
It’s Broken!
Fixing the DT binding process



It’s Broken!
Fixing the DT binding process



The Problem

● Not everything is discoverable.
○ Isn’t just an ARM or embedded problem

■ servers and desktops
○ Isn’t just a platform_device problem

■ PCI and USB
● Topology between devices is hard
● Becoming more prevalent, not less
● Takes time to see how to describe hardware

○ What are the common patterns?



The Problem - part 2
● DT/ACPI describes what is non-discoverable
● Binding defines how to describe specific devices
● Stability Tension:

○ Don’t yet know how hardware should be described
○ Don’t break users

● Infrastructure Tension:
○ Common patterns
○ Device specific schema
○ Conversion from board centric view
○ Strict adherence to historic DT principles



Proposed Solution (Policy)

● By default, treat bindings as stable
○ BUT, don’t get trapped creating the “perfect” binding

● Bindings can change - when done correctly
○ We can refactor as patterns emerge

● Configuration data are acceptable
● We will provide:

○ Facility for unstable bindings
○ Documentation on best practices and process
○ Tools for validation



Statement on DT process
● Bindings MUST be documented

○ A binding is a schema for hardware description
○ Documentation/devicetree/bindings
○ Ideally in a separate patch
○ cc’d to devicetree@vger.kernel.org
○ In near future will be enforced via tooling

● Binding Acks:
○ MUST be acked from subsystem maintainer
○ SHOULD be acked from DT maintainer

■ Subsystem maintainer MAY make decision in case of sleepy DT 
maintainers.

○ Generic subsystem bindings require higher scrutiny
● Merge bindings via subsystem trees

○ Merge .dts changes via ARCH tree

mailto:devicetree@vger.kernel.org


Questions?

 



Configuration data

● Describes intended operation point of device
● Entirely reasonable to encode in device tree

○ Just try not to encode Linux implementation details
● Guidelines will be published



Making a compatible update

● Old kernels MUST continue to function with 
updated DT
○ Properties DEPRECATED, not removed
○ New optional properties may be added

● Guidelines (review checklist) on how to 
design future-proof bindings will be 
published



Making an incompatible update

● Submit to public flogging
● New compatible string (v2..)
● Driver support both old and new bindings

○ Old binding may be removed after sufficient time
● DTS should have only old or new instance



Unstable bindings

● Analogous to CONFIG_STAGING
○ In tree, but not stable

■ Not guaranteed to work in future
○ Must be explicitly enabled (UNSTABLE_DT?)
○ Either stabilized or removed

● Not a shortcut around review / correctness
○ Exceptional cases only (e.g. new device class)

■ MUST meet usual hygiene standards
○ Taint flag if used (?)



General Binding Review Rules
● Check that code matches schema
● Check the schema matches the hardware

○ Configuration options
○ Missing or ambiguous reg, interrupts, clocks, resets, 

regulators, power domains…
● Err on the side of simplicity

○ You can always add stuff later
○ Be explicit from start — which interrupt is which?



schema design goals

● bindings without schema should warn, not 
error (unless strict is requested)

● Schema encodes both documentation and 
binding

● Flag properties/nodes that aren’t in schema



Other Notes
■

○ Representation (DT or ACPI) is irrelevant - schema 
policy is the same

○ “Failover cascade” is important
■ Aim for ABI stability
■ Extend with optional properties
■ Change compatible when old binding is broken
■ Use quirks when really really broken


