> + np_nand = of_get_next_child(np, NULL); >>> + >>> + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); >>> + if (!nand) { >>> + dev_err(dev, "could not allocate chip structure\n"); >>> + return -ENOMEM; >>> + } >>> + >>> + nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); >>> + >>> + if (IS_ERR(nand->wp_gpio)) { >>> + err = PTR_ERR(nand->wp_gpio); >>> + dev_err(dev, "failed to request WP GPIO: %d\n", err); >>> + return err; >>> + } >>> + >>> + chip = &nand->chip; >>> + chip->controller = &ctrl->controller; >>> + ctrl->chip = chip; >>> + >>> + mtd = nand_to_mtd(chip); >>> + >>> + mtd->dev.parent = dev; >>> + mtd->name = "tegra_nand"; >>> + mtd->owner = THIS_MODULE; >>> + >>> + nand_set_flash_node(chip, np_nand); >>> + >>> + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER; >>> + chip->exec_op = tegra_nand_exec_op; >>> + chip->select_chip = tegra_nand_select_chip; >>> + chip->setup_data_interface = tegra_nand_setup_data_interface; >>> + >>> + err = nand_scan_ident(mtd, 1, NULL); >>> + if (err) >>> + return err; >>> + >>> + if (chip->bbt_options & NAND_BBT_USE_FLASH) >>> + chip->bbt_options |= NAND_BBT_NO_OOB; >>> + >>> + chip->ecc.mode = NAND_ECC_HW; >>> + if (!chip->ecc.size) >>> + chip->ecc.size = 512; >>> + if (chip->ecc.size != 512) >>> + return -EINVAL; >>> + >>> + chip->ecc.read_page = tegra_nand_read_page_hwecc; >>> + chip->ecc.write_page = tegra_nand_write_page_hwecc; >>> + /* Not functional for unknown reason... >>> + chip->ecc.read_page_raw = tegra_nand_read_page; >>> + chip->ecc.write_page_raw = tegra_nand_write_page; >>> + */ >>> + config = readl(ctrl->regs + CFG); >>> + config |= CFG_PIPE_EN | CFG_SKIP_SPARE | CFG_SKIP_SPARE_SIZE_4; >>> + >>> + if (chip->options & NAND_BUSWIDTH_16) >>> + config |= CFG_BUS_WIDTH_16; >>> + >>> + switch (chip->ecc.algo) { >>> + case NAND_ECC_RS: >>> + bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; >>> + mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); >>> + switch (chip->ecc.strength) { >>> + case 4: >>> + config |= CFG_ECC_SEL | CFG_TVAL_4; >>> + break; >>> + case 6: >>> + config |= CFG_ECC_SEL | CFG_TVAL_6; >>> + break; >>> + case 8: >>> + config |= CFG_ECC_SEL | CFG_TVAL_8; >>> + break; >>> + default: >>> + dev_err(dev, "ECC strength %d not supported\n", >>> + chip->ecc.strength); >>> + return -EINVAL; >>> + } >>> + break; >>> + case NAND_ECC_BCH: >>> + bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; >>> + mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); >>> + switch (chip->ecc.strength) { >>> + case 4: >>> + bch_config = BCH_TVAL_4; >>> + break; >>> + case 8: >>> + bch_config = BCH_TVAL_8; >>> + break; >>> + case 14: >>> + bch_config = BCH_TVAL_14; >>> + break; >>> + case 16: >>> + bch_config = BCH_TVAL_16; >>> + break; >>> + default: >>> + dev_err(dev, "ECC strength %d not supported\n", >>> + chip->ecc.strength); >>> + return -EINVAL; >>> + } >>> + break; >>> + default: >>> + dev_err(dev, "ECC algorithm not supported\n"); >>> + return -EINVAL; >>> + } >>> + >>> + chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, 8); >>> + >>> + switch (mtd->writesize) { >>> + case 256: >>> + config |= CFG_PS_256; >>> + break; >>> + case 512: >>> + config |= CFG_PS_512; >>> + break; >>> + case 1024: >>> + config |= CFG_PS_1024; >>> + break; >>> + case 2048: >>> + config |= CFG_PS_2048; >>> + break; >>> + case 4096: >>> + config |= CFG_PS_4096; >>> + break; >>> + default: >>> + dev_err(dev, "unhandled writesize %d\n", mtd->writesize); >>> + return -ENODEV; >>> + } >>> + >>> + writel(config, ctrl->regs + CFG); >>> + writel(bch_config, ctrl->regs + BCH_CONFIG); >>> + >>> + err = nand_scan_tail(mtd); >>> + if (err) >>> + return err; >>> + >>> + config |= CFG_TAG_BYTE_SIZE(mtd_ooblayout_count_freebytes(mtd) - 1); >>> + writel(config, ctrl->regs + CFG); >>> + >>> + err = mtd_device_register(mtd, NULL, 0); >>> + if (err) >>> + return err; >>> + >>> + return 0; >>> +} >>> + >>> +static int tegra_nand_probe(struct platform_device *pdev) >>> +{ >>> + struct reset_control *rst; >>> + struct tegra_nand_controller *ctrl; >>> + struct resource *res; >>> + unsigned long value; >>> + int irq, err = 0; >>> + >>> + ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); >>> + if (!ctrl) >>> + return -ENOMEM; >>> + >>> + ctrl->dev = &pdev->dev; >>> + nand_hw_control_init(&ctrl->controller); >>> + >>> + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); >>> + ctrl->regs = devm_ioremap_resource(&pdev->dev, res); >>> + if (IS_ERR(ctrl->regs)) >>> + return PTR_ERR(ctrl->regs); >>> + >>> + rst = devm_reset_control_get(&pdev->dev, "nand"); >>> + if (IS_ERR(rst)) >>> + return PTR_ERR(rst); >>> + >>> + ctrl->clk = devm_clk_get(&pdev->dev, "nand"); >>> + if (IS_ERR(ctrl->clk)) >>> + return PTR_ERR(ctrl->clk); >>> + >>> + err = clk_prepare_enable(ctrl->clk); >>> + if (err) >>> + return err; >>> + >>> + reset_control_reset(rst); >> >> Technically reset_control_reset() could fail, so this should be: >> >> err = reset_control_reset(rst); >> if (err) >> goto err_disable_clk; >> > > Ok. > > -- > Stefan > >>> + >>> + value = HWSTATUS_RDSTATUS_MASK(1) | HWSTATUS_RDSTATUS_VALUE(0) | >>> + HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | >>> + HWSTATUS_RBSY_VALUE(NAND_STATUS_READY); >>> + writel(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD); >>> + writel(value, ctrl->regs + HWSTATUS_MASK); >>> + >>> + init_completion(&ctrl->command_complete); >>> + init_completion(&ctrl->dma_complete); >>> + >>> + /* clear interrupts */ >>> + value = readl(ctrl->regs + ISR); >>> + writel(value, ctrl->regs + ISR); >>> + >>> + irq = platform_get_irq(pdev, 0); >>> + err = devm_request_irq(&pdev->dev, irq, tegra_nand_irq, 0, >>> + dev_name(&pdev->dev), ctrl); >>> + if (err) >>> + goto err_disable_clk; >>> + >>> + writel(DMA_CTRL_IS_DONE, ctrl->regs + DMA_CTRL); >>> + >>> + /* enable interrupts */ >>> + value = IER_UND | IER_OVR | IER_CMD_DONE | IER_ECC_ERR | IER_GIE; >>> + writel(value, ctrl->regs + IER); >>> + >>> + /* reset config */ >>> + writel(0, ctrl->regs + CFG); >>> + >>> + err = tegra_nand_chips_init(ctrl->dev, ctrl); >>> + if (err) >>> + goto err_disable_clk; >>> + >>> + platform_set_drvdata(pdev, ctrl); >>> + >>> + return 0; >>> + >>> +err_disable_clk: >>> + clk_disable_unprepare(ctrl->clk); >>> + return err; >>> +} >>> + >>> +static int tegra_nand_remove(struct platform_device *pdev) >>> +{ >>> + struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); >>> + >>> + nand_release(nand_to_mtd(ctrl->chip)); >>> + >>> + clk_disable_unprepare(ctrl->clk); >>> + >>> + return 0; >>> +} >>> + >>> +static const struct of_device_id tegra_nand_of_match[] = { >>> + { .compatible = "nvidia,tegra20-nand" }, >>> + { /* sentinel */ } >>> +}; >>> + >>> +static struct platform_driver tegra_nand_driver = { >>> + .driver = { >>> + .name = "tegra-nand", >>> + .of_match_table = tegra_nand_of_match, >>> + }, >>> + .probe = tegra_nand_probe, >>> + .remove = tegra_nand_remove, >>> +}; >>> +module_platform_driver(tegra_nand_driver); >>> + >>> +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); >>> +MODULE_AUTHOR("Thierry Reding <thierry.reding@xxxxxxxxxx>"); >>> +MODULE_AUTHOR("Lucas Stach <dev@xxxxxxxxxx>"); >>> +MODULE_AUTHOR("Stefan Agner <stefan@xxxxxxxx>"); >>> +MODULE_LICENSE("GPL v2"); >>> +MODULE_DEVICE_TABLE(of, tegra_nand_of_match); >>> -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html