Re: [PATCH v2 3/6] mtd: rawnand: add NVIDIA Tegra NAND Flash controller driver

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Note that it's certainly possible to encode U-Boot and kernel with
RS[4] and still use RS[8] for the rootfs even if the boot rom doesn't
support it. This whole 'use-bootable-ecc-only' business seems a bit
overengineered.

2018-05-28 14:43 GMT+02:00 Stefan Agner <stefan@xxxxxxxx>:
> On 28.05.2018 13:57, Dmitry Osipenko wrote:
>> On 28.05.2018 00:54, Stefan Agner wrote:
>>> Add support for the NAND flash controller found on NVIDIA
>>> Tegra 2 SoCs. This implementation does not make use of the
>>> command queue feature. Regular operations/data transfers are
>>> done in PIO mode. Page read/writes with hardware ECC make
>>> use of the DMA for data transfer.
>>>
>>> Signed-off-by: Lucas Stach <dev@xxxxxxxxxx>
>>> Signed-off-by: Stefan Agner <stefan@xxxxxxxx>
>>> ---
>>>  MAINTAINERS                       |   7 +
>>>  drivers/mtd/nand/raw/Kconfig      |   6 +
>>>  drivers/mtd/nand/raw/Makefile     |   1 +
>>>  drivers/mtd/nand/raw/tegra_nand.c | 999 ++++++++++++++++++++++++++++++
>>>  4 files changed, 1013 insertions(+)
>>>  create mode 100644 drivers/mtd/nand/raw/tegra_nand.c
>>>
>>> diff --git a/MAINTAINERS b/MAINTAINERS
>>> index 58b9861ccf99..8cbbb7111742 100644
>>> --- a/MAINTAINERS
>>> +++ b/MAINTAINERS
>>> @@ -13844,6 +13844,13 @@ M:  Laxman Dewangan <ldewangan@xxxxxxxxxx>
>>>  S:  Supported
>>>  F:  drivers/input/keyboard/tegra-kbc.c
>>>
>>> +TEGRA NAND DRIVER
>>> +M:  Stefan Agner <stefan@xxxxxxxx>
>>> +M:  Lucas Stach <dev@xxxxxxxxxx>
>>> +S:  Maintained
>>> +F:  Documentation/devicetree/bindings/mtd/nvidia,tegra20-nand.txt
>>> +F:  drivers/mtd/nand/raw/tegra_nand.c
>>> +
>>>  TEGRA PWM DRIVER
>>>  M:  Thierry Reding <thierry.reding@xxxxxxxxx>
>>>  S:  Supported
>>> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
>>> index 19a2b283fbbe..012c63c6ab47 100644
>>> --- a/drivers/mtd/nand/raw/Kconfig
>>> +++ b/drivers/mtd/nand/raw/Kconfig
>>> @@ -534,4 +534,10 @@ config MTD_NAND_MTK
>>>        Enables support for NAND controller on MTK SoCs.
>>>        This controller is found on mt27xx, mt81xx, mt65xx SoCs.
>>>
>>> +config MTD_NAND_TEGRA
>>> +    tristate "Support for NAND on NVIDIA Tegra"
>>> +    depends on ARCH_TEGRA || COMPILE_TEST
>>> +    help
>>> +      Enables support for NAND flash on NVIDIA Tegra SoC based boards.
>>> +
>>>  endif # MTD_NAND
>>> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
>>> index 165b7ef9e9a1..d5a5f9832b88 100644
>>> --- a/drivers/mtd/nand/raw/Makefile
>>> +++ b/drivers/mtd/nand/raw/Makefile
>>> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504)             += hisi504_nand.o
>>>  obj-$(CONFIG_MTD_NAND_BRCMNAND)             += brcmnand/
>>>  obj-$(CONFIG_MTD_NAND_QCOM)         += qcom_nandc.o
>>>  obj-$(CONFIG_MTD_NAND_MTK)          += mtk_ecc.o mtk_nand.o
>>> +obj-$(CONFIG_MTD_NAND_TEGRA)                += tegra_nand.o
>>>
>>>  nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
>>>  nand-objs += nand_amd.o
>>> diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c
>>> new file mode 100644
>>> index 000000000000..1a0833d97472
>>> --- /dev/null
>>> +++ b/drivers/mtd/nand/raw/tegra_nand.c
>>> @@ -0,0 +1,999 @@
>>> +// SPDX-License-Identifier: GPL-2.0
>>> +/*
>>> + * Copyright (C) 2018 Stefan Agner <stefan@xxxxxxxx>
>>> + * Copyright (C) 2014-2015 Lucas Stach <dev@xxxxxxxxxx>
>>> + * Copyright (C) 2012 Avionic Design GmbH
>>> + */
>>> +
>>> +#include <linux/clk.h>
>>> +#include <linux/completion.h>
>>> +#include <linux/delay.h>
>>> +#include <linux/dma-mapping.h>
>>> +#include <linux/err.h>
>>> +#include <linux/gpio/consumer.h>
>>> +#include <linux/interrupt.h>
>>> +#include <linux/io.h>
>>> +#include <linux/module.h>
>>> +#include <linux/mtd/partitions.h>
>>> +#include <linux/mtd/rawnand.h>
>>> +#include <linux/of.h>
>>> +#include <linux/platform_device.h>
>>> +#include <linux/reset.h>
>>> +
>>> +#define CMD                                 0x00
>>> +#define   CMD_GO                            (1 << 31)
>>> +#define   CMD_CLE                           (1 << 30)
>>> +#define   CMD_ALE                           (1 << 29)
>>> +#define   CMD_PIO                           (1 << 28)
>>> +#define   CMD_TX                            (1 << 27)
>>> +#define   CMD_RX                            (1 << 26)
>>> +#define   CMD_SEC_CMD                               (1 << 25)
>>> +#define   CMD_AFT_DAT                               (1 << 24)
>>> +#define   CMD_TRANS_SIZE(x)                 (((x - 1) & 0xf) << 20)
>>> +#define   CMD_A_VALID                               (1 << 19)
>>> +#define   CMD_B_VALID                               (1 << 18)
>>> +#define   CMD_RD_STATUS_CHK                 (1 << 17)
>>> +#define   CMD_RBSY_CHK                              (1 << 16)
>>> +#define   CMD_CE(x)                         (1 << (8 + ((x) & 0x7)))
>>> +#define   CMD_CLE_SIZE(x)                   (((x - 1) & 0x3) << 4)
>>> +#define   CMD_ALE_SIZE(x)                   (((x - 1) & 0xf) << 0)
>>> +
>>> +#define STATUS                                      0x04
>>> +
>>> +#define ISR                                 0x08
>>> +#define   ISR_CORRFAIL_ERR                  (1 << 24)
>>> +#define   ISR_UND                           (1 << 7)
>>> +#define   ISR_OVR                           (1 << 6)
>>> +#define   ISR_CMD_DONE                              (1 << 5)
>>> +#define   ISR_ECC_ERR                               (1 << 4)
>>> +
>>> +#define IER                                 0x0c
>>> +#define   IER_ERR_TRIG_VAL(x)                       (((x) & 0xf) << 16)
>>> +#define   IER_UND                           (1 << 7)
>>> +#define   IER_OVR                           (1 << 6)
>>> +#define   IER_CMD_DONE                              (1 << 5)
>>> +#define   IER_ECC_ERR                               (1 << 4)
>>> +#define   IER_GIE                           (1 << 0)
>>> +
>>> +#define CFG                                 0x10
>>> +#define   CFG_HW_ECC                                (1 << 31)
>>> +#define   CFG_ECC_SEL                               (1 << 30)
>>> +#define   CFG_ERR_COR                               (1 << 29)
>>> +#define   CFG_PIPE_EN                               (1 << 28)
>>> +#define   CFG_TVAL_4                                (0 << 24)
>>> +#define   CFG_TVAL_6                                (1 << 24)
>>> +#define   CFG_TVAL_8                                (2 << 24)
>>> +#define   CFG_SKIP_SPARE                    (1 << 23)
>>> +#define   CFG_BUS_WIDTH_8                   (0 << 21)
>>> +#define   CFG_BUS_WIDTH_16                  (1 << 21)
>>> +#define   CFG_COM_BSY                               (1 << 20)
>>> +#define   CFG_PS_256                                (0 << 16)
>>> +#define   CFG_PS_512                                (1 << 16)
>>> +#define   CFG_PS_1024                               (2 << 16)
>>> +#define   CFG_PS_2048                               (3 << 16)
>>> +#define   CFG_PS_4096                               (4 << 16)
>>> +#define   CFG_SKIP_SPARE_SIZE_4                     (0 << 14)
>>> +#define   CFG_SKIP_SPARE_SIZE_8                     (1 << 14)
>>> +#define   CFG_SKIP_SPARE_SIZE_12            (2 << 14)
>>> +#define   CFG_SKIP_SPARE_SIZE_16            (3 << 14)
>>> +#define   CFG_TAG_BYTE_SIZE(x)                      ((x) & 0xff)
>>> +
>>> +#define TIMING_1                            0x14
>>> +#define   TIMING_TRP_RESP(x)                        (((x) & 0xf) << 28)
>>> +#define   TIMING_TWB(x)                             (((x) & 0xf) << 24)
>>> +#define   TIMING_TCR_TAR_TRR(x)                     (((x) & 0xf) << 20)
>>> +#define   TIMING_TWHR(x)                    (((x) & 0xf) << 16)
>>> +#define   TIMING_TCS(x)                             (((x) & 0x3) << 14)
>>> +#define   TIMING_TWH(x)                             (((x) & 0x3) << 12)
>>> +#define   TIMING_TWP(x)                             (((x) & 0xf) <<  8)
>>> +#define   TIMING_TRH(x)                             (((x) & 0xf) <<  4)
>>> +#define   TIMING_TRP(x)                             (((x) & 0xf) <<  0)
>>> +
>>> +#define RESP                                        0x18
>>> +
>>> +#define TIMING_2                            0x1c
>>> +#define   TIMING_TADL(x)                    ((x) & 0xf)
>>> +
>>> +#define CMD_1                                       0x20
>>> +#define CMD_2                                       0x24
>>> +#define ADDR_1                                      0x28
>>> +#define ADDR_2                                      0x2c
>>> +
>>> +#define DMA_CTRL                            0x30
>>> +#define   DMA_CTRL_GO                               (1 << 31)
>>> +#define   DMA_CTRL_IN                               (0 << 30)
>>> +#define   DMA_CTRL_OUT                              (1 << 30)
>>> +#define   DMA_CTRL_PERF_EN                  (1 << 29)
>>> +#define   DMA_CTRL_IE_DONE                  (1 << 28)
>>> +#define   DMA_CTRL_REUSE                    (1 << 27)
>>> +#define   DMA_CTRL_BURST_1                  (2 << 24)
>>> +#define   DMA_CTRL_BURST_4                  (3 << 24)
>>> +#define   DMA_CTRL_BURST_8                  (4 << 24)
>>> +#define   DMA_CTRL_BURST_16                 (5 << 24)
>>> +#define   DMA_CTRL_IS_DONE                  (1 << 20)
>>> +#define   DMA_CTRL_EN_A                             (1 <<  2)
>>> +#define   DMA_CTRL_EN_B                             (1 <<  1)
>>> +
>>> +#define DMA_CFG_A                           0x34
>>> +#define DMA_CFG_B                           0x38
>>> +
>>> +#define FIFO_CTRL                           0x3c
>>> +#define   FIFO_CTRL_CLR_ALL                 (1 << 3)
>>> +
>>> +#define DATA_PTR                            0x40
>>> +#define TAG_PTR                                     0x44
>>> +#define ECC_PTR                                     0x48
>>> +
>>> +#define DEC_STATUS                          0x4c
>>> +#define   DEC_STATUS_A_ECC_FAIL                     (1 << 1)
>>> +#define   DEC_STATUS_ERR_COUNT_MASK         0x00ff0000
>>> +#define   DEC_STATUS_ERR_COUNT_SHIFT                16
>>> +
>>> +#define HWSTATUS_CMD                                0x50
>>> +#define HWSTATUS_MASK                               0x54
>>> +#define   HWSTATUS_RDSTATUS_MASK(x)         (((x) & 0xff) << 24)
>>> +#define   HWSTATUS_RDSTATUS_VALUE(x)                (((x) & 0xff) << 16)
>>> +#define   HWSTATUS_RBSY_MASK(x)                     (((x) & 0xff) << 8)
>>> +#define   HWSTATUS_RBSY_VALUE(x)            (((x) & 0xff) << 0)
>>> +
>>> +#define BCH_CONFIG                          0xcc
>>> +#define   BCH_ENABLE                                (1 << 0)
>>> +#define   BCH_TVAL_4                                (0 << 4)
>>> +#define   BCH_TVAL_8                                (1 << 4)
>>> +#define   BCH_TVAL_14                               (2 << 4)
>>> +#define   BCH_TVAL_16                               (3 << 4)
>>> +
>>> +#define DEC_STAT_RESULT                             0xd0
>>> +#define DEC_STAT_BUF                                0xd4
>>> +#define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK   0xff000000
>>> +#define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT  24
>>> +#define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK   0x00ff0000
>>> +#define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT  16
>>> +#define   DEC_STAT_BUF_MAX_CORR_CNT_MASK    0x00001f00
>>> +#define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT   8
>>> +
>>> +#define SKIP_SPARE_BYTES    4
>>> +#define BITS_PER_STEP_RS    18
>>> +#define BITS_PER_STEP_BCH   13
>>> +
>>> +struct tegra_nand_controller {
>>> +    struct nand_hw_control controller;
>>> +    void __iomem *regs;
>>> +    struct clk *clk;
>>> +    struct device *dev;
>>> +    struct completion command_complete;
>>> +    struct completion dma_complete;
>>> +    bool last_read_error;
>>> +    int cur_chip;
>>> +    struct nand_chip *chip;
>>> +};
>>> +
>>> +struct tegra_nand_chip {
>>> +    struct nand_chip chip;
>>> +    struct gpio_desc *wp_gpio;
>>> +};
>>> +
>>> +static inline struct tegra_nand_controller *to_tegra_ctrl(
>>> +                                            struct nand_hw_control *hw_ctrl)
>>> +{
>>> +    return container_of(hw_ctrl, struct tegra_nand_controller, controller);
>>> +}
>>> +
>>> +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
>>> +                                   struct mtd_oob_region *oobregion)
>>> +{
>>> +    struct nand_chip *chip = mtd_to_nand(mtd);
>>> +    int bytes_per_step = (BITS_PER_STEP_RS * chip->ecc.strength) / 8;
>>> +
>>> +    if (section > 0)
>>> +            return -ERANGE;
>>> +
>>> +    oobregion->offset = SKIP_SPARE_BYTES;
>>> +    oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static int tegra_nand_ooblayout_rs_free(struct mtd_info *mtd, int section,
>>> +                                    struct mtd_oob_region *oobregion)
>>> +{
>>> +    struct nand_chip *chip = mtd_to_nand(mtd);
>>> +    int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, 8);
>>> +
>>> +    if (section > 0)
>>> +            return -ERANGE;
>>> +
>>> +    oobregion->offset = SKIP_SPARE_BYTES +
>>> +                        round_up(bytes_per_step * chip->ecc.steps, 4);
>>> +    oobregion->length = mtd->oobsize - oobregion->offset;
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
>>> +    .ecc = tegra_nand_ooblayout_rs_ecc,
>>> +    .free = tegra_nand_ooblayout_rs_free,
>>> +};
>>> +
>>> +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
>>> +                                   struct mtd_oob_region *oobregion)
>>> +{
>>> +    struct nand_chip *chip = mtd_to_nand(mtd);
>>> +    int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, 8);
>>> +
>>> +    if (section > 0)
>>> +            return -ERANGE;
>>> +
>>> +    oobregion->offset = SKIP_SPARE_BYTES;
>>> +    oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static int tegra_nand_ooblayout_bch_free(struct mtd_info *mtd, int section,
>>> +                                    struct mtd_oob_region *oobregion)
>>> +{
>>> +    struct nand_chip *chip = mtd_to_nand(mtd);
>>> +    int bytes_per_step = (BITS_PER_STEP_BCH * chip->ecc.strength) / 8;
>>> +
>>> +    if (section > 0)
>>> +            return -ERANGE;
>>> +
>>> +    oobregion->offset = SKIP_SPARE_BYTES +
>>> +                        round_up(bytes_per_step * chip->ecc.steps, 4);
>>> +    oobregion->length = mtd->oobsize - oobregion->offset;
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +/*
>>> + * Layout with tag bytes is
>>> + *
>>> + * --------------------------------------------------------------------------
>>> + * | main area                       | skip bytes | tag bytes | parity | .. |
>>> + * --------------------------------------------------------------------------
>>> + *
>>> + * If not tag bytes are written, parity moves right after skip bytes!
>>> + */
>>> +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
>>> +    .ecc = tegra_nand_ooblayout_bch_ecc,
>>> +    .free = tegra_nand_ooblayout_bch_free,
>>> +};
>>> +
>>> +static irqreturn_t tegra_nand_irq(int irq, void *data)
>>> +{
>>> +    struct tegra_nand_controller *ctrl = data;
>>> +    u32 isr, dma;
>>> +
>>> +    isr = readl_relaxed(ctrl->regs + ISR);
>>> +    dma = readl_relaxed(ctrl->regs + DMA_CTRL);
>>> +    dev_dbg(ctrl->dev, "isr %08x\n", isr);
>>> +
>>> +    if (!isr && !(dma & DMA_CTRL_IS_DONE))
>>> +            return IRQ_NONE;
>>> +
>>> +    if (isr & ISR_CORRFAIL_ERR)
>>> +            ctrl->last_read_error = true;
>>> +
>>> +    if (isr & ISR_CMD_DONE)
>>> +            complete(&ctrl->command_complete);
>>> +
>>> +    if (isr & ISR_UND)
>>> +            dev_dbg(ctrl->dev, "FIFO underrun\n");
>>> +
>>> +    if (isr & ISR_OVR)
>>> +            dev_dbg(ctrl->dev, "FIFO overrun\n");
>>> +
>>> +    /* handle DMA interrupts */
>>> +    if (dma & DMA_CTRL_IS_DONE) {
>>> +            writel(dma, ctrl->regs + DMA_CTRL);
>>> +            complete(&ctrl->dma_complete);
>>> +    }
>>> +
>>> +    /* clear interrupts */
>>> +    writel(isr, ctrl->regs + ISR);
>>> +
>>> +    return IRQ_HANDLED;
>>> +}
>>> +
>>> +static int tegra_nand_cmd(struct nand_chip *chip,
>>> +                     const struct nand_subop *subop)
>>> +{
>>> +    const struct nand_op_instr *instr;
>>> +    const struct nand_op_instr *instr_data_in = NULL;
>>> +    struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>>> +    unsigned int op_id = -1, trfr_in_sz = 0, trfr_out_sz = 0, offset = 0;
>>> +    bool first_cmd = true;
>>> +    u32 cmd = 0;
>>> +    u32 value;
>>> +
>>> +    for (op_id = 0; op_id < subop->ninstrs; op_id++) {
>>> +            unsigned int naddrs, i;
>>> +            const u8 *addrs;
>>> +            u32 addr1 = 0, addr2 = 0;
>>> +
>>> +            instr = &subop->instrs[op_id];
>>> +
>>> +            switch (instr->type) {
>>> +            case NAND_OP_CMD_INSTR:
>>> +                    if (first_cmd) {
>>> +                            cmd |= CMD_CLE;
>>> +                            writel(instr->ctx.cmd.opcode, ctrl->regs + CMD_1);
>>> +                    } else {
>>> +                            cmd |= CMD_SEC_CMD;
>>> +                            writel(instr->ctx.cmd.opcode, ctrl->regs + CMD_2);
>>> +                    }
>>> +                    first_cmd = false;
>>> +                    break;
>>> +            case NAND_OP_ADDR_INSTR:
>>> +                    offset = nand_subop_get_addr_start_off(subop, op_id);
>>> +                    naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
>>> +                    addrs = &instr->ctx.addr.addrs[offset];
>>> +
>>> +                    cmd |= CMD_ALE | CMD_ALE_SIZE(naddrs);
>>> +                    for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
>>> +                            addr1 |= *addrs++ << (8 * i);
>>> +                    naddrs -= i;
>>> +                    for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
>>> +                            addr2 |= *addrs++ << (8 * i);
>>> +                    writel(addr1, ctrl->regs + ADDR_1);
>>> +                    writel(addr2, ctrl->regs + ADDR_2);
>>> +                    break;
>>> +
>>> +            case NAND_OP_DATA_IN_INSTR:
>>> +                    trfr_in_sz = nand_subop_get_data_len(subop, op_id);
>>> +                    offset = nand_subop_get_data_start_off(subop, op_id);
>>> +
>>> +                    cmd |= CMD_TRANS_SIZE(trfr_in_sz) | CMD_PIO | CMD_RX | CMD_A_VALID;
>>> +
>>> +                    instr_data_in = instr;
>>> +                    break;
>>> +
>>> +            case NAND_OP_DATA_OUT_INSTR:
>>> +                    trfr_out_sz = nand_subop_get_data_len(subop, op_id);
>>> +                    offset = nand_subop_get_data_start_off(subop, op_id);
>>> +                    trfr_out_sz = min_t(size_t, trfr_out_sz, 4);
>>> +
>>> +                    cmd |= CMD_TRANS_SIZE(trfr_out_sz) | CMD_PIO | CMD_TX | CMD_A_VALID;
>>> +
>>> +                    memcpy(&value, instr->ctx.data.buf.out + offset, trfr_out_sz);
>>> +                    writel(value, ctrl->regs + RESP);
>>> +
>>> +                    break;
>>> +            case NAND_OP_WAITRDY_INSTR:
>>> +                    cmd |= CMD_RBSY_CHK;
>>> +                    break;
>>> +
>>> +            }
>>> +    }
>>> +
>>> +
>>> +    cmd |= CMD_GO | CMD_CE(ctrl->cur_chip);
>>> +    writel(cmd, ctrl->regs + CMD);
>>> +    wait_for_completion(&ctrl->command_complete);
>>
>> Could this and other completions stuck forever? What about
>> wait_for_completion_timeout() + HW reset / re-init on timeout?
>>
>
> They actually get stuck forever when I try to use DMA without HW ECC...
> I haven't seen it with HW ECC.
>
> But yes, _timeout variant makes sense here. Not sure if re-init is
> necessary since we rewrite all the relevant settings.
>
>
>>> +
>>> +    if (instr_data_in) {
>>> +            u32 value;
>>> +            size_t n = min_t(size_t, trfr_in_sz, 4);
>>> +
>>> +            value = readl(ctrl->regs + RESP);
>>> +            memcpy(instr_data_in->ctx.data.buf.in + offset, &value, n);
>>> +    }
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
>>> +    NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>>> +            NAND_OP_PARSER_PAT_CMD_ELEM(true),
>>> +            NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
>>> +            NAND_OP_PARSER_PAT_CMD_ELEM(true),
>>> +            NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
>>> +    NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>>> +            NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
>>> +    NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
>>> +            NAND_OP_PARSER_PAT_CMD_ELEM(true),
>>> +            NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
>>> +            NAND_OP_PARSER_PAT_CMD_ELEM(true),
>>> +            NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
>>> +            NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
>>> +    );
>>> +
>>> +static int tegra_nand_exec_op(struct nand_chip *chip,
>>> +                         const struct nand_operation *op,
>>> +                         bool check_only)
>>> +{
>>> +    return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
>>> +                                  check_only);
>>> +}
>>> +static void tegra_nand_select_chip(struct mtd_info *mtd, int chip_nr)
>>> +{
>>> +    struct nand_chip *chip = mtd_to_nand(mtd);
>>> +    struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>>> +
>>> +    ctrl->cur_chip = chip_nr;
>>> +}
>>> +
>>> +static u32 tegra_nand_fill_address(struct tegra_nand_controller *ctrl,
>>> +                               struct nand_chip *chip, int page)
>>> +{
>>> +    /* Lower 16-bits are column, always 0 */
>>> +    writel(page << 16, ctrl->regs + ADDR_1);
>>> +
>>> +    if (chip->options & NAND_ROW_ADDR_3) {
>>> +            writel(page >> 16, ctrl->regs + ADDR_2);
>>> +            return 5;
>>> +    }
>>> +
>>> +    return 4;
>>> +}
>>> +
>>> +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
>>> +                          struct nand_chip *chip, bool enable)
>>> +{
>>> +    u32 value;
>>> +
>>> +    switch (chip->ecc.algo) {
>>> +    case NAND_ECC_RS:
>>> +            value = readl(ctrl->regs + CFG);
>>> +            if (enable)
>>> +                    value |= CFG_HW_ECC | CFG_ERR_COR;
>>> +            else
>>> +                    value &= ~(CFG_HW_ECC | CFG_ERR_COR);
>>> +            writel(value, ctrl->regs + CFG);
>>> +            break;
>>> +    case NAND_ECC_BCH:
>>> +            value = readl(ctrl->regs + BCH_CONFIG);
>>> +            if (enable)
>>> +                    value |= BCH_ENABLE;
>>> +            else
>>> +                    value &= ~BCH_ENABLE;
>>> +            writel(value, ctrl->regs + BCH_CONFIG);
>>> +            break;
>>> +    default:
>>> +            dev_err(ctrl->dev, "Unsupported hardware ECC algorithm\n");
>>> +            break;
>>> +    }
>>> +}
>>> +
>>> +static int tegra_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
>>> +                            uint8_t *buf, int oob_required, int page)
>>> +{
>>> +    struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>>> +    dma_addr_t dma_addr;
>>> +    u32 value, addrs;
>>> +    int ret, dma_len;
>>> +
>>> +    writel(NAND_CMD_READ0, ctrl->regs + CMD_1);
>>> +    writel(NAND_CMD_READSTART, ctrl->regs + CMD_2);
>>> +
>>> +    addrs = tegra_nand_fill_address(ctrl, chip, page);
>>> +
>>> +    dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
>>> +    dma_addr = dma_map_single(ctrl->dev, buf, dma_len, DMA_FROM_DEVICE);
>>> +    ret = dma_mapping_error(ctrl->dev, dma_addr);
>>> +    if (ret) {
>>> +            dev_err(ctrl->dev, "dma mapping error\n");
>>> +            return -EINVAL;
>>> +    }
>>> +
>>> +    writel(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
>>> +    writel(dma_addr, ctrl->regs + DATA_PTR);
>>> +
>>> +    if (oob_required) {
>>> +            struct mtd_oob_region oobregion;
>>> +            dma_addr_t dma_addr_oob = dma_addr + mtd->writesize;
>>> +
>>> +            mtd_ooblayout_free(mtd, 0, &oobregion);
>>> +
>>> +            writel(oobregion.length - 1, ctrl->regs + DMA_CFG_B);
>>> +            writel(dma_addr_oob + oobregion.offset, ctrl->regs + TAG_PTR);
>>> +    } else {
>>> +            writel(0, ctrl->regs + DMA_CFG_B);
>>> +            writel(0, ctrl->regs + TAG_PTR);
>>> +    }
>>> +
>>> +    value = DMA_CTRL_GO | DMA_CTRL_IN | DMA_CTRL_PERF_EN |
>>> +            DMA_CTRL_REUSE | DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE |
>>> +            DMA_CTRL_BURST_16 | DMA_CTRL_EN_A;
>>> +    if (oob_required)
>>> +            value |= DMA_CTRL_EN_B;
>>> +    writel(value, ctrl->regs + DMA_CTRL);
>>> +
>>> +    value = CMD_CLE | CMD_ALE | CMD_ALE_SIZE(addrs) | CMD_SEC_CMD |
>>> +            CMD_RBSY_CHK | CMD_GO | CMD_RX | CMD_TRANS_SIZE(9) |
>>> +            CMD_A_VALID | CMD_CE(ctrl->cur_chip);
>>> +    if (oob_required)
>>> +            value |= CMD_B_VALID;
>>> +    writel(value, ctrl->regs + CMD);
>>> +
>>> +    wait_for_completion(&ctrl->command_complete);
>>> +    wait_for_completion(&ctrl->dma_complete);
>>> +
>>> +    dma_unmap_single(ctrl->dev, dma_addr, dma_len, DMA_FROM_DEVICE);
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
>>> +                                  struct nand_chip *chip,
>>> +                                  uint8_t *buf, int oob_required, int page)
>>> +{
>>> +    struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>>> +    u32 value;
>>> +    int ret;
>>> +
>>> +    tegra_nand_hw_ecc(ctrl, chip, true);
>>> +    ret = tegra_nand_read_page(mtd, chip, buf, oob_required, page);
>>> +    tegra_nand_hw_ecc(ctrl, chip, false);
>>> +    if (ret)
>>> +            return ret;
>>> +
>>> +    /* If no correctable or un-correctable errors occured we can return 0 */
>>> +    if (!ctrl->last_read_error)
>>> +            return 0;
>>> +
>>> +    /*
>>> +     * Correctable or un-correctable errors did occure. NAND dec status
>>> +     * contains information for all ECC selections
>>> +     */
>>> +    ctrl->last_read_error = false;
>>> +    value = readl(ctrl->regs + DEC_STAT_BUF);
>>> +
>>> +    if (value & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) {
>>> +            /*
>>> +             * The ECC isn't smart enough to figure out if a page is
>>> +             * completely erased and flags an error in this case. So we
>>> +             * check the read data here to figure out if it's a legitimate
>>> +             * error or a false positive.
>>> +             */
>>> +            int i, ret;
>>> +            int flips_threshold = chip->ecc.strength / 2;
>>> +            int max_bitflips = 0;
>>> +
>>> +            for (i = 0; i < chip->ecc.steps; i++) {
>>> +                    u8 *data = buf + (chip->ecc.size * i);
>>> +
>>> +                    ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
>>> +                                                      NULL, 0,
>>> +                                                      NULL, 0,
>>> +                                                      flips_threshold);
>>> +                    if (ret < 0)
>>> +                            mtd->ecc_stats.failed++;
>>> +                    else
>>> +                            max_bitflips = max(ret, max_bitflips);
>>> +            }
>>> +
>>> +            return max_bitflips;
>>> +    } else {
>>> +            int max_corr_cnt, corr_sec_flag;
>>> +
>>> +            corr_sec_flag = (value & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
>>> +                            DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
>>> +            max_corr_cnt = (value & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
>>> +                           DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
>>> +
>>> +            /*
>>> +             * The value returned in the register is the maximum of
>>> +             * bitflips encountered in any of the ECC regions. As there is
>>> +             * no way to get the number of bitflips in a specific regions
>>> +             * we are not able to deliver correct stats but instead
>>> +             * overestimate the number of corrected bitflips by assuming
>>> +             * that all regions where errors have been corrected
>>> +             * encountered the maximum number of bitflips.
>>> +             */
>>> +            mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
>>> +
>>> +            return max_corr_cnt;
>>> +    }
>>> +
>>> +}
>>> +
>>> +static int tegra_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
>>> +                             const uint8_t *buf, int oob_required, int page)
>>> +{
>>> +    struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>>> +    dma_addr_t dma_addr;
>>> +    u32 value, addrs;
>>> +    int ret, dma_len;
>>> +
>>> +    writel(NAND_CMD_SEQIN, ctrl->regs + CMD_1);
>>> +    writel(NAND_CMD_PAGEPROG, ctrl->regs + CMD_2);
>>> +
>>> +    addrs = tegra_nand_fill_address(ctrl, chip, page);
>>> +
>>> +    dma_len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
>>> +    dma_addr = dma_map_single(ctrl->dev, (void *)buf, dma_len, DMA_TO_DEVICE);
>>> +    ret = dma_mapping_error(ctrl->dev, dma_addr);
>>> +    if (ret) {
>>> +            dev_err(ctrl->dev, "dma mapping error\n");
>>> +            return -EINVAL;
>>> +    }
>>> +
>>> +    writel(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
>>> +    writel(dma_addr, ctrl->regs + DATA_PTR);
>>> +
>>> +    if (oob_required) {
>>> +            struct mtd_oob_region oobregion;
>>> +            dma_addr_t dma_addr_oob = dma_addr + mtd->writesize;
>>> +
>>> +            mtd_ooblayout_free(mtd, 0, &oobregion);
>>> +
>>> +            writel(oobregion.length - 1, ctrl->regs + DMA_CFG_B);
>>> +            writel(dma_addr_oob + oobregion.offset, ctrl->regs + TAG_PTR);
>>> +    } else {
>>> +            writel(0, ctrl->regs + DMA_CFG_B);
>>> +            writel(0, ctrl->regs + TAG_PTR);
>>> +    }
>>> +
>>> +    value = DMA_CTRL_GO | DMA_CTRL_OUT | DMA_CTRL_PERF_EN |
>>> +            DMA_CTRL_IE_DONE | DMA_CTRL_IS_DONE |
>>> +            DMA_CTRL_BURST_16 | DMA_CTRL_EN_A;
>>> +    if (oob_required)
>>> +            value |= DMA_CTRL_EN_B;
>>> +    writel(value, ctrl->regs + DMA_CTRL);
>>> +
>>> +    value = CMD_CLE | CMD_ALE | CMD_ALE_SIZE(addrs) | CMD_SEC_CMD |
>>> +            CMD_AFT_DAT | CMD_RBSY_CHK | CMD_GO | CMD_TX | CMD_A_VALID |
>>> +            CMD_TRANS_SIZE(9) | CMD_CE(ctrl->cur_chip);
>>> +    if (oob_required)
>>> +            value |= CMD_B_VALID;
>>> +    writel(value, ctrl->regs + CMD);
>>> +
>>> +    wait_for_completion(&ctrl->command_complete);
>>> +    wait_for_completion(&ctrl->dma_complete);
>>> +
>>> +
>>> +    dma_unmap_single(ctrl->dev, dma_addr, dma_len, DMA_TO_DEVICE);
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
>>> +                                   struct nand_chip *chip,
>>> +                                   const uint8_t *buf, int oob_required,
>>> +                                   int page)
>>> +{
>>> +    struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>>> +    int ret;
>>> +
>>> +    tegra_nand_hw_ecc(ctrl, chip, true);
>>> +    ret = tegra_nand_write_page(mtd, chip, buf, oob_required, page);
>>> +    tegra_nand_hw_ecc(ctrl, chip, false);
>>> +
>>> +    return ret;
>>> +}
>>> +
>>> +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
>>> +                                const struct nand_sdr_timings *timings)
>>> +{
>>> +    /*
>>> +     * The period (and all other timings in this function) is in ps,
>>> +     * so need to take care here to avoid integer overflows.
>>> +     */
>>> +    unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
>>> +    unsigned int period = DIV_ROUND_UP(1000000, rate);
>>> +    u32 val, reg = 0;
>>> +
>>> +    val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
>>> +                            timings->tRC_min), period);
>>> +    if (val > 2)
>>> +            val -= 3;
>>> +    reg |= TIMING_TCR_TAR_TRR(val);
>>> +
>>> +    val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
>>> +                               max(timings->tALS_min, timings->tALH_min)),
>>> +                       period);
>>> +    if (val > 1)
>>> +            val -= 2;
>>> +    reg |= TIMING_TCS(val);
>>> +
>>> +    val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
>>> +                       period);
>>> +    reg |= TIMING_TRP(val) | TIMING_TRP_RESP(val);
>>> +
>>> +    reg |= TIMING_TWB(DIV_ROUND_UP(timings->tWB_max, period));
>>> +    reg |= TIMING_TWHR(DIV_ROUND_UP(timings->tWHR_min, period));
>>> +    reg |= TIMING_TWH(DIV_ROUND_UP(timings->tWH_min, period));
>>> +    reg |= TIMING_TWP(DIV_ROUND_UP(timings->tWP_min, period));
>>> +    reg |= TIMING_TRH(DIV_ROUND_UP(timings->tRHW_min, period));
>>> +
>>> +    writel(reg, ctrl->regs + TIMING_1);
>>> +
>>> +    val = DIV_ROUND_UP(timings->tADL_min, period);
>>> +    if (val > 2)
>>> +            val -= 3;
>>> +    reg = TIMING_TADL(val);
>>> +
>>> +    writel(reg, ctrl->regs + TIMING_2);
>>> +}
>>> +
>>> +static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
>>> +                                       const struct nand_data_interface *conf)
>>> +{
>>> +    struct nand_chip *chip = mtd_to_nand(mtd);
>>> +    struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
>>> +    const struct nand_sdr_timings *timings;
>>> +
>>> +    timings = nand_get_sdr_timings(conf);
>>> +    if (IS_ERR(timings))
>>> +            return PTR_ERR(timings);
>>> +
>>> +    if (csline == NAND_DATA_IFACE_CHECK_ONLY)
>>> +            return 0;
>>> +
>>> +    tegra_nand_setup_timing(ctrl, timings);
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static int tegra_nand_chips_init(struct device *dev,
>>> +                             struct tegra_nand_controller *ctrl)
>>> +{
>>> +    struct device_node *np = dev->of_node;
>>> +    struct device_node *np_nand;
>>> +    int nchips = of_get_child_count(np);
>>> +    struct tegra_nand_chip *nand;
>>> +    struct mtd_info *mtd;
>>> +    struct nand_chip *chip;
>>> +    unsigned long config, bch_config = 0;
>>> +    int bits_per_step;
>>> +    int err;
>>> +
>>> +    if (nchips != 1) {
>>> +            dev_err(dev, "currently only one NAND chip supported\n");
>>> +            return -EINVAL;
>>> +    }
>>> +
>>> +    np_nand = of_get_next_child(np, NULL);
>>> +
>>> +    nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
>>> +    if (!nand) {
>>> +            dev_err(dev, "could not allocate chip structure\n");
>>> +            return -ENOMEM;
>>> +    }
>>> +
>>> +    nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
>>> +
>>> +    if (IS_ERR(nand->wp_gpio)) {
>>> +            err = PTR_ERR(nand->wp_gpio);
>>> +            dev_err(dev, "failed to request WP GPIO: %d\n", err);
>>> +            return err;
>>> +    }
>>> +
>>> +    chip = &nand->chip;
>>> +    chip->controller = &ctrl->controller;
>>> +    ctrl->chip = chip;
>>> +
>>> +    mtd = nand_to_mtd(chip);
>>> +
>>> +    mtd->dev.parent = dev;
>>> +    mtd->name = "tegra_nand";
>>> +    mtd->owner = THIS_MODULE;
>>> +
>>> +    nand_set_flash_node(chip, np_nand);
>>> +
>>> +    chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
>>> +    chip->exec_op = tegra_nand_exec_op;
>>> +    chip->select_chip = tegra_nand_select_chip;
>>> +    chip->setup_data_interface = tegra_nand_setup_data_interface;
>>> +
>>> +    err = nand_scan_ident(mtd, 1, NULL);
>>> +    if (err)
>>> +            return err;
>>> +
>>> +    if (chip->bbt_options & NAND_BBT_USE_FLASH)
>>> +            chip->bbt_options |= NAND_BBT_NO_OOB;
>>> +
>>> +    chip->ecc.mode = NAND_ECC_HW;
>>> +    if (!chip->ecc.size)
>>> +            chip->ecc.size = 512;
>>> +    if (chip->ecc.size != 512)
>>> +            return -EINVAL;
>>> +
>>> +    chip->ecc.read_page = tegra_nand_read_page_hwecc;
>>> +    chip->ecc.write_page = tegra_nand_write_page_hwecc;
>>> +    /* Not functional for unknown reason...
>>> +    chip->ecc.read_page_raw = tegra_nand_read_page;
>>> +    chip->ecc.write_page_raw = tegra_nand_write_page;
>>> +    */
>>> +    config = readl(ctrl->regs + CFG);
>>> +    config |= CFG_PIPE_EN | CFG_SKIP_SPARE | CFG_SKIP_SPARE_SIZE_4;
>>> +
>>> +    if (chip->options & NAND_BUSWIDTH_16)
>>> +            config |= CFG_BUS_WIDTH_16;
>>> +
>>> +    switch (chip->ecc.algo) {
>>> +    case NAND_ECC_RS:
>>> +            bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
>>> +            mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
>>> +            switch (chip->ecc.strength) {
>>> +            case 4:
>>> +                    config |= CFG_ECC_SEL | CFG_TVAL_4;
>>> +                    break;
>>> +            case 6:
>>> +                    config |= CFG_ECC_SEL | CFG_TVAL_6;
>>> +                    break;
>>> +            case 8:
>>> +                    config |= CFG_ECC_SEL | CFG_TVAL_8;
>>> +                    break;
>>> +            default:
>>> +                    dev_err(dev, "ECC strength %d not supported\n",
>>> +                            chip->ecc.strength);
>>> +                    return -EINVAL;
>>> +            }
>>> +            break;
>>> +    case NAND_ECC_BCH:
>>> +            bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
>>> +            mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
>>> +            switch (chip->ecc.strength) {
>>> +            case 4:
>>> +                    bch_config = BCH_TVAL_4;
>>> +                    break;
>>> +            case 8:
>>> +                    bch_config = BCH_TVAL_8;
>>> +                    break;
>>> +            case 14:
>>> +                    bch_config = BCH_TVAL_14;
>>> +                    break;
>>> +            case 16:
>>> +                    bch_config = BCH_TVAL_16;
>>> +                    break;
>>> +            default:
>>> +                    dev_err(dev, "ECC strength %d not supported\n",
>>> +                            chip->ecc.strength);
>>> +                    return -EINVAL;
>>> +            }
>>> +            break;
>>> +    default:
>>> +            dev_err(dev, "ECC algorithm not supported\n");
>>> +            return -EINVAL;
>>> +    }
>>> +
>>> +    chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, 8);
>>> +
>>> +    switch (mtd->writesize) {
>>> +    case 256:
>>> +            config |= CFG_PS_256;
>>> +            break;
>>> +    case 512:
>>> +            config |= CFG_PS_512;
>>> +            break;
>>> +    case 1024:
>>> +            config |= CFG_PS_1024;
>>> +            break;
>>> +    case 2048:
>>> +            config |= CFG_PS_2048;
>>> +            break;
>>> +    case 4096:
>>> +            config |= CFG_PS_4096;
>>> +            break;
>>> +    default:
>>> +            dev_err(dev, "unhandled writesize %d\n", mtd->writesize);
>>> +            return -ENODEV;
>>> +    }
>>> +
>>> +    writel(config, ctrl->regs + CFG);
>>> +    writel(bch_config, ctrl->regs + BCH_CONFIG);
>>> +
>>> +    err = nand_scan_tail(mtd);
>>> +    if (err)
>>> +            return err;
>>> +
>>> +    config |= CFG_TAG_BYTE_SIZE(mtd_ooblayout_count_freebytes(mtd) - 1);
>>> +    writel(config, ctrl->regs + CFG);
>>> +
>>> +    err = mtd_device_register(mtd, NULL, 0);
>>> +    if (err)
>>> +            return err;
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static int tegra_nand_probe(struct platform_device *pdev)
>>> +{
>>> +    struct reset_control *rst;
>>> +    struct tegra_nand_controller *ctrl;
>>> +    struct resource *res;
>>> +    unsigned long value;
>>> +    int irq, err = 0;
>>> +
>>> +    ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
>>> +    if (!ctrl)
>>> +            return -ENOMEM;
>>> +
>>> +    ctrl->dev = &pdev->dev;
>>> +    nand_hw_control_init(&ctrl->controller);
>>> +
>>> +    res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
>>> +    ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
>>> +    if (IS_ERR(ctrl->regs))
>>> +            return PTR_ERR(ctrl->regs);
>>> +
>>> +    rst = devm_reset_control_get(&pdev->dev, "nand");
>>> +    if (IS_ERR(rst))
>>> +            return PTR_ERR(rst);
>>> +
>>> +    ctrl->clk = devm_clk_get(&pdev->dev, "nand");
>>> +    if (IS_ERR(ctrl->clk))
>>> +            return PTR_ERR(ctrl->clk);
>>> +
>>> +    err = clk_prepare_enable(ctrl->clk);
>>> +    if (err)
>>> +            return err;
>>> +
>>> +    reset_control_reset(rst);
>>
>> Technically reset_control_reset() could fail, so this should be:
>>
>>       err = reset_control_reset(rst);
>>       if (err)
>>               goto err_disable_clk;
>>
>
> Ok.
>
> --
> Stefan
>
>>> +
>>> +    value = HWSTATUS_RDSTATUS_MASK(1) | HWSTATUS_RDSTATUS_VALUE(0) |
>>> +            HWSTATUS_RBSY_MASK(NAND_STATUS_READY) |
>>> +            HWSTATUS_RBSY_VALUE(NAND_STATUS_READY);
>>> +    writel(NAND_CMD_STATUS, ctrl->regs + HWSTATUS_CMD);
>>> +    writel(value, ctrl->regs + HWSTATUS_MASK);
>>> +
>>> +    init_completion(&ctrl->command_complete);
>>> +    init_completion(&ctrl->dma_complete);
>>> +
>>> +    /* clear interrupts */
>>> +    value = readl(ctrl->regs + ISR);
>>> +    writel(value, ctrl->regs + ISR);
>>> +
>>> +    irq = platform_get_irq(pdev, 0);
>>> +    err = devm_request_irq(&pdev->dev, irq, tegra_nand_irq, 0,
>>> +                           dev_name(&pdev->dev), ctrl);
>>> +    if (err)
>>> +            goto err_disable_clk;
>>> +
>>> +    writel(DMA_CTRL_IS_DONE, ctrl->regs + DMA_CTRL);
>>> +
>>> +    /* enable interrupts */
>>> +    value = IER_UND | IER_OVR | IER_CMD_DONE | IER_ECC_ERR | IER_GIE;
>>> +    writel(value, ctrl->regs + IER);
>>> +
>>> +    /* reset config */
>>> +    writel(0, ctrl->regs + CFG);
>>> +
>>> +    err = tegra_nand_chips_init(ctrl->dev, ctrl);
>>> +    if (err)
>>> +            goto err_disable_clk;
>>> +
>>> +    platform_set_drvdata(pdev, ctrl);
>>> +
>>> +    return 0;
>>> +
>>> +err_disable_clk:
>>> +    clk_disable_unprepare(ctrl->clk);
>>> +    return err;
>>> +}
>>> +
>>> +static int tegra_nand_remove(struct platform_device *pdev)
>>> +{
>>> +    struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
>>> +
>>> +    nand_release(nand_to_mtd(ctrl->chip));
>>> +
>>> +    clk_disable_unprepare(ctrl->clk);
>>> +
>>> +    return 0;
>>> +}
>>> +
>>> +static const struct of_device_id tegra_nand_of_match[] = {
>>> +    { .compatible = "nvidia,tegra20-nand" },
>>> +    { /* sentinel */ }
>>> +};
>>> +
>>> +static struct platform_driver tegra_nand_driver = {
>>> +    .driver = {
>>> +            .name = "tegra-nand",
>>> +            .of_match_table = tegra_nand_of_match,
>>> +    },
>>> +    .probe = tegra_nand_probe,
>>> +    .remove = tegra_nand_remove,
>>> +};
>>> +module_platform_driver(tegra_nand_driver);
>>> +
>>> +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
>>> +MODULE_AUTHOR("Thierry Reding <thierry.reding@xxxxxxxxxx>");
>>> +MODULE_AUTHOR("Lucas Stach <dev@xxxxxxxxxx>");
>>> +MODULE_AUTHOR("Stefan Agner <stefan@xxxxxxxx>");
>>> +MODULE_LICENSE("GPL v2");
>>> +MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
>>>
--
To unsubscribe from this list: send the line "unsubscribe devicetree" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html



[Index of Archives]     [Device Tree Compilter]     [Device Tree Spec]     [Linux Driver Backports]     [Video for Linux]     [Linux USB Devel]     [Linux PCI Devel]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [XFree86]     [Yosemite Backpacking]


  Powered by Linux